EASY INSTRUCTIONS FOR OPERATING THE omptometer ** # COMPTOMETER CORPORATION 1735 NORTH PAULINA STREET CHICAGO 22, ILLINOIS #### DECIMAL EQUIVALENTS OF COMMON FRACTIONS | 4 | тня | 61 | нв | 81 | не | 12 | 2THS | 10 | 5THS | |----------------------------------|-------------------------|----------------|-------------------------|-------------------|-------------------------|----------------------|---------------------------|----------------------|---------------------------| | 1 2 3 | .25
.5
.75 | 1 2 3 | .1667
.3333
.5 | 1 2 3 | .125
.25
.375 | 1 2 3 | .0833
.1667
.25 | 1 2 3 | .0625
.125
.1875 | | 4 .6667
5 .8333 | | | 4 5 6 | .5
.625
.75 | 4 5 6 | .3333
.4167
.5 | 4 5 6 | .25
.3125
.375 | | | | | | | 7 | .875 | 7 8 9 | .5833
.6667
.75 | 789 | .4375
.5
.5625 | | 1 2 | .0156 | 22 23 | .3438
.3594 | 43 | .6719
.6875 | 11 .9167 11 | | 10
11
12 | .625
.6875
.75 | | 3 | .0469 | 24
25
26 | .375 | 46 47 | .7031
.7188
.7344 | | | 13
14
15 | .8125
.875
.9375 | | 5 6 | .0781 | 27 | .4063 | 48 | .75 | | 32 | NDS | | | 789 | .1094
.125
.1406 | 28
29
30 | .4375
.4531
.4688 | 49
50
51 | .7656
.7813
.7969 | 1 2 3 | .03125
.0625
.09375 | 17
18
19 | .53125
.5625
.59375 | | 10
11
12 | .1563
.1719
.1875 | 31
32
33 | .4844
.5
.5156 | 52
53
54 | .8125
.8281
.8438 | 4 5 6 | .125
.15625
.1875 | 20
21
22 | .625
.65625
.6875 | | 13
14
15 | .2031
.2188
.2344 | 34
35
36 | .5313
.5469
.5625 | 55
56
57 | .8594
.875
.8906 | 7 8 9 | .21875
.25
.28125 | 23
24
25 | .71875
.75
.78125 | | 16
17
18 | .25
.2656
.2813 | 37
38
39 | .5781
.5938
.6094 | 58
59
60 | .9063
.9219
.9375 | 10
11
12 | .3125
.34375
.375 | 26
27
28 | .8125
.84375
.875 | | 19
20
21 | .2969
.3125
.3281 | 40
41
42 | .625
.6406
.6563 | 61
62
63 | .9531
.9688
.9844 | 13
14
15 | .40625
.4375
.46875 | 29
30
31 | .90625
.9375
.96875 | | | | | | | | 16 | .5 | | | # INTRODUCTION Method of operation is the same for Models J, K, and M. THE COMPTOMETER is a key-driven adding and calculating machine which performs quickly and easily all forms of arithmetical figuring involving addition, multiplication, division, and subtraction. Operation is exceedingly simple — no operating lever to pull, no crank to turn, no preliminary setting of dials. Nothing to do but press the keys and read the answer—the machine does the rest. The Comptometer is available in various capacities* with each column containing 9 keys, grouped in alternating sections, colored green and ivory. On each key top is a large and small figure. The large figures are used for addition and multiplication; the small figures for division and subtraction. The answer dials show the result of the calculation. The answer dials are cleared by touching the canceling control located at right of keyboard. The pointers below the answer dials are used to point off decimals. The cut-offs or buttons at the left of each column are used for subtraction. The Accuracy Key, located at the base of the fourth row of keys just above the answer dials, unlocks the keyboard after the incomplete key stroke has been corrected. (See page 5 for proper use of Accuracy Key.) *The Comptometer is manufactured in eight standard totaling capacities: 6, 8, 9, 10, 11, 12, 13 and the 21 totaling capacity Comptometer for use in heavy statistical and distribution work. # ADDITION #### General Instructions THE two columns of white keys on the right side of the keyboard are for adding units and tens of cents. The next three columns of green keys are for adding units, tens, and hundreds of dollars. The adjoining three columns of white keys are for adding thousands, tens of thousands, and hundreds of thousands, amounts. Keys farther to the left are for adding correspondingly higher denominations. In addition always use the large figures on the keys. Only one key should be operated at a time. For example, in adding \$3.45, first press down the 3 key in the third column, then the 4 key in the second column and then the 5 key in the first column. No keys are depressed for ciphers. Always lift the finger slightly off the key after each stroke. For the first few days go slowly, memorizing the keyboard and acquiring rhythm. Remember to place the finger on the key desired and press it down until you feel it strike bottom. Practice this push-stroke in rhythm. It differs distinctly from the sharp staccato stroke used when typing. It is the easiest known stroke on the finger. It eliminates the impact of striking the key. #### Full Keyboard Method Below are six columns of figures to be added. Use only the index and second finger. The index finger is used to operate all keys except those in the extreme right-hand column which should be touched with the second finger. Use the full keyboard, adding each item across from left to right. If you find the keyboard locked it is a positive signal of misoperation. The rule for correcting operating errors is explained on page 5. For the first few days go slowly. Speed will come later. Touch only one key at a time. | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | |--------|--------|--------|--------|--------|---| | 41.79 | 91.59 | 79.27 | 42.67 | 21.25 | 96.57 | | 18.57 | 78.25 | 65.76 | 58.14 | 15.96 | 5.82 | | 21.45 | 451.35 | 413.45 | 87.00 | 43.21 | 68.42 | | 4.67 | 6.47 | 135.00 | 45.50 | 87.65 | 102.19 | | 432.35 | 5.60 | 223.57 | 235.00 | 1.92 | 79.18 | | 14.46 | 12.35 | 86.40 | 57.68 | 218.19 | 517.29 | | 5.38 | 38.00 | 240.00 | 68.77 | 93.15 | 61.48 | | 432.25 | 913.50 | 33.46 | 433.24 | 37.92 | 43.27 | | 165.70 | 42.34 | 5.67 | 700.00 | 479.99 | 197.52 | | 540.62 | 78.16 | 41.71 | 307.20 | 45.55 | 37.25 | | | | | | | - · · · · · · · · · · · · · · · · · · · | Add each column and write the total obtained. Then prove at once by re-adding the column. For practice add each column at least four times. If misoperation occurs it is usually the result of trying to go too fast. # TOUCH METHOD TOUCH method of addition provides the greatest degree of speed and accuracy and is simple and easy to learn. Touch method is highly recommended, because it eliminates time spent in looking from the work to the keyboard. Only the lower half of the keyboard is used in touch addition; all keys are within easy reach of the fingers. 512679508649755187462746275396471847513987120473 To add 6, touch 3 twice To add 7, touch 3 and 4 To add 8, touch 4 twice To add 9, touch 4 and 5 Upon examining the keys it will be noticed that the odd-numbered keys: 1, 3, 5, etc., are concave. The even keys: 2, 4, etc., are flat-topped. This is to facilitate touch operation. With this in mind add the following examples. Begin at the top of each column and add down. Use the first finger for adding in the tens column only and the second finger for adding the units column only. Keep each finger on its own column. Find the keys by sense of touch, as much as possible. In adding it is necessary to acquire a smooth rhythmic stroke. Hold a pencil between the thumb and palm of the operating hand. This helps to balance the hand and the pencil is always in readiness for writing down answers. A Comptometer improperly placed is detrimental to speed and ease of operation. It should be placed at an angle slightly to the right of the operator with the left edge in a direct line with the center of the body. The desk and the seat of the chair should be of a height to permit the feet to touch the floor and the fingers to rest comfortably on the keys. | | | (6) | | | | | |-------|-------|-------|-------|-------|-------|-------| | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | | . 22 | 33 | 43 | 23 | - 67 | 84 | 25 | | 23 | 34 | 33 | 36 | . 43 | 47 | 92 | | 33 | 43 | 12 | 43 | 77 | 63 | 14 | | 34 | 32 | 54 | 48 | 65 | 84 | 52 | | 44 | 31 | 23 | 35 | 95 | 93 | 71 | | 45 | 35 | 32 | 49 | 48 | 32 | 42 | | 55 | 53 | 24 | 43 | 64 | 26 | 35 | | 54 | 25 | 25 | 36 | 23 | 82 | 92 | | 43 | 24 | 35 | 42 | 72 | 48 | 25 | | 353 | 310 | 281 | 355 | 554 | 559 | 448 | Add each column and compare the total obtained with that shown at foot of column. For practice add each column at least four times. Practice for a full rhythmic stroke. Speed will come with practice. 3.25 .67 .45 4.82 .56 2.80 3.20 # TOUCH METHOD #### Adding Whole Numbers and Dollars and Cents ADD the following three and four-figure items use the index finger for all figures except the extreme right-hand figure. The second finger is used only in adding the extreme right-hand figure. With eyes on the work-no glancing back and forth from keyboard to work sheet-it is apparent that the danger of misreading figures is greatly reduced. The superior adaptability of the Comptometer to touch operation gives it a positive advantage in speed-with-accuracy. | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | |-------|-------|-------|-------|-------|-------|--------| | 212 | 367 | 378 | 24.36 | 54.56 | 33.45 | 70.00 | | 364 | 238 | 265 | 42.67 | 43.21 | 65.34 | 543.21 | | 543 | 762 | 532 | 43.24 | 32.61 | 77.21 | 29.00 | | 267 | 926 | 461 | 62.42 | 11.33 | 43.12 | 98.23 | | 845 | 545 | 637 | 17.56 | 32.24 | 63.33 | 378.80 | | 963 | 823 | 572 | 24.36 | 82.27 | 63.44 | 345.45 | | 787 | 415 | 726 | 21.11 | 72.56 | 14.55 | 896.87 | | 312 | 564 | 847 | 32.35 | 23.24 | 54.33 | 454.22 | | 357 | 382 | 623 | 46.54 | 72.27 | 25.98 | 30.00 | | 386 | 637 | 549 | 22.66 | 44.45 | 65.67 | 27.42 | | | | | | | | | Add each column and write the total obtained. Then prove at once by re-adding the column. For practice add each column four times in order to fix firmly in mind the combinations used. #### "Split" Method of Addition In adding long
columns it is often an advantage to split the items, adding first the cents and then the dollars. Add columns number 4, 5, 6 and 7 using this method. First add cents only, adding the tens with the first finger and the units with the second finger, leaving the total of cents in the answer dials. Then add the dollars, using the first finger for the tens and the second finger for the units. Correct selection of keys is made entirely by sense of touch. In adding column number 7 use the first finger for both hundreds and tens of dollars. Add each column and write the total obtained. Then prove at once by re-adding the column. For practice add each column at least four times in order to fix firmly in mind the combinations used. As previously mentioned under General Addition Instructions, a locked keyboard is a positive signal of misoperation. The rule for correcting misoperation is found on page 5. # How to use the ACCURACY KEY The Accuracy Key is a positive system of automatic control which prevents errors caused by fumbled or incomplete key strokes. The Accuracy Key mechanism gives instant signal of misoperated keys with positive protection against such misoperations: the operator can speed up safely and be assured of accuracy. Different model Comptometers employ slightly different methods of correcting misoperated keys. Follow the instructions below to correct misoperated keys for the model Comptometer you are using. #### Comptometer Models 992, 99C and 616 Customatic IN ADDING AND SUBTRACTING When a locked key signals a misoperation, the misoperated key will be in a semi-depressed position and the motor will continue to run. Complete the touch of the semi-depressed key and touch the Accuracy Key. Continue adding with the key that locked and signaled the misoperation. #### EXAMPLE In adding this short column intentionally press the 5 cent key part way down. On attempting to add the 3 dollar key, you find it locked. Go back to the last key touched (5). complete the stroke, touch the Accuracy Key and continue adding with the key that locked 4.82 and signaled the error (3). #### IN MULTIPLICATION AND DIVISION The Accuracy Key prevents errors from slipping into the answer without the knowledge of the operator. When a key is misoperated, the entire keyboard locks except the key or keys on which the misoperation occurred. The misoperation is indicated three ways: visually, by sound of the motor continuing to run, and by touch, in that the key or keys misoperated are held in a semi-depressed position and remain so until corrected. Complete the touch of the semi-depressed key or keys, then touch the Accuracy Key and continue through the operation. #### Comptometer Model J. M. K or 3D11 The Accuracy Key mechanism gives instant signal of a misoperated key, by locking all columns except the column in which the incomplete key stroke was made; this column is left open for correction. When a key locks in adding, it is a positive signal that an incomplete key stroke was made either on the last key depressed or the key previous to the last. RULE 1. When a key locks, always go back and try to operate the last key touched. If this key goes down, touch the Accuracy Key and continue the addition, starting on the key that locked and signaled the error. COMPTOMETER RULE 2. But if the last key touched is found locked, touch the Accuracy Key and add in the previous key; then continue the addition, starting on the key that locked and signaled the error. #### EXAMPLE OF RULE 1 In adding this short column intentionally press the 5 cent key part way down. On attempting to add the 3 dollar key, you find it locked. Following your rule, go back and add the last key depressed (5), touch the Accuracy Key, and the correction is made. Continue adding, starting on the key that locked and signaled the error, 3. #### **EXAMPLE OF RULE 2** In adding this column, intentionally press the 30 key part way down. Then give the 40 key 3.75 a regular stroke. On attempting to add the 5 key, you find it locked. To correct, go back to the last key depressed (40), and you will find it locked. Following the rule, touch the Accuracy Key and add in the previous key (the 30). This completes the correction and you continue adding, beginning on key which locked and signaled the error, 5. #### IN MULTIPLICATION AND DIVISION EXCEPT MODEL 3D11 When the key locks under the fingers, the positive danger signal prevents an error from slipping into an answer without the knowledge of the operator. Owing to the speed of the Comptometer addingcalculating machine it is simpler and faster to cancel and go over the problem than to stop and make the correction. #### IN MULTIPLICATION AND DIVISION USING MODEL 3D11 Simply push back the multiplication and division button at left of keyboard before starting to multiply or divide. If, and when, a key is misoperated, all the keys held will lock except the key or keys misoperated. These are left open so that the operator may correct the misoperation without removing fingers from the keyboard. Touch the key or keys that can be depressed and continue operating. # MULTIPLICATION # Example: Multiply 1364 x 57 PLACE the first finger of the left hand on the 50 key and the first finger of the right hand on the 7 key. Strike the 57 in this position as many times as the right-hand figure (4) of the multiplicand indicates. Move both fingers one column to the left and strike as many times as indicated by the second figure (6) of the multiplicand. Continue to move to the left, striking in each column the multiplier as many times as indicated by the successive figures (3—1) of the multiplicand. In beginning multiplication confine yourself to the use of the first finger of the right hand and the first finger of the left hand. After the fingers have been positioned on the keys representing the multiplier, strike slowly, giving each key a full push-stroke, until you feel it strike bottom. Raise the fingers slightly above the keys after each stroke. Speed will develop quickly. After placing the fingers on the proper keys, look at the example, rather than the keyboard, so that the figures will not be misread. In each of the following examples use the first finger of the left hand for the tens figure of the multiplier and the first finger of the right hand for the unit figure: | No. 1 | No. 2 | No. 3 | No. 4 | <u>No. 5</u> | |---------|---|--------|--------|--------------| | 24,531 | 12,456 | 5.315 | 23,456 | 84,143 | | 35 | 68 | 64 | 75 | 79 | | | | | | • • • | | No. 6 | No.7 | No. 8 | No.9 | No. 10 | | 35,642 | 15,341 | 45,673 | 36,341 | 14,683 | | 45 | 88 | 28 | 23 | 47 | | No. 11 | No. 12_ | No. 13 | No. 14 | No. 15 | | 89,986 | 15,366 | 65,418 | 94,345 | 14,312 | | 37 | 15 | 31 | 63 | 86 | | | | | | | | No. 16_ | No. 17 | No. 18 | No. 19 | No. 20 | | 26,433 | 46,541 | 63,222 | 46,812 | 46,533 | | 19 | 91 | 83 | 61 | 11 | | | ti de la companya | | | | #### Example: Multiply 314 x 45 Place the first and second fingers of the right hand on the keys in the right-hand columns representing the multiplier (45), and strike as many times as indicated by the right-hand figure (4) of the multiplicand; move the fingers one column to the left and strike as many times as the second figure (1) of the multiplicand indicates. Continue to move to the left, striking as many times as the succeeding figure (3) of the multiplicand indicates. 512679508649755187462746275396471847513987190473 The first and second fingers of both hands are more commonly used than any of the other fingers. A safe rule to follow is to use the longest finger for the highest number. Multiply each of the following problems, using the fingers as shown by the abbreviations in front of, and following the multiplier. IL and 2L indicate first and second fingers of the left hand. IR and 2R indicate first and second fingers of the right hand. Raise the fingers slightly above the keys after each stroke.
| No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | |----------|-----------------------|----------|---------------|---------------| | 43 | 13 | 47 | 83 | 276 | | IR 34 2R | 2R 42 1R | 1L 62 1R | 1L 37 1R | 1L 345 1 & 2R | | | | | | | | | | | | | | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 | | 19 | 342 | 43 | 43 | 56 | | 2R 54 IR | 1L 153 2 & 1R | 1L 39 1R | 1L 13 1R | 89 1 & 2R | | | | | | | | | | | | | | No. 11 | No. 12 | No. 13 | No. 14 | No. 15 | | 75 | 83 | 28 | 284 | 104 | | IR 46 2R | 1L <mark>87</mark> 1R | IL 19 IR | 1L 324 1 & 2R | 1L 678 1 & 2R | | | | | · | | For practice purposes it may be convenient to split the multiplier when it contains four figures. Example: Multiply 12,365 x 8,379. First multiply 12,365 by 79, leaving the result in the machine. Then multiply 12,365 by 83, starting the 83 in the fourth and third columns. NOTE: A hyphen indicates where the multiplier should be split. When multiplying with two figures, the first finger of each hand is usually used. Point off as many places from the right as there are decimals in both factors. | No. 16 | No. 17 | No. 18 | No. 19 | No. 20 | |---------------|--------|--------|---------|----------------| | 67.44 | 245.6 | 5613 | 584.26 | 5362 | | 1L 735 1 & 2R | 65-35 | 27–18 | . 53–78 | 1L .523 1 & 2R | | No. 21 | No. 22 | No. 23 | No. 24 | No. 25 | |-----------------------|------------------------|----------------|-----------------------|-----------------| | 17465 | 15082 | 13461 | 13723 | 191.47 | | 43-45 | 1L 31.04 1 & 2R | 19–19 | 73–65 | 92-23 | | <u>No. 26</u>
4817 | <u>No. 27</u>
.5447 | No. 28
6714 | <u>No. 29</u>
3672 | No. 30
574.4 | # Large Decimal Multiplications In MULTIPLYING large numbers containing decimals, it is advisable to strike from the left toward the right. Hold the multiplier with its left-hand figure on the left-hand column of the machine. Strike here as many times as is shown by the left-hand figure of your multiplicand, and then move one column to the right, etc. Point off as many answer dials from the left as the sum of the whole places in the multiplicand and multiplier. #### Example: Multiply 12.345 x 4.356 Hold 4356 with the 4 on the left-hand column of the machine and in this position strike once. Move each finger one column to the right and strike two times; one more column to the right and strike three times—then four times, then five times. The result as it stands in the answer dials is 053774820. (An eight column Comptometer was used in figuring this problem.) There are two whole places in 12.345 and one in 4.356, making together three answer dials to point off from the left of the machine, and the answer is 53.77482. 16-17 NOTE: Hyphen in multiplier indicates where it may be split. #### Examples: | <u>No. 1</u> | No. 2 | No. 3 | No. 4
.35624 | |------------------------|------------------------|-------------------------|-------------------------| | 346.21 | 14.374 | 2.2635 | | | 1L 4.67 1 & 2R | 2 & 1L 32.78 1 & 2R | 9.4–56 | 91.–47 | | No. 5 | No. 6 | No. 7 | <u>No. 8</u> | | 11.463 | 4627.1 | 26.516 | 314.62 | | 1L 37.8 1 & 2R | 1L .846 1 & 2R | 2 & 1L 21.68 1 & 2R | 7.3-49 | | <u>No. 9</u>
243.82 | <u>No. 10</u>
986.4 | <u>No. 11</u>
328.64 | <u>No. 12</u>
304.69 | | | | 16.–17 | 2 & 1L 216.7 1 & 2R | | 2 & 1L 53.33 1 & 2R | 2 & 1L 31.32 2 & 1R | 1017 | 2 & IL 210.7 1 & 2R | # Three-Factor Multiplication HEN three numbers are to be multiplied such as, 57 bolts of 12 yards each at \$1.25 per yard, proceed as follows: Multiply 57 x 12 on the right of the machine. Leave the result 684 in the answer dials. Since 684 is registered in the machine once it is necessary to multiply it only 124 times more. Therefore, hold 124 with the 4 over the 512679508649755187462746275396471847513987120473 left-hand figure (6) of the 684. Strike the number of times indicated, six; move to the right one column and strike the number of times indicated, eight. Move one more column to the right and strike four times. The answer is \$855.00. In moving from left to right, the figure in the answer dial under the 4 key shows the number of times 124 should be struck. #### Examples: | <u>NO. 1</u> | NO. 2 | 110.3 | 110.4 | |------------------|-----------------|------------------------------|-----------------------------| | 345 x 289 x .56 | 789 x 88 x 5.46 | $6452 \times 344 \times .66$ | $33 \times 875 \times 4.58$ | | <u>No. 5</u> | <u>No. 6</u> | <u>No.7</u> | No. 8 | | 645 x 4456 x .28 | 389 x 673 x 438 | $75 \times 6489 \times 567$ | 372 x 44 x 8879 | NOTE: Point off as many places from the right as the sum of the decimals in the three factors. # Permanent Decimal Point Multiplication HEN factors contain changing decimals it will be easier and faster for the operator to use a method of working the multiplications over a fixed or Permanent Decimal Point. Between the fifth and sixth column of keys, directly over Decimal Pointer No. 5, is the position known as the Permanent Decimal Point. See illustration. Usually the price factor is held on the keyboard—dollars to the left of the Permanent Decimal Point, and cents to the right of the Permanent Decimal Point. With the price factor in this position strike it in as many times as the unit figure of the quantity indicates. Permanent Decimal Point—this is located between the fifth and sixth column of keys, directly over Decimal Pointer No 5. Move price factor one column to the left for each additional whole number in the quantity, and one column to the right for each column of decimals in the quantity. #### Example: 345 lbs. @ \$.65 per lb. Answer \$224.25 Hold price factor \$.65 so that the 6 key is held in the fifth column and the 5 key in the fourth column. Strike the price factor five times for the unit figure of quantity. Move price factor one column to the left and strike it four times for the TENS figure of quantity. Move price factor again one column to the left and strike it three times for the HUNDREDS figures of the quantity—\$224.25 now appears in the answer dials correctly pointed off. Work the following problems over the Permanent Decimal Point, following the explanation in the previous paragraph. #### Examples: | 1. | 307 | hrs. | @ | \$.45 | per | hr. | = | \$138.15 | |----|-----|-------|----------|--------|-----|------|---|----------| | 2. | 65 | doz. | @ | .22 | per | doz. | = | 14.30 | | 3. | 45 | tons | @ | 7.75 | per | ton | = | 348.75 | | 4. | 15 | days | @ | 4.50 | per | day | = | 67.50 | | 5. | 241 | bolts | @ | 67 | ear | h | _ | 161 47 | # Accumulative Multiplication Using Permanent Decimal RAPID and accurate method of checking and proving original multiplications is by accumulation. This method is very effective in proving payrolls, cost sheets, material requisitions, inventory sheets, invoices, etc., in fact it should be used wherever it is desired to total the products of several multiplications. To obtain the best results from accumulative multiplication, it should be performed over the fixed or Permanent Decimal Point. This Permanent Decimal Point is between the fifth and sixth columns, or as previously explained, directly over Decimal Pointer No. 5. It is easy to remember that the sixth (white) column of keys is UNITS of DOLLARS; the fifth column is TENS of CENTS and the fourth column is UNITS of CENTS. #### Example: 4³/₄ (4.75) yards @ \$1.25 16¹/₂ (16.5) yards @ .34¹/₂ 148¹/₄ (148.25) yards @ .06¹/₄ Accumulated Product \$20.90 Hold the price \$1.25 with the 1 in the sixth (white) column, the 2 in the fifth and the 5 in the fourth column. Multiply toward the right; strike four times, seven times, and five times. The answer dials show \$5.9375. LEAVE THIS IN THE MACHINE. Multiply the second item in a similar manner holding .345 with the 3 in the fifth, 4 in the fourth, and 5 in the third columns, respectively. As the yardage commences in the TENS COLUMN, move the price position one column to the left before commencing the multiplication. Strike from left to right one, six, and five times, respectively, and the accumulation in answer dials now shows \$11.63. LEAVE THIS IN THE MACHINE. 512679508649755187462746275396471847513987120473 For the third item hold .0625 with the 6 in the fourth column. As the yardage commences in the HUNDREDS COLUMN, move the price position two columns to the left before starting the multiplication. Strike in the keys one, four, eight, two, and five times in their respective columns. The accumulated answer of \$20.895 now appears in answer dials. If at any time fingers drop off the keyboard on THE RIGHT-HAND SIDE, continue to strike with fingers that still remain on keyboard. By the use of this method positive proof is obtained on: - (a) Each individual extension. - (b) Decimal point in the final result - (c) Addition of items Always take the **price position** on keyboard as previously explained—if the quantity has more than one whole number move the price position (before multiplying) one column to the left on the keyboard for each additional whole number in the quantity. For instance, move one column to the left for 48%, two columns for 236%, etc. # Example No. 1 | 11/8 | (1.125) | yards | @ | \$.48 | |-------|---------|----------|-----|--------| | 121/4 | (12.25) | yards | @ | .643/4 | | 67 | | yards | @ | .50 | | 63/8 | (6.375) | yards | @ | 1.23 | | 1 | Ccumulo | ted Tota | 1 5 | 849.81 | #### Example No. 2 | 162/3 | (16.667) | yards | @ | \$.341/ | |-------|----------|----------|--------|----------| | 172 | | yards | @ | .061/ | | 251/4 | (25.25) | yards | @ | 1.89 | | 256 | | yards | @ | .19 | | I | Accumula | ted Tota | al \$1 | 13.29 | # CORRECT ANSWERS AT A GLANCE! Unretouched photo actual size Late model Comptometers have LARGE, EASY TO READ, answer dials. Approximately 40% of a calculating machine operator's figuring time is spent in reading and recording answers. Comptometer's large answer dials can be read FASTER and with less fatigue! #### Subtraction Subtraction is the process of
finding the difference between two numbers. This is performed on the Comptometer by using the small figures on the key-tops and the subtraction "cut-off" or button. NOTE: (1) Do not hold subtraction cut-off after setting as it will return to normal automatically on Models M, 3D11, 992, 99C and Customatic. (2) Subtraction cut-offs must be held back manually while subtracting on the J. K and earlier models. Example: 98 - 75 = 23. Put 98 in the right of keyboard. Hold back "cut-off" or button (see note) at the left of the figure 9; depress a small 7 in the second column and a small 4 (5 less 1) in the first column — answer 23. To prove, add 75 to 23 in machine. Answer 98 agrees with amount started with. Example: 845 - 702 = 143 Put 845 in the right of keyboard. Hold back "cut-off" or button (see note) at the left of the figure 8; depress a small 7 in the third column, a small cipher in the second column, and a small 1 (2 less 1) in the first column -- answer 143. To prove, add 702 to 143 in machine. Answer 845 agrees with amount started with. Example: \$28.64 - \$9.62 = \$19.02 Put 28.64 in right of keyboard. Hold back "cut-off" or button (see note) at left of figure 2. Borrow from fourth column by depressing cipher key; as there are no small 9 figures, ignore the 9 in the third column. depress small 6 in the second column and a small 1 (2 less 1) in the first column — answer \$19.02. To prove, add \$9.62 to \$19.02 in machine. Answer \$28.64 agrees with amount started with. The processes to follow in subtraction: - 1. Put larger amount in the Comptometer. - 2. Hold back "cut-off" or button at the left of an amount in the register equal to or larger than the amount to be subtracted. - 3. Holding back the "cut-off" or button depress the amount to be subtracted in small figures, less one. - 4. If necessary to borrow, hold back the "cut-off" or button at the left of the column or columns from which you borrow. Depress the small cipher key in such column or columns. Cipher keys are used in the amount to be subtracted if they come between figures of value, but are ignored if at the end of a number. The 9's are ignored unless they come at the end of a number when one less than nine (8) is depressed. The apostrophe in the following problems indicates where the "cut-off" or button is to be held back. #### (See Note Page 12) | 1. '4.36 Add large figures | 2. '8.34 Add large figures | |-----------------------------|------------------------------| | 1.25 Small figures 124 | .68 Small figures 067 | | 3.11 | 7.66 | | 3. '21.43 Add large figures | 4. 1'70.36 Add large figures | | 6.42 Small figures 0641 | .85 Small figures 008 | | 15.01 | 169.51 | | 5. '65.23 Add large figures | 6. '6.42 Add large figures | | 31.00 Small figures 30** | 1.93 Small figures 1*2 | | 34.23 | 4.49 | | 7. '15.60 Add large figures | 8. '48.50 Add large figures | | 8.83 Small figures 0882 | 9.60 Small figures 0*5 | | 6.77 | 38.90 | #### Use of Small Figures in Subtraction or Division NOTE 1. In subtracting or dividing, use the keys with the corresponding small figures, except for the right-hand figure of value, for which one less must be used. 512679508649755187462746275396471847513987120473 | Rig | ght-Hai
of Vo | nd Figu
zlue | re | |--------|------------------|-----------------|--------| | \Box | T | T | \neg | | 462 | 127 | 3600 | 4620 | | 461 | 126 | 35 | 461 | To subtract or divide with Use small figures NOTE 2. The small cipher keys should be depressed the same as any other figure when they appear between figures of value, as in 704, but should be disregarded if they are at the right of the amount, as in 7500. | To subtract or divide with | /04 | |----------------------------|-------| | Use small figures | 703 | | To subtract or divide with | 7500 | | Use small figures | 74 | | To subtract or divide with | 46005 | | Use small figures | 46004 | | | | 63500 To subtract or divide with 634 Use small figures NOTE 3. If the right-hand figure of value in the amount is a 1, then one less is 0, and this small cipher should be struck. 3241 To subtract or divide with Use small figures 3240 3100 To subtract or divide with Use small figures 30 NOTE 4. As there are no small 9 keys, pass any column which contains 9; except where 9 is the right-hand figure of value, then the small 8 is used | billail o ib aboa. | | |---|------| | To subtract or divide with | 8947 | | Use small figures | 8 46 | | To subtract or divide with | 1695 | | Use small figures | 16 4 | | To subtract or divide with | 983 | | Use small figures | 82 | | To subtract or divide with | 379 | | Use small figures | 378 | | Application should be set to the set of | | ^{*}Used to designate columns in which no keys are depressed. # DIVISION IVISION is the process of finding the number of times one number is contained in another. Although division is not used as frequently in the average office as addition and multiplication, it is, however, very important and used extensively in statistics of all kinds. The machine method of division is more simple on the Comptometer than the mental or written process for it consists merely of a series of subtractions and the quotient, or answer figure, is a record of the number of subtractions made. Division on the Comptometer is as simple as any other operation. The underlying principle of division is explained in the following example: #### Example: 1477.63 ÷ 133 Place 147763 (the dividend) into the left side of the Comptometer using large figures. Pull down the decimal pointer on the machine in the same position as it appears in the written dividend. (1477/63). The divisor (133) contains three DIVIDEND DECIMAL whole numbers; that is, it has three figures to the left of its decimal point. Move your finger to the left of the dividend decimal position three places. Pull down the pointer in this position. You have now established the decimal point for your answer. (147763). ANSWER DECIMAL Hold 133 (the divisor) using small figures less one (132) directly over 147. Depress these divisor keys until the amount in the register dials at the base of the columns in which you are holding the divisor is less than 133. 512679508649755187462746275396471847513987120473 In this example, the remainder is 014, which is less than your divisor, 133. Move your divisor position, held on the keyboard, one place to the right. You are now holding your divisor over 147 in the register dials. Depress 132 (divisor figures). Remainder is 014 which is less than your divisor 133. Move your divisor position, held on keyboard, one place to the right. You are now holding your divisor over 146 in the register dials. Depress 132 (divisor figures). The remainder is 013 which is less than your divisor, 133, Move your divisor position, held on keyboard, one place to the right. You are now holding your divisor over 133 in the register dials. Depress 132 (divisor figures). The remainder is 000. Copy your answer - 11.11. #### Example: 8153.40 ÷ 254 Place 815340 (the dividend) into the left side of the Comptometer using large-numbered keys. Locate your dividend decimal position: 8153 40 DIVIDEND DECIMAL Establish your answer decimal point position: ANSWER DECIMAL Hold your divisor 254 (using small-figured keys 253) over 815 in the register dials. Depress 253 (divisor figures) until the remainder in the register dials is less than the divisor, 254. Remainder is 053. Move your divisor position, held on keyboard, one place to the right over 533 in the register dials. Repeat depressing and moving until the entire problem is completed. Answer: 32.10. #### Practice Division Problems $4775.38 \div 226 =$ 21.13 $2326.59 \div 189 =$ 12.31 $6265.45 \div 145 =$ $95061.75 \div 175 = 543.21$ $978879.74 \div 487 = 2010.02$ When we have a problem in division such as: $194.25 \div 875$ Put 19425 (the dividend) into the Comptometer. Establish dividend decimal point. Point off three places to the left of
the dividend decimal position to establish the answer decimal position. Hold 875 (divisor figures), using small figures 874, over 194. 194 is less than divisor 875. Move your divisor position, held on keyboard, one place to the right. You are now holding your divisor over 1942 in the register This is the only difference in the operation of division you have learned so far. Depress 874 (divisor figures) as many times as shown by the figure in the register dial at the left of the columns in which you are holding the divisor. The figure l appears to the left of these columns. Depress 874 (divisor figures) one time. The figure 1 changed to 2. Depress 874 one more time to equal the figure 2. 192 (remainder figure) is less than 875. Move your divisor position, held on keyboard, one place to the right. The number in the register dial at the left of the columns in which you are holding the divisor is 1. Depress 874 (divisor figures) one time. The figure 1 changed to 2. Depress 874 (divisor figures) one more time to equal the figure 2. 175 (remainder figure) is less than 875. Move your divisor position, held on keyboard, one place to the right. Hold the Divisor over 1942 in the Register Dials. The number in the register dial at the left of the columns in which you are holding the divisor is 1. Depress 874 (divisor figures) one time. The number 1 in the register dial at the left of the columns in which you are holding the divisor did not change. The remainder is 875. Depress 874 (divisor figures) one time. Answer is .222 For all practical purposes it is unnecessary to carry division beyond the fourth figure to the right of the decimal point. # POINTING OFF IN DIVISION Pointing off on the Comptometer in division is very simple and accurate. Turn down the decimal pointer in the register to agree with the decimal point in the dividend. To establish the ANSWER DECIMAL POINT turn down the pointer as many places to the left of the dividend decimal pointer as there are figures to the left of the decimal point in the divisor. See Illustration. #### Example: $134.5 \div 25 = 5.38$ Put the dividend 134.5 into the left side of keyboard. Pull down the decimal pointer between the 4 and 5 to correspond to the decimal point appearing in the dividend. As 25 is a whole number with two figures (2 and 5) we turn down the decimal pointer to the left of the dividend decimal point two places between the 1 and 3. See illustration. This simple method of establishing an accurate decimal position in the answer is found only on the Comptometer. Drill carefully on the following problems and check your answers with those shown here. I. $41.778 \div 45 = .9284$ 3. $297.364 \div 34 = 8.746$ 5. $1307.68 \div 22 = 59.44$ 2. $16.7772 \div 44 = .3813$ 4. $2377.2 \div 56 = 42.45$ 6. $89089 \div 89 = 1001$ If the divisor is a decimal without preceding ciphers the answer pointer is the same as the dividend pointer; but if the divisor has preceding ciphers like .0025 the answer pointer is as many places to the right of the dividend pointer as there are ciphers immediately to the right of the decimal point in the divisor. See illustration. As there are no small 9 figured keys, leave blank any column which contains 9; except where 9 is the right-hand figure of value, then the small 8 key is used. The small cipher keys should be depressed the same as any other figure when they appear between figures of value, as in 704, but should be disregarded if they are at the right of the amount, as in 7500. In the latter case, the divisor 7500 would be held as 75 less one (74). DECIMAL POINT IN DIVIDEND Illustration Showing Direction to Move Decimal Point in Division. # Long Division Easy Method for Dividing by Five or More Figures, Using Four-Place Trial Divisor and Obtaining Three Answer Figures at a Time Example: $4567.89 \div 2436.65 =$ Apply rules for pointing off as indicated in illustration above. After pointing off, register shows 0'456789. Divide by first four figures of divisor, using small figures on keys (not taking one less) and don't stop dividing until you get the first three answer figures. After getting the third answer figure, continue to hold with left hand the position of the two left-hand figures of divisor. 512679508649755187462746275396471847513987120473 Place fingers of right hand on columns immediately to right of the two columns held with left hand, on keys for the remaining unused figures* of divisor. holding according to small figures and one less for the extreme right-hand figure of value of divisor. Leave left hand inactive on keyboard. Depress keys held by right hand the number of times as indicated by first of the three answer figures already obtained. Then move right hand one position to right and strike as many times as indicated by the second answer figure. Again move right hand one position to right and strike as many times as indicated by the third answer figure already obtained. The left hand remains inactive on keyboard. Resume holding first four figures of divisor, with position for first two figures on the columns marked with left hand, and the position for next two figures on columns immediately to the right. (If remainder, in register under columns held, should be equal to or larger than the divisor, depress complete divisor once more.) Move finger position one place to right, and divide to get the next three answer figures, exactly the same way as the first three were obtained. It is not necessary to strike in the remaining figures of divisor the second time, as these figures would not affect a six-place answer. Divide 0'456789 by 2436 (holding small figures 2436 with two hands) and don't stop dividing until you get the first three answer figures-187. Don't take the fingers of the left hand from keys 24. Right-hand fingers take positions on small figures 64 (65 less 1) on columns immediately to right of position held with the left hand. From left to right, strike small figures 64 once, then move to right and strike eight times, then move to right and strike seven times. Register shows 1'87113545. Fingers of right hand take position on small figures 36. Right and left hand now hold small figures Remainder 1135 is not larger than 2436. Move both hands one position to the right and divide again by 2436 to get three more answer figures. Register shows 1'87465. Answer 1.87465. ^{*} If it is not convenient to hold all at once with the right hand the remaining unused figures of the divisor, then hold one or two of the remaining figures at a time. #### Instructions # Division Short Cut In practical every day work, division is used a great deal in the figuring of averages and percentages. For this reason it is unnecessary in many cases to obtain more than three or four decimal places in the answer. #### Example: \$48,672,392 Sales Profit 2,782,679 Find percent of profit to sales = .0572 or 5.72% Dividing four figures of the dividend (2782) by four figures of the divisor (4867 minus 1) will provide an answer sufficient for practical purposes. A safe rule to follow is to hold one more figure of the divisor than figures desired in the answer. The carrying out of decimals beyond the actual number of places required is a needless waste of time and energy. # Reciprocal Division The use of reciprocal division in cost, payroll, and statistical work will be very helpful to the operator. The simplicity of this method of division, in addition to its time-saving feature, makes its use very desirable. This method is nothing more than converting division into a multiplication process. Multiplying any dividend by the reciprocal of its divisor produces the same answer as that obtained by actual division. To obtain the reciprocal of any number, merely divide that number into the figure 1. #### Illustration: Reciprocal of 8 is 1 ÷ 8 or .125 Reciprocal of 413 is 1 - 413 or .00242130 Reciprocal of 555 is 1 - 555 or .00180180 Reciprocal of 755 is 1 - 755 or .00132450 (See Payroll Example) (See Statistical Example) (See Cost Example) Reciprocals (See Back Page) of any number from 1 to 2,000 will be found on Reciprocal Card No. 9; and from 1 to 10,000 in Reciprocal Book, form 192. The easiest way to do reciprocal divisions is to hold the dividend over Permanent Decimal Pointer No. 5, multiplying it from left to right by the reciprocal of the divisor. Always point off to the left of the Permanent Decimal Point as many places as there are whole numbers in the divisor. The decimal point and preceding ciphers in the reciprocal are entirely disregarded if the problem is worked over the Permanent Decimal Point. # Example of Cost Work: 755 pieces cost \$66.06. What is the average cost per piece? Answer, \$.0875. \$66.06 ÷ 755 is the same as \$66.06 x .0013245 (reciprocal of 755). Hold the dividend \$66.06 over Permanent Decimal Pointer No. 5 and multiply it by the reciprocal of 755. From left to right strike in the dividend one, three, two, four, and five times respectively. As the 512679508649755187462746275396471847513987120473 divisor (755) contains three whole numbers, it requires pointing off to the left of Permanent Decimal Pointer No. 5 three places. The answer dial now shows \$.0875. #### Example of Payroll Work: \$35.00 earned in 41.3 hours. What is the average hourly rate? Answer, \$.847. \$35.00 \div 41.3 is the same as \$35.00 x .0024213 (reciprocal of 413). Hold the dividend \$35.00 to left of Permanent Decimal Pointer No. 5 and multiply it by the reciprocal of 413. From left to right strike in the dividend two, four, two, one, and three times respectively. As the divisor (41.3) contains two whole numbers, it requires pointing off to the left of Permanent Decimal Pointer No. 5 two places. The answer dial now shows \$.847. # Example of Statistical Work: | Department A Sales | \$104.56 = | .1884 o | r 18.84% | |--------------------|-------------------|---------|----------| | Department B Sales | 75.54 = | .1361 o | r 13.61% | | Department C
Sales | 344.21 = | .6202 o | 62.02% | | Department D Sales | 22.14 = | .0399 o | 3.99% | | Department E Sales | 8.55 = | .0154 o | 1.54% | | | \$555.00 | 1.0000 | 100.0% | It is desired to know what percent of the total sales is represented by each department. This reguires dividing each of the amounts by the total, or \$555.00. As 555 contains three whole numbers, it requires pointing off three places to the left of Permanent Decimal Pointer No. 5. Hold the first dividend, \$104.56, to the left of Permanent Decimal Pointer No. 5, and multiply it by the reciprocal of 555. From left to right strike in the dividend one, eight, zero, one, and eight times respectively. The answer dial shows .1884 or 18.84%. In the same manner hold the other departments and multiply by the same reciprocal. To prove accuracy of the work add the results obtained; these should total 1 or 100%, as the case In the ordinary division problems found in cost, payroll, and statistical work a four-figure answer is usually sufficient. In order to obtain four-figure accuracy it will be necessary to use six figures of the reciprocal. A safe rule to follow is to use two more figures of the reciprocal than desired figure places in the answer—that is, if a four-place answer is desired use six of the reciprocal figures, if a fiveplace answer is desired use seven figures of the reciprocal. With a little practice and the use of Reciprocal Card No. 9, the operator will develop speed on this simple method of division. | _ | T | - | | | | | | - | - | | | | | | | | | | 7 | | | | | | 1100 | 4 | 200 | 12 | 00 | 1400 | 41 | 500 | 1600 | 1700 | 1800 | 1900 | |----|----------------------|--|--------------------------------|---------------------|---|--|---------------------------|---|--------------------------------|---|------------------|-------------------------------------|-----------------|--|----------------------|---|-----------------|---|-------|---|-------|--------|--------------------------------------|--|--|---|---|---|---|---|---|--|---|---|---|--| | 1 | 1 | 1000.000 | 100 10.0
01 9.90
02 9.80 | 0000 | 200
00 5.00000
01 4.97512
02 4.95050
03 4.92611 | 300
01 3 | 33333 | 400
01 2.50 | 00 500 | 0 2.00000 | 600 | 1.66667 | 700 | 1.42857
1.42653 | 800 | 1.25000
1.24844
1.24688 | 90 | 1.11111 | | 1 | | | 1001 | 99900 | 1100 | 90909
90827 | 200 .83
1201 .83
1202 .83 | 333 136
264 136 | 00 .76923
01 .76864
76805 | 1400 .7
1401 .7
1402 .7
1403 .7
1404 .7 | 1429 1
1378 1
1327 1 | 500 .66667
501 .66622
502 .66578 | 1600 .62500
1601 .62461
1602 .62422
1603 .62383
1604 62344 | 1700 .58824
1701 .58789
1702 .58754
1703 .58720
1704 58685 | 1800 55556
1801 .55525
1802 .55494 | 5 1900 .52632
5 1901 .52604
1 1902 .52576
1 1903 .52549
2 1904 .52521 | | | 3 | 500.000
333.333
250.000 | 03 9.70 | 538, | 02 4.95050
03 4.92611
04 4.90196 | 04 3.3 | 31126
30033
28947 | 400 2.500
01 2.493
02 2.483
03 2.483
04 2.473 | 56 02
39 03
25 04 | 2 1.99203
3 1.98807
4 1.98413 | 02
03
04 | 1.66113
1.65837
1.65563 | 02
03
04 | 1.42450 | 03 | 1.24688 | 03 | 1.10988
1.10865
1.10742
1.10619 | | | | | 1001
1002
1003
1004 | .99800
.99701
.99602 | 1104 | 90827
90744
90662
90580 | 203 .83
204 .83 | 126 136
066 136 | 76476 | 1406 | 1276 1.
1225 1. | 503 .66534
504 66489 | 1603 .62383
1604 62344
1605 .62305 | 1703 .58720
1704 58685 | 1801 .55525
1802 .55494
1803 .55463
1804 .55432 | 1903 .52549
1904 .52521 | | | 5
6
7 | 200.000
166.667
142.857 | 05 9.52
06 9.43
07 9.34 | 381
396
579 | 06 4.85437
07 4.83092 | 06 3. | 27869
26797
25733 | 06 2.46
07 2.45 | 05 06 | 5 1.98020
6 1.97626
7 1.97239 | 05 | 1.65289 | 05
06 | 1.41844
1.41643
1.41443 | | 1.24224
1.24069
1.23916 | 05 | 1.10497
1.10375
1.10254
1.10132 | | 1 | | | 1005
1006
1007
1008
1009 | .99502
.99404
.99305
.99206
.99106 | 1105
1106
1107
1108
1109 | 90498
90416
90334
90253
90171 | 206 82 | | 76570
77 .76511
28 .76453
29 .76394 | 1406 .7
1406 .7
1407 .7
1408 .7
1409 .7 | 1174 1.
1124 1.
1073 1.
1023 1.
0972 1. | 505 .66445
506 .66401
507 .66357
508 .66313 | 1606 62267
1607 .62229
1608 .62189 | 1705 .58651
1706 .58617
1707 .58582
1708 .58548
1709 .58514 | 1806 .55402
1806 .55371
1807 .55340
1806 .55310 | 2 1905 .52493
1 1906 .52466
0 1907 .52438
0 1908 .52411
0 1909 .52383 | | 10 | 9 | 125.000
111.111
100.000 | 08 9.25
09 9.17 | 926
431 | 08 4.80769 | 08 3.3 | 24675 | 08 2.450 | 98 08 | 1.96850 | 08 | 1.64474 | 08 | 1.41243 | 08
09 | 1.23762 | 08 | 1.10132 | 11 00 | | | 10 | 1000 | .99108 | 11109 | | 1200 .82
1210 .82
1211 .82 | 713 13
645 13
576 13 | 9 .76394
10 .76336 | 1409 .7
1410 .7
1411 .7 | 0972 1 | 509 66269
510 66225
511 66181 | 1609 62150
1610 .62112
1611 .62073 | 1709 .58514
1710 .58480
1711 .58445 | 1810 .55249 | 1010 52356 | | | | 90.9091
83.3333
76.9231
71.4286 | | 901
857
956 | 11 4.73934
12 4.71698
13 4.69484 | 11 3.1
12 3.1
13 3.1 | 21543
20513
19489 | 11 2.43
12 2.42
13 2.42
14 2.41 | 09 11
18 12
31 13 | 1 1.95695
2 1.95312
3 1.94932 | 11
12
13 | 1.63666 | 11
12
13 | 1.40647 | 11
12
13 | 1.23305
1.23153
1.23001 | 11
12
13 | 1.09769
1.09649
1.09529 | | 1 | | | 1010
1011
1012
1013
1014 | .99010
.98912
.96814
.96717
.96619 | 1112 | 89928
89847 | 212 .82
1213 .82
1214 .82 | 645 13
576 13
508 13
440 13
372 13 | 2 76220 | 1412 .7
1413 .7
1414 .7 | 0822 1.
0771 1.
0721 1. | 512 .66138
513 .66094
514 .66050 | 1612 .62035
1613 .61996
1614 .61958 | 1710 .58480
1711 .58445
1712 .58411
1713 .58377
1714 .88343 | 1811 .55218
1812 .55186
1813 .55157
1814 .55127 | 1913 .52274 | | | 15
16 | 71.4286
66.6667
62.5000
58.8235 | 14 8.77
15 8.66
16 8.62 | | 14 4.67290
15 4.65116
16 4.62963
17 4.60829 | 14 3.1
15 3.1
16 3.1 | 18471
17460
16456 | 14 2.415
15 2.405
16 2.405 | 46 14
64 15
85 16 | 1.94553
5 1.94175
6 1.93798 | 15 | 1.62866
1.62602
1.62338 | 14
15
16 | 1.40056
1.39665
1.39470 | 15 | 1.22850
1.22699
1.22549 | 15 | 1.09290 | | 1 | | | 1015
1016
1017
1018
1019 | 08522 | 1115 | 89686
89606 | 215 .82
1216 .82
1217 .82 | 305 13
237 13
169 13 | 6 .76046
6 .75988
7 .75930 | 1415 .7
1416 .7
1417 .7
1418 .7
1419 .7 | 0671 1
0621 1
0672 1
0672 1
0472 1 | 518 .66007
516 .65963
517 .65920
518 .65876 | 1615 .61920
1616 .61881
1617 .61843
1618 .61805
1619 61767 | 1715 58300 | 1815 .55090
1816 .55060
1817 .55030
1818 .55000 | 1915 .52219
1916 .52192
1917 .52165
1918 .52138 | | 20 | 18 | 00.0006 | 19 8.40 | 336 | 17 4.60829
18 4.58716
19 4.56621 | 17 3.1
18 3.1
19 3.1 | 15457
14465
13480 | 15 2.409
16 2.400
17 2.396
18 2.393
19 2.386 | 08 17
34 18
63 19 | 7 1.93424
8 1.93050
9 1.92678 | 17
18
19 | 1.62075
1.61812
1.61551 | 17
18
19 | 1.39276 | 18
19 | 1.22549
1.22399
1.22249
1.22100 | 18 | 1.09051
1.08932
1.08814 | 1 | | | 20 | 1020 | .98425
.98328
.98232
.98135 | 1118 | 89445
R9366 | 219 .82 | 18/1 B 8 | 18 .75873
19 .75815
20 .75758 | 1418 .7
1419 .7 | 0622 1
0472 1
0423 1 | 519 .65833 | 1618 .61805
1619 61767
1620 .61728
1621 .61690 | 1718 .58207
1719 .58173
1720 .58140
1721 .58106 | 1819 .54975 | 1919 .52110 | | 20 | 22 | 45 4545 | 22 8 10 | 446 | 220 4.54545
21 4.52489
22 4.50450
23 4.48431 | 320 3.1
21 3.1
22 3.1 | 12500
11526
10559 | 21 2.375
22 2.365
23 2.366
24 2.356 | 95 520
30 21
67 22 | 1.92308
1.91939
2 1.91571 | 620
21
22 | 1.61290
1.61031
1.60772 | 720
21
22 | 1.38889
1.38696
1.38504
1.38313 | 21 | 1.21951
1.21803
1.21655 | 22 | 1.08696
1.08578
1.08460 | 10 | | | | 1021
1023
1023
1024 | .97943
.97847
.97752
.97688 | 1123 | 89206
89127
89047 | 1221 .81
1222 .81
1223 .81 | 967 13
900 12
833 13
766 13
800 13 | 20 .75758
21 .75700
22 .75643
23 .75586
34 .75529 | 1420 .7
1421 .7
1422 .7
1423 .7
1424 .7 | 0323 1 | 522 .65703
523 .65660 | 1620 .61728
1621 .61690
1622 .61652
1623 .61614
1624 61576 | 1720 .58140
1721 .58106
1722 .58072
1723 .58038
1724 56005 | 1821
.54918
1822 .54885
1823 .54855
1824 .54825 | 1920 .52083
1921 .52066
1922 .52029
1923 .52002
1924 .51975 | | | 25 | 43.4783
41.6667
40.0000
38.4615 | 1 25 8 00 | 450 | 24 4.46429
25 4.44444
26 4.42479 | 24 3.0
25 3.0 | 08642
07692 | 24 2.358
25 2.358 | 49 24
94 25 | 1.90840 | 24 | 1.60256 | 23 | 1.38313
1.38122
1.37931
1.37741 | 24 | 1.21507
1.21359
1.21212
1.21065
1.20919 | 23
24
25 | 1.08342
1.08225 | | 4 | | | TANK | .97686
.97561
.97466
.97371 | 1124
1125
1126
1127 | 88968
88889
88810 | 225 .81 | 633 13
566 13 | 75472 | 1 1 1 4 4 mm 2 | 0175 11 | 525 65574 | 1625 .61538 | 1725 .57971 | 1825 .54795
1826 .64765
1827 .54735
1828 .54705 | 5 1924 .51975
5 1925 .51948
5 1926 .51921
5 1927 .51894
5 1928 .51867 | | | | 38.4615
37.0370
35.7143
34.4828 | | 402
250
194 | 25 4.4444
26 4.42478
27 4.40529
28 4.38596
29 4.36681 | 27 3.0
28 3.0
29 3 | 05810
04878
03951 | 27 2.341
28 2.336
29 2 331 | 92 27
45 28
00 29 | 7 1.89753
8 1.89394
9 1.89036 | 27
28
29 | 1.59490 | 27
28
29 | 1.37552
1.37552
1.37363 | 28 | 1.20919
1.20773
1.20627 | 28 | 1.08108
1.07991
1.07875
1.07759 | | | | 30 | 1026
1027
1028
1029 | .97276 | 1129 | 88574 | 229 .81 | 367 13 | .75245 | | 0126 1
0077 1
0028 1
9979 1 | 526 .65531
527 .65488
528 .65445
529 65402 | 1629 61387 | 1726 .57937
1727 .57904
1728 .57870
1729 .57837 | 1829 .54673 | 5 I 1929 51840 | | 30 | 30
31
32 | 33.3333
32.2581
31.2500 | 130 7.69
31 7.63
32 7.57 | 231 2
359
576 | 29 4.36681
230 4.34783
31 4.32900
32 4.31034
33 4.29185
34 4.27350 | 330 3.0
31 3.0
32 3.0 | 03030
02115
01205 | 31 2.320
32 2.31
33 2.300 | 58 530
19 31
81 32 | 0 1.88678
1 1.88324
2 1.87970 | 630
31
32 | 1.58730 | 730 | 1.36986
1.36799
1.36612 | . 830
31
32 | 1.20482
1.20337
1.20192 | 930 | 1.07527 | | | | | 1030
1031
1033
1034 | .97087
.96093
.96899
.96805
.96712 | 1122 . | 88496
88417
88339
88261 | 230 .81
 231 .81
 222 .81
 233 .81
 234 .81 | 235 13 | .75075 | 1430 .6
1431 .6
1432 .6
1433 .6
1434 .6 | 0081 1
0032 1
0734 1 | \$31 .65317
\$32 .66274
\$33 .65232
\$34 .65159 | 1631 .61312
1632 .61275
1633 .61237 | 1731 .67770
1732 .57737
1733 .57703 | 1830 .54645
1831 .54618
1832 .54585
1833 .54555
1834 .54526 | 1931 .51787
5 1932 .51760
5 1933 .51733 | | | 33
34
35 | 30.3030
29.4118
28.5714 | 33 7.51
34 7.46
35 7.40 | 880
269
741 | 33 4.29185
34 4.27350
35 4.25532 | 33 3.0
34 2.0
35 2.0 | 00300
99401
98507 | 33 2.309
34 2.309
35 2.298 | 47 33
15 34
85 35 | 3 1.87617
4 1.87266
5 1.86916 | 33
34
3 35 | 1 57729 | 34 | 1.36426 | 33
34 | 1.19904 | 33
34 | 1.07181 | _ | | | 100 | 1035 | .96618 | 1123 | 88106 | | | 4 .74963
15 .74906
16 .74850 | 1434 .6
1435 .6 | 9735 1 | 534 65159
535 65147
536 65104 | 1635 ALIG | 1734 57670
1735 .57637
1736 .57604 | 1834 54526 | 5 1 1934 S1708 | | | 36
37
38
30 | 27.7778
27.0270
26.3158
25.6410 | 36 7.35
37 7.29
38 7.24 | 294
927
638 | 35 4.25532
36 4.23729
37 4.21941
38 4.20168
39 4.18410 | 36 2.9
37 2.9
38 2.9 | 97619
96736
95858 | 36 2.29
37 2.28
38 2.28 | 58 36
33 37
11 38 | 5 1.86916
6 1.86567
7 1.86220
8 1.85876
9 1.85529 | 36
37
38 | 1.57233
1.56986
1.56740 | 36
37
38 | 1.35870
1.35685
1.35501 | 38 | 1.19617
1.19474
1.19332
1.19190 | 37 | 1.06610 | | | | 40 | 1036
1037
1038
1039 | .96432
.96330
.96246 | 1138 | 87873
87796 | 235 .50
1236 .80
1237 .80
1238 .80
1239 .80 | 710 I IJ | 8 .74738
9 .74683 | 1439 . | 9493 1 | 535 .65147
536 .65104
537 .65062
538 .65020
539 .64977 | 1636 .61125
1637 .61067
1638 .61050
1639 61013 | 1738 .57537
1739 .57504 | 1835 .54496
1836 .54406
1837 .54437
1838 .54407
1839 .54377 | 7 1937 .51626
7 1938 .51600
7 1939 .51573 | | 40 | 40
41
42 | 25.0000
24.3902
23.8095 | 140 7.14
41 7.09
43 7.04 | 286 2
220
225 | 39 4.18410
240 4.16667
41 4.14938
42 4.13223
43 4.11523
44 4.09836 | 340 2.0
41 2.0 | 94118
93255 | 440 2.27:
41 2.26
42 2.26 | 73 540
57 41 | 0 1.85185
1 1.84843 | 640 | 1.56250 | 740
41 | 1.35318
1.35135
1.34953
1.34771 | 840 | 1.19048
1.18906
1.18765 | 940
41 | 1.06496
1.06383
1.06270 | | | | | 1040
1041
1042
1043
1044 | .96154
.96061
.95060
.95877 | 1140 .
1141 .
1142 . | 87719
87642
57566
87489 | 1240 .80
1241 .80
1242 .80
1243 .80
1244 .80 | 545 13
580 13
515 13 | 10 .74627
11 .74571
12 .74516 | 1440 .6
1441 .6
1442 .6
1443 .6
1444 .6 | 0748 | 540 .64935
541 .64893
542 .64851
543 .64809
544 .64767 | 1640 .60976
1641 .60938
1642 .60901
1643 .60664
1644 .60827 | 1740 .57471
1741 .57438
1742 .57405 | 1840 .54348
1841 .54318
1842 .54286
1843 .54256
1844 .54230 | 1940 .51546
1941 .51520
1942 .51493 | | | 43
44 | 23.2558
22.7273 | 43 6.99
44 6.94 | 301
444
655 | 43 4.11523
44 4.09836 | 43 2.9
44 2.9 | 91545
90698 | 43 2.25
44 2.25
45 2.24 | 34 43
25 44 | 3 1.84162
4 1.83824 | 43 | 1.55521 | 43 | 1.34590 | 43 | 1.18624 | 43 | 1.06045 | | | | | 1043
1044
1045 | .95785
.95694
.95602
.95511 | 1144 | 87413 1
8733A | 245 80 | 121 134 | 13 .74460
14 .74405
15 .74349 | 1444 .6
1445 .6 | 9252 1
9204 1 | 545 64725 | 1645 .60790 | 1745 57307 | 1845 . 84201 | 9 1943 .51467
1944 51440
1 1945 .51414
1 1946 .51387
2 1947 .51361 | | | 46
47
48 | 21.7391
21.2766
20.8333 | 46 6.84
47 6.80
48 6.75 | 932
272
676 | 45 4.08163
46 4.06504
47 4.04858
48 4.03226 | 46 2.8
47 2.8
48 2.8 | 89017
88184
87356 | 46 2.24
47 2.23
48 2.23
49 2 22 | 15 46
14 47
14 48 | 5 1.83150
7 1.82815
9 1.82482 | 46
47
48 | 1.54799
1.54560
1.54321 | 46
47
48 | 1.34048
1.33869
1.33690 | 46
47
48 | 1,18203
1.18064
1.17925
1.17786 | 46 | 1.05708 | | | | | 1048
1048
1048 | .95511
.95420
.95329 | 1145 .
1146 .
1147 .
1148 .
1149 . | 87260
87184
87108
87082 | 246 .80
247 .80
1248 .80
1249 80 | 257 134
192 134
128 134
064 134 | 15 .74349
16 .74294
17 .74239
18 .74184
19 74129 | 1445 .6
1446 .6
1447 .6
1448 .6
1449 .6 | 9204 1.
9156 1.
9108 1.
9061 1.
9013 1. | 546 .64683
547 .64641
548 .64599
549 .64558 | 1645 .60790
1646 .60753
1647 .60716
1648 .60680
1649 .60643 | 1746 .57274
1747 .57241
1748 .57208
1749 .57176 | 1848 .54113
1849 .54083 | 3 1948 .51338
1949 .51308 | | | 60 | 20.4082
20.0000
19.6078 | 150 6.66
51 6.62 | 667 2
252 | 49 4 01606 | 1 49 2 5 | 86533 | 49 2 227 | 17 49 | 1.82149 | 49 | 1.54083 | 49 | 1.33511
1.33333
1.33156 | 850
51 | 1.17786
1.17647
1.17509
1.17371 | 950
51 | 1.05263 | | | | 50 | 1060
1061
1062
1063
1064 | .95238
.95147
.96057 | 1150
1151 | 86957 | 1250 .80
1251 .79
1252 .79 | 000 133
936 133
872 133
808 133
745 133 | 50 .74074
51 .74019
52 .73964
53 .73910
54 .73855 | 1450 .6
1451 .6
1452 .6
1453 .6
1454 .6 | 8966 1.
8918 1.
8871 1.
8823 1.
8776 1. | 550 .64516
551 .64475
552 .64433
553 .64392 | 1650 .60606
1651 .60566
1652 .60533 | 1750 .57143
1751 .57110
1752 .57078 | 1850 .5405-
1851 .54021
1852 .53990
1853 .5396 | 1950 .51282
5 1951 .51286
6 1952 .51230 | | | 52
53
54 | 19.2308
18.8679
18.5185 | 52 6.57
53 6.53
54 6.49 | 351 | 52 3.96825
53 3.95257
54 3.93701 | 52 2.5
53 2.6
54 2.6 | 84091
83286
82486 | 450 2.222
51 2.213
52 2.213
53 2.203
54 2.203 | 39 52
51 53
64 54 | 1.81818
1.81488
2.1.81159
3.1.80832
4.1.80505 | 52
53
54 | 1.53374
1.53139
1.52905 | 52
53
54 | 1.32979
1.32802
1.32626 | 52
53
54 | 1.17233 | 54 | 1.05042
1.04932
1.04822 | | | | 15° 10 | SAKE | .96057
.94967
.94877 | 1153 | 86655 | 1253 .79
1254 .79
1255 .79 | 808 133
745 133
681 133 | 3 73801 | 1453 .6
1454 .6
1455 .6 | 8823 1.
8776 1.
8729 1. | 554 .64350 | 1653 .60496
1654 .60459
1655 .60423 | 1753 .57045
1754 .57013
1755 56980 | 1854 .53937 | 7 1954 .51177 | | | 55
56
57 | 18.1818
17.8571
17.5439 | 55 6.41
56 6.41
57 6.36 | 026
943 | 55 3.92157
56 3.90625
57 3.89105
58 3.87597
59 3.86100 | 55 2.6
56 2.6
57 2.6
58 2.7
59 2.7 | 81690
80899
80112 | 55 2.19
56 2.19
57 2.186
58 2.18
59 2.17 | 80 55
98 56
18 57 | 1 80180
3 1.79856
7 1.79533 | 55
56
57 | 1.52672
1.52439
1.52207 | 55
56
57 | 1.32450
1.32275
1.32100 | 55
56
57 | 1.16959
1.16822
1.16686 | 55
56
57 | 1.04712 | 2 | | | | 1056
1057
1078
1049 | .94787
.94697
.94697
.94518
.94429 | 1155
1156
1157
1158
1159 | 86580
86505
86430
86356 | 1255 .79
1256 .79
1257 .79
1258 .79
1259 .79 | 618 13
554 13
491 13 | 7 .73692
8 .73638 | 1455 .6
1456 .6
1457 .6
1458 .6
1459 .6 | 8729 1:
8681 1:
8634 1:
8587 1:
8540 1: | 555 .64309
556 .64267
557 .64226
558 .64185
559 .64144 | 1655 .60423
1656 .60386
1657 .60350
1658 .60314 | 1765 50980
1756 .50948
1757 .56915
1758 .56863
1759 .56850 | 1855 .53870
1856 .53870
1857
.53850
1858 .5382
1859 .53790 | 8 1955 .51151
9 1956 .51125
0 1957 .51090
1 1958 .51073
2 1959 .51046 | | 60 | 60 | 16.6667 | 59 6.28
160 6.25 | 931
000 2 | 59 3.86100
60 3.84615
61 8.83142 | 59 2 7
360 2 7 | | | 91 560 | 1.78571 | 660 | 1.61515 | 760 | 1.31579 | 860 | 1.16550
1.16414
1.16279
1.16144
1.16009 | | 1.04275
1.04167
1.04058
1.03950 | | | | 60 | 1000
1001 | .94251
.94251
.94162
.94073
.93955 | 1160
1161 | 86281
86207
86133 | 260 .79
261 .79
262 .79
263 .79 | 428 13.
365 13.
302 13. | 0 .73529
1 .73475 | 1460 .6
1461 .6 | 8493 1 | 560 .64103
561 .64001 | 1660 .60241
1661 .60205 | 1760 .56818
1761 .56786 | 1860 .5376.
1861 .5373. | 3 1960 .51020
5 1961 .50994 | | | 63 | 16.1290 | 62 6.17
63 6.13
64 6.09 | 284
497
756 | 62 3.81679
63 3.80228 | 62 2.7
63 2.7
64 2.7 | 76243
75482
74725 | 62 2 164
63 2.155
64 2.155 | 50 62
83 63
17 64 | 1.78571
1.78253
2 1.77936
3 1.77620
1.77305 | | | | 1.30890 | 64 | 1.16009
1.15875
1.15741 | 64 | 1.03842 | | | | | 1063
1064 | .94073
.94955 | | | 204 79 | | 50 .73529
51 .73475
52 .73421
53 .73368
54 .73314 | 1460 .6
1461 .6
1462 .6
1463 .6
1464 .6 | 8399
8353
8306 | 562 .64020
563 .63980
564 63939 | 1662 .60168
1663 .60132
1664 60096 | 1762 .56754
1763 .56721
1764 .56689 | 1860 .5376.
1861 .5373.
1862 .5370.
1863 .5367.
1864 .5364. | 3 1960 .510/20
5 1961 .80994
6 1962 .50968
7 1963 .80942
8 1964 .50916 | | | 65
66
67 | 15.3846
15.1515
14.9254 | 65 6.06
66 6.02
57 5.98 | 061
410
802 | 65 3.77368
66 3.75940
67 3.74532
68 3.73134
69 3.71747 | 65 2.7
66 2.7
67 2.7 | 73973
73224
72480 | 65 2.150
66 2.145
67 2.141 | 54 65
92 66
33 67 | 1.76991
3 1.76678
7 1.76367 | 65
66
67 | 1.50376
1.50150
1.49925 | 65
66
67 | 1.30719
1.30548
1.30378 | 66 | 1.15607
1.15473
1.15340 | 67 | 1.03627
1.03520
1.03413 | * | | | | 1066
1067
1068
1068 | .93809
.93721
.93633
.93545 | 1165 .
1166 .
1167 .
1168 .
1169 | 85837
85763
85690
85616
85543 | 265 .79
1266 .78
1267 .78
1268 .78
1269 .78 | 051 136
989 136
927 136
864 136
802 136 | 35 .73260
36 .73206
37 .73153
38 .73099
39 .73046 | 1465 .6
1466 .6
1467 .6
1468 .6
1469 .6 | 8213 1
8166 1
8120 1
8074 1 | 565 .63896
566 .63857
567 .63816
568 .63776
569 .63735 | 1665 .60060
1666 .60024
1667 .59988
1668 .59952
1669 .59916 | 1765 .56657
1766 .56625
1767 .56593
1768 .56561
1769 .56529 | 1865 53619
1866 .63591
1867 .53562
1868 .53532
1869 53508 | 9 1965 .50691
1 1966 .50665
2 1967 .50639
3 1968 .50613
5 1969 .50787 | | 70 | 68
69
70 | 14.7059
14.4928
14.2857 | 68 5.93
69 5.91
170 5.88 | 238
716
235 2 | 68 3.73134
69 3.71747
270 3.70370
71 3.69004
72 3.67647 | 68 2.7
69 2.7 | 71739
71003 | 68 2.136
69 2.133 | 75 68
20 69
66 570 | 1.76056 | 68
69 | 1.49477 | 68
69
770 | 1.30208
1.30039
1.29870 | 68
69
870 | 1.15207
1.15075
1.14943 | 68
69
970 | 1.03306
1.03199
1.03093 | | | | 70 | 1070 | .93545
.93458
.93371
.93284 | 1170 . | 85470
85397 | 1270 .78 | 740 13 | 0 .72993 | 1470 6 | 8027 | 570 .63694
571 63654 | 1670 .59880 | 1770 .56497
1771 .56465 | 1869 53508
1870 .53476
1871 .53447 | 5 1969 .50787
3 1970 .50761
7 1971 .50736
9 1972 .50710 | | | 71
72
73 | 13.8889
13.6986 | 72 5.81
73 5.78
74 5.74 | 395
035
713 | 72 3.67647
73 3.66300
74 3.64964 | 72 2.6
73 2.6
74 2 | 68817
68097
67380 | 72 2.116
73 2.116
74 2 109 | 64 72
16 73
70 74 | 1.74825
1.74825
1.74520 | 72
73 | 1.48810
1.48588
1.48348 | 72
73
74 | 1.29870
1.29702
1.29534
1.29366 | 71
72
73
74 | 1,14811
1,14679
1,14548 | 73 | 1.03093
1.02987
1.02881
1.02775 | | | | | 1071
1072
1073
1074 | .93284
.93197
.93110 | 1173 | 85251
85179 | 1271 .78
1272 .78
1273 .78
1274 .78 | 493 13 | 4 .72780 | 1472 .6
1473 .6
1474 .6 | 7843 1 | 572 .63613
573 .63573
574 63532 | 1672 .59809
1673 .59773
1674 .59737 | 1772 .56433
1773 .56402
1774 .56370 | 1872 .53419
1873 .53390
1874 .53362 | 9 1972 .50710
1973 .50684
2 1974 .50659 | | | 76 | 13.1579 | 76 5.68 | 182 | 76 3.62319 | 75 2.6
76 2.6 | 86667
85957
85252 | 76 2.100
76 2.100 | 26 75
84 76 | 1.73913
1.73611
7 1.73310 | 75
76
77 | 1.48148 | 75
76
77 | 1.29032
1.28866 | 75
76
77 | 1.14286
1.14155
1.14025 | 75 | 1,02564
1.02459
1.02354 | | | | | 1078
1078
1077 | .93023
.92937
.92851 | 1176 | 85106
85034
84962
84890
84818 | 1275 .78
1276 .78
1277 .78 | 431 13:
370 13:
309 13:
247 13:
186 13: | 76 .72674
77 .72622 | 1475 .6
1476 .6
1477 .6 | 7797 1:
7751 1:
7705 1: | 575 .63492
576 .63452
577 .63412 | 1675 .59701
1676 .59666
1677 .59630 | 1778 .56338
1776 .56306
1777 .56275 | 1875 .53333
1876 .53305
1877 .53277
1878 .53248 | 1975 .50633
1976 .50607
1977 .50582
1978 .50556 | | 80 | 78
79 | 12.8205
12.6582
12.5000 | 78 5.61 | 798 | 78 3.59712 | 78 2.6 | 64550 | 78 2.092 | 05 78
68 79 | 1.73010 | 78 | 1.47493 | 78 | 1.28535 | 78 | 1.13895
1.13766
1.13686 | 78
79 | 1.02349 | | | | 80 | 1078
1079
1080 | .92764
.92678
.92693 | | | 280 .78 | 125 138 | 78 .72569
79 72516
30 .72464 | 1480 6 | 7568 1 | 578 .63371
579 63331
580 .63291 | 1677 .59630
1678 .59595
1679 .59559
1680 59524 | 1778 .56243
1779 56211
1780 .56180 | 1879 53220
1880 53191 | 1979 .50531 | | | 81 | 12.3457 | 81 5.52
82 5.46
83 5.46 | 486
451
448 | 280 3.57143
81 3.55872
82 3.54610
83 3.53357
84 3.52113 | 81 2.6
82 2.6
83 2.6 | 62467
61780
61097 | 81 2.078
82 2.076
83 2.076 | 00 81
69 82
39 83 | 1.72117
2 1 71821
3 1.71527 | 81
82
83 | 1.46843
1.46428
1.46413 | 81
82
83 | 1.28041
1.27877
1.27714 | 81
82
83 | 1.13507
1.13379
1.13250 | 82
83 | 1.02041
1.01f \7
1.01833
1.01729 | | 1 | | | 1081
1082
1083
1084 | .92507
.92507
.92421
.92336
.92251 | 1180
1181
1182
1183
1184 | 84531 | 1281 .78
1282 .78
1283 .77
1284 .77 | 064 138
003 138
942 138
882 138 | 30 .72464
31 .72411
32 .72359
33 72307
34 .72254 | 1480 .6
1481 .6
1482 .6
1483 .6
1484 6 | 7522 1:
7476 1:
7431 1:
7385 1: | 581 .63251
582 .63211
583 .63171
584 .63131 | 1680 59524
1681 .59488
1682 .59453
1683 .59418
1684 .59382 | 1781 .56148
1782 .56117
1783 .56085
1784 .56054 | 1881 53163
1882 53135
1883 53107
1884 53079 | 1982 .50454 | | | 85 | 11.7647 | 1 85 A 40 | 541 | 84 3.62113
85 3.50877
86 3.49650 | 84 2.6
85 2.8
86 2.8 | 59740
59067 | 84 2.066
85 2.061
86 2.051 | 86 85
61 86 | 1.71233
1.70940
3 1.70646 | 85
86 | 1.45985
1.45773 | 84
85
86 | 1.27389 | 85 | 1.13122
1.12994
1.12867 | 85 | 1.01626
1.01523
1.01420
1.01317 | 1 | | | | 1085
1086
1087
1088
1089 | .92166
.92081
.91996
.91912 | 1185 .
1186 . | 84388
84317
84248 | 285 77 | 139 | \$ 72202 | 1485 .6
1486 .6
1487 .6
1488 .6
1489 6 | 7340 1 | 585 :63091
586 :63052
587 :63012
588 :62972 | 1685 59347 | 1786 \$2000 | 1885 .53050 | 1985 .50378 | | 90 | 87
88
89 | 11.4943
11.3636
11.2360 | 89 5.29 | 101 | 86 3.49650
87 3.48432
88 3.47222
89 8.46021 | 87 2.5
88 2.6
89 2.5 | | 85 2 061
86 2 053
87 2 053
88 2 044
89 2 044 | | | | | | 1.27065
1.26904
1 26743 | 89 | 1.12867
1.12740
1.12613
1.12486 | 88
89 | 1.01215 | | | | 90 | 1088
1089 | .91912 | 1188
1189 | 84175
84104 | 288 .77
289 .77 | 760 138
700 138
640 138
580 138 | 8 .72046
9 71994
0 .71942 | 1488 .6
1489 6 | 7204 1.
7150 1. | 589 62933 | 1689 59207 | 1789 55897 | 1887 52994
1888 52966
1889 52938
1890 .52910 | 1990 50251 | | " | 91 | 10.8696 | 92 5.20 | 833 | 3.44828
91 3.43643
92 3.42466
93 8.41297 | 92 2.1 | 55754
55102
54453 | 91 2.036
92 2.033
93 2.026
94 2.026 | 66 91
52 92
40 93 | 1 .69205
2 1 .68916
3 1 .68634 | 91
92
93 | 1.44718 | 91
92
93 | 1.26422
1.26263
1.26103 | 91
92
93 | 1.12233
1.12108
1.11982 | 91
92
93 | 1.00908
1.00806
1.00705 | 4 | | + 1 2 | | 1092 | .91743
.91659
.91575
.91491
.91408 | 1192 | 83963
83893
83822 | 292 .77
293 .77 | 519 139
459 139
399 139
340 139
280 139 | 2 71839 | 1490 6
1491 .6
1492 .6
1493 .6
1494 .6 | 7114 1
7069 1
7024 1
6979 1
6934 1 | 590 .62893
591 .62854
592 62814
593 .62775
594 .62735 | 1690 59172
1691 59137
1692 50102
1693 59067
1694 59032 | 1790 .55866
1791 .55835
1792 .55804
1793 .55772
1794 55741 | 1891 52882
1892 52854
1893 52826
1894 52798 | 1991 .50226
1992 .50201
1993 .50176
1994 .50160 | | | 94
95
96 | 10.6383
10.5268
10.4167 | 04 6 14 | 821
204 | 93 8.41297
94 3.40136
95 3.38983
96 3.37828 | 94 2.0
95 2.0
96 2.0 | 53165
52525 | 94 2.020
95 2.020
96 2.010 | 29 94
20 95
13 96 | 1.68350
1.68067
1.67785 | 94
95
96 | 1.44092
1.43885
1.43678 | 94
95
96 | 1 25045 | 0.4 | 1.11857
1.11732
1.11607 | 95 | 1.00604
1.00503
1.00402
1.00301 | 1 | | | | 1004
1005
1006 | .91408
.91324
.91241 | 1194
1195
1196 | |
295 .77 | 220 139 | 5 .71686 | 1495 6 | 6890 1 | 595 .62696 | 1695 58997 | 1794 55741
1795 .55710
1796 .55679
1797 .55648
1798 .56617 | 1894 52796
1895 .52770
1896 .52743 | 1994 .50150
1995 .50126
1996 .50100 | | | 96
97
98
99 | 10.3093
10.2041
10.1010 | 97 5.07
98 5.08
99 5.08 | 61 4
061
51 3 | 96 3.38983
96 3.37828
97 3.36700
98 8.85570
99 3.34448 | 97 2 8
98 2 8
99 2 8 | 81 889
81 256
80627 | 97 2.01:
98 2.00
99 2.00 | 07 97
03 98
01 98 | 7 1.67504
8 1.67224
9 1.66945 | 97
98
99 | 1 . 43472
1 . 43266
1 . 43062 | 97
98
99 | 1.25471
1.25313
1.25156 | 97
98
99 | 1.11483
1.11359
1.11235 | 98 | 1.00200 | | | | | 1008
1009 | .91241
.91158
.91075
.90992 | 1195
1196
1197
1198
1199 | 83682
83612
83542
83472
83403 | 296 .77
297 .77
298 .77
299 .76 | 160 139
101 139
142 139
162 139 | 16 .71633
17 .74582
18 .71531
19 .71480 | 1496 .6
1497 .6
1498 .6
1499 .6 | 6845
6800
6756
11 | 596 62657
597 .62617
599 .62578
599 .62539 | 1696 .58962
1697 .58928
1698 .58893
1699 .68858 | 1795 .55710
1796 .55679
1797 .55648
1798 .56617
1799 :56586 | 1895 .52770
1896 .52743
1897 .52718
1898 .52687
1899 .52669 | 1995 .50125
1996 .50100
1997 .50075
1998 .50060
1999 .50025 | Printed in U.S.A.