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I collect permutation puzzles, in particular the Rubik's Cube and its many varied relatives. My 
collection also contains many sliding piece puzzles. In a paper from 1974, Richard M. Wilson [1] 
thoroughly analysed sliding piece puzzles by abstracting and generalising them to graphs. As 
far as I know, no similar analysis exists for rotational permutation puzzles, and here I hope to 
partly fill that gap. 
 

 
Figure 1 

 
Figure 1 shows the Fifteen puzzle and its graph. The vertices represent the locations of the 
pieces, and two vertices are connected if a piece might slide between the two locations. To 
capture a rotational puzzle in a graph in a similar manner, we need some assumptions. First, 
the puzzle must have only one type of piece. The 3x3x3 Rubik's Cube for example has 2 types 
of pieces namely edges and corners, which don't intermingle, and a graph can represent only 
one of those. Furthermore, only their permutation will be examined, their orientations will be 
ignored. Lastly, a move consists of a turn of a face which cyclically permutes a set of pieces. 
Figure 2 shows how the edges of the Rubik's Cube are graphed. 
 

 
Figure 2 

 
The 12 pieces of a Dino Cube [4], shown in figure 3, result in the same graph as that of the 12 
Rubik's Cube edges. The difference is that the moves on a Dino Cube correspond to cycles on 
the triangular faces of the graph, whereas the moves on the Rubik's Cube correspond to cycles 
on the square faces. For a graph to represent a puzzle, certain faces must be marked in some 
way to show what moves are allowed on  the puzzle. 
 

 
Figure 3 

 
The question is now: Given a puzzle (as represented by a graph), which permutations of the 
pieces are possible? 



 
Even and odd parities 
 
In some puzzles every move is an even permutation. For example the Impossiball and the 
Alexander Star [4] have this property since every move is a 5-cycle. Obviously the best we can 
hope for in such cases is that all even permutations are possible. Suppose on the other hand 
that some move is an odd permutation, and furthermore, that we can already achieve every 
even permutation. Then all the odd permutations come for free: 
 
Parity lemma:  Let p be an odd permutation in Sn. Then <An,p> = Sn. 
 
The proof is almost trivial. Suppose you can solve any even permutation on a puzzle. If you are 
then given any odd permutation to solve, just do any odd permutation move. Such a move must 
exist for any odd permutation to be possible at all. This results in an even permutation which 
you can then solve. 
 
 
From large to small 
 
What remains now is to find a way to use the moves to produce all the even permutations. 
Puzzles with few possible moves tend to be harder because you have fewer degrees of 
freedom. Furthermore, if you can solve such a small puzzle, then it is easy to extend this 
knowledge to solve larger puzzles due to the following: 
 
Extension lemma:  Let An be the group of even permutations of n items (n>2). Let c be the 
cycle (k k+1 k+2 ... m), where k<=n<m. Then <An,c> contains Am. 
 
Proof omitted. (Just establish the 3-cycles (1 2 i) for all i>2 in the three cases k>2, k=2, k=1). 
 
In other words, if with just a few faces we can get every even permutation of their pieces, then 
by adding another adjacent face allows for every even permutation of this larger set of pieces. 
By adding the faces one by one, we can then get every even permutation of the whole puzzle. 
The way I have stated it here, it is assumed that only one section the added face overlaps with 
the previous faces, but with a little more work it can be shown that this assumption is not 
necessary - see Wilson's paper for details. 
 
From this it is clear that we need to examine the smallest cases first, i.e. the graphs involving 
only two faces. If those two faces allow for all even permutations, then the extension lemma 
shows the whole puzzle allows all even permutations too. 
 
 
Two-faced puzzles 
 
At this point I will assume not only that the puzzle graph has only two faces, but also that the 
two faces have only one section in common. Any such graph puzzle can be specified using 3 
numbers - the number of pieces unique to the first face (x), the number of pieces shared by the 
two faces (y), and the number of pieces unique to the second face (z). I will use the notation 
(x,y,z) to specify this graph. 
 
The general (x,y,z) problem is split into many separate cases. Each time we establish a 3-cycle. 
Applying the extension lemma to the combination of that 3-cycle (or actually A3) and a turn of an 
affected face, it follows that all even permutations in that face can be achieved. Another 
application of the lemma then shows that the two faces together allow every even permutation 
of the whole set of pieces. 
 
Let's tackle some examples explicitly, for example the case x>0, y=1, z>0. The effect of the 
commutator aba-1b-1 on the pieces is already a 3-cycle (fig. 4). Note that I use left-to-right 
notation, i.e. permutation a is performed first, and b-1 last. Applying the extension lemma to this 
twice immediately shows that every even permutation is possible. 
 



 
 

Figure 4 
 
A more complicated case is x>1, y>1, z>2. The effect of the commutator aba-1b-1 on the pieces 
is now a double swap (fig. 5). The moves a-1b-2 would move two of the affected pieces out of the 
way in the unshared part of face b, and leave the other two affected pieces adjacent in face a. 
Therefore the conjugate p = b2a(aba-1b-1)a-1b-2 affects face a only by one swap of adjacent 
pieces. By commutating p with a, we get a 3-cycle of three adjacent pieces in face a. Thus 
every even permutation is possible. 
 

 
 

Figure 5 
 
The various cases are listed in the table below, but the further details are omitted. 
 
Case 3-cycle 
(1+,1,1+) aba-1b-1 
(2+,2+,3+) p=b2a(aba-1b-1)a-1b-2, pap-1a-1 
(0,2+,1+) aba-1b-1 
(1,2+,1) ab 
(1,2,2+) a 
(1,3,3+) (b (aba-1b-1) b-1 a-1b-1ab) 2 
(1,4+,2+) (ab-1a-1b  a-1bab-1) 2 
(2,3+,2) (aba-1b-1)  a-1 (a-1b-1ab) a  (a-1bab-1) -1 (a-1b-1ab) (a-1bab-1) 
 
 
Cases (2,2,2) and (1,3,2) 
 
All the previous graph puzzles allowed at least all even permutations to be performed on its 
pieces. The two special cases (2,2,2) and (1,3,2) however, shown in figure 6, only allow 5! 
positions instead of the expected 6! = 720. The (2,2,2) graph corresponds to a real puzzle, 
namely the puzzle formed by the corners of  two adjacent face of a Rubik's Cube. David 
Singmaster [2] has given a proof that the group of permutations is PGL2 ( Z5 ), a group of order 
120 isomorphic to S5. 
 

          
Figure 6 



 
Suppose we add a third face to either of the special cases (2,2,2) and (1,3,2) so that we have 7 
or more vertices in the graph. Are all even permutations possible then?  If there is a subgraph 
with two faces that is not one of these two special cases, then we already have the answer, 
namely that they are possible. This leaves only a small number of possibilities to check, and it 
turns out that each time every even permutation can be achieved. 
 
 
Comparison to sliding piece puzzles 
 
Given an (x,y,z) graph, you can add a vertex in the shared section to turn it into an equivalent 
sliding piece puzzle. The added vertex is the initial location of the gap the other pieces can slide 
into. Turning one face of the original rotational puzzle corresponds to moving the space along 
the path around that face. It is therefore obvious that the positions of (x,y,z) rotational puzzle 
correspond exactly to the positions of the sliding puzzle with the gap at the inserted vertex. 
 
The two exceptional rotational puzzles with graphs (2,2,2) and (1,3,2) can also be turned into 
sliding piece puzzles in this way. This results in the sliding puzzle graphs shown in figure 7a and 
7b. In Richard M. Wilson's paper [1], only one exceptional graph was found (fig. 7d) and luckily 
his graph is isomorphic to both of these. 
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Conclusion 
 
Nearly every rotational puzzle graph allows every even permutation to be achieved. 
Furthermore, if any face contains an even number of pieces, then all odd permutations are also 
possible. Exceptions to this rule are: 

- Trivially, the puzzle graphs with only one face (cyclic group) 
- The two exceptional puzzle graphs ( PGL2 ( Z5 ) ~ S5 ) 
- Puzzle graphs where any two adjacent faces always have more than one shared 

section. (group undetermined) 
 
There are some interesting real-life examples in the third set of exceptions. A neat case is given 
by the three moves/faces (1 2 6 5), (1 3 6 4), and (2 3 5 4) which generate merely 24 positions 
(hint: think rolling die). The best known puzzle in this category is the Hungarian Rings [3].  
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