MARCHANT—=e==— METHUDS

Remarks:

Exomgle:

Operations:

I. Set up in

.STRAIGHT-LINE INTERPOLATIONS
Reprinted from MATH-MECHANICS, Dec. 1938

An oft recurring task in business, engineering, and scientific calculating
where factors are obtained from tables, is the determination of tabular
values that are in-between the printed ones. As ordinarily done, the
process involves several subtractions, a multiplication, a division, and a
final addition, and even if a calculator is used there is likelihood of error
owing to the necessity of copying intermediate figures to a work sheet
and re-setting on the calculator. The majority of interpolating is done by
the "straight-line" principle; viz., the unknown variable is assumed to
vary during the interval in direct proportion to that of the known. The
Marchant by the method presented herein provides means of doing this
quickly and without the necessity of intermediate copying. (The Mar-
chant is also ideal for making "'curvilinear interpolations" by Lagrangean
Coefficients, details of which will be supplied upon request.)

A bond basis book shows a value of 98.8877 on Dec. 31, '38, and 98.7878
on June 30, '39. What is the value on Apr. 23, '39, using 360-day basis?
(Total Interval for the known variable is 180 days, and for the unknown,
the interval is |13 days from first date.)

Decimals: Upper Dial 5, Middle Dial 10, Keyboard Dial 5. Use 8 or 10-
column Marchant with Upper Green Shift Key down.

Keyboard Dial the Last Value (98.7878) and multiply by the known in-
terval from First Value to Value Desired (1 13).

2. Clear Keyboard Dial only, and set up First Value (98.8877) and multiply by known

interval from Value Desired to Last Value (180 — 113, equals 67) by
building Upper Dial to read the Total Interval (180).

3 Clear Keyboard and Upper Dials, set up Total Interval (180) and divide.

Note:

Upper Dial shows Interpolated Value Desired (98.8250).

It will be observed that if the Total Interva! is 10, i00, 1000, etc., no
division is necessary. Most interpolating .n scientific tables is of this
class; for example, if the Desired Value is 38/100 of the distance, graph-
ically considered, from First Value lo Last Value, it is only necessary to
multiply the Last Value by .36 and the First Value by .62 and the ac-
cumulated sum of the two products is the Desired Value.

The second multiplication may be expedited by mulhplymg First Value
by 'l' and then reverse multiplying by .38 which is easily proved correct
by its reducmg the .38 of the first multiplication to ciphers.

Submitted by
Lawrence Boyd, Newark, N. J.

MARCHANT CALCULATING MACHINE COMPANY OAKLAND 8, CALIFORNIA
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HH=g1
BASIC APPLICATIONS
Revised Feb. ;942

MARCHANT—=g==— METHUDS

REYARKS:

EXAMPLE:

INVERSE STRAIGHT-LINE INTERPOIATION =—— DIRECT METHOD

This is opposite of the direct interpolation as described in Marchant
Method MH-52. particularly in the footnote thereof. It is a frequent
task in computing from tables.

A bond basis book shows at a given date a yield of 6.60% for bonds

bought at 90.3095 anda yield of 6.50% if bought at 91,3781. The bonds
were bought at 90.8750. What is the yield?

OPERATIONS: Decimals; Upper Dial 7 and o, Middle Dial 12 and 5, Keyboard Dial 5.

Use 8 column Marchant. If model M is used, have Non-Shift Key down.

(1) With carriage in 1st position, set up in Keyboard Dial the highest value

(91.3781) and add.

(2) Similarly, set up the lowest value (90.3095) and reverse multiply by "in,

(3) Shift carriage to 8th position and reverse multiply by "1",

(4) Change Keyboard Dial to read Intermediate Value (90.8750) and add.

(5) Set up in Keyboard Dial the value that is in the Middle Dial at right

(1.0686) , clear Upper Dial* and divide.

The ratio that the difference between Intermediate Value and Low
Value bears to the difference between High Value and Low Value ap-
pears 1in Upper Dial; vdz., .5292-, which is interpreted in this
case as .05292% of yleld because the total difference is 0.1% of
yield.

(6) Inspection of problem shows this amount is tobe subtracted fromé6,60, which

may be done by any usual means. One that gives proof control in this
instance is:

fa) Clear Keyboard and Middle Dials. Shift to gth position. Set up
in Keyboard Dial the amount from which subtraction is to be made
(6.6) « Depress Add Bar, and then depress Subtract Bar.

(b) Set up the total rate difference (6.6 - 6.5, or 0,1) inKeyboard
Dial, andwith Upper Green Shift Key down reverse multiply by the
first four significant figures of the amount that appears in the
Upper Dial,

Interpolated Yield appears in Middle Dial (6.5471%) »

NOTE: It should nmot have more significant figures than that of the
original values.

(*) Not necessary if model has automatic Upper Dial cledrance prior
to divisson.

MARCHANT CALCULATING MACHINE COMPANY OAKLAND 8, CALIFORNIA

PRINTED IN U. 8. A
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MM 92
IC APPLICATIONS

MARTHANT —2wgee— METHODY ot 2oz

~

- INVERSE OR DIRECT STRAIGHT LINE INTERPOLATION - BUILD-UP METHOD

'REMARKS : This method should be studied in connection with MM g1. It is somee
times of use in problems of this kind when D models are used, parti=
cularly whentables for various intermediate values are to be built up.

EXAMPLE : Yield 6.60% Value 90.3095
" 6.50% " 91.3781
What is yield at 90.8750?

OPERATIONS: Decimals: Upper Dial 7 and0, bMiddle Dial 12 and 5, Keyboard Dial 5.
. Use 8 column model D or M.
{1) With carriage in 1st position set up in Keyboard Dial the highest value
(91.3781) and add.

(2) Similarly set up the lowest value (90.3095) and reverse multiply by "1."
(3) Shift carriage to extreme right and add.

(4) Shift carriage to extreme left and copy amount that is at the right end of
the Middle Dial to Keyboard Dial and reverse multiply by "1."

(5} Shift carriage to extreme right, clear Upper Dial and multiply by such an
amount as will build up* the Middle Dial to the intermediate value
(90.8750) . .

Ratio that (90.8760 = 90.3095) bears to total interval (91.3781 =
90.8095) appears in Upper Dial (.5292<).

This amount is multiplied by total interval (.1) and subtracted from
6.60 bymethod of MM 91 if desired, producing desired yield (6.5471%) .

NOTE: Either the Upper Dial or the Middle Dial amounts may be the unknown value,
so this setting 1s useful for both inverse or direct interpolation when
producing tables 4n which straight-line proportionality is satisfactory.

(*) The "build-up” process rgferred to inOperation No. 5 is to start with car
riage as far to the right as possible so that multiplying by from "1" to
"9" will cause the amount in the Middle Dial to increase to an amount that
1s greater than that to which you are building up. With carriage in the
specified position (im this case %), hold down X Bar (or successively de=
press keys of Automatic Multiplier Keyboard on M models) until the amount
in the Middle Dial 1is just enough greater than the desired amount that a
touch of the Short Cut Bar (or a reverse multiplication by "1" on M models)
will cause the amount to become less than the desired value. Next shift
carriage one position to the left and again multiply until the amount is
greater than the desired value. Touch Short-Cut Bar until the amount is just
reduced below the desired value. Repeat this process until the Ubper Dial
shows the number of places desired, the value in the Middle Dial meanwhile
more and more closely approaching the desired value,

MABCHANT CALCULATING MACHINE COMPANY OAKLAND, CALIFORNIA

PRIETED IN U. 8. A,
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ADVANCE GOPY SUBJECT TO REVIE\’

BASIC APPLICATIONS
) " February 1941 =

"MARCHANT METHODS

CURVILINEAR INTERPOLATION
BY THE METHOD OF
CONSTANT SECOND DIFFERENCES

EXEMPLIFIED BY COMPUTING TABLE OF CAPACITY
3 OF CURVED BOTTOM TANK AT INCH OF DEPTH SOUNDINGS

REMARKS ¢ In much engineering and scientific work9 where straight<line interpolation
is not regarded as sufficiently accurate, a satisfactory trend of tabular

 values may be obtained by sonsidering Second Differences as constant for

the sub-divisions of the Intervals between calculated values of the table.

EXAMPLE: The ¢aleulated volume of a tank with outwardly flaring curved sidas, ati’
various depths in even feet is as below: }

_ First Diff (a%) Second Diﬁ' (an) Avgt ar
/33 92 285
6.0 163.95 , L
31.30 2.36
500 132965 W e
29.21 187
) : l{.oo s 1-030141‘}
b R ' 27.57 147
3.0 75.87
26.28 1.17
2.0 L9:59 :
) 25.24 97
1.0 2435
\_ 24:35 .83
Pl g —

It is desired to know the volume at intermédiate depths at one-inech g
OPERATIONS: Decimals; Upper Dial 5 and O, Middle Dial 14, 9, and O, Keyboard Dial 9 and h
; Use 10 col. Marchant (with Upper Green Shift Key down on M models.

(1) Compute First and Second Differences (d’ and d") by Marchant Method MM-100 and
tabulate them as shown in italics above.

(2)  Extrapolate d" for O ft. and 7.0 ft. as shown in seript numerals. i i
This may be done by calculating from 3rd differences or by plotting a few -~
values of 4" toward each end and extending their curve to the end points y
(in this case 0.0 and 7.0 respeciively). . :

: . (3) Compute the Average d" in each Interval; e.-g.; the Avg. d" for 6 O to 7 0 ft
i is 3(3.08+ 2.62), or 2. 859 etc. and copy fhese at right of table







e T B, )
Page 2

- CAICULATION OF FIRST INCREMENTS AND CONSTANT
\ ‘ SECOND DIFFERENCES IN EACH TABLE INTERVAL

' QUTLINE: First Increment in each Ihterval between computed valﬁes is¢

(a) ' Avge d" . b=l
. h g 4

in which d'= First Difference of Interval (See preceding page)
Avg. d"= Avg. Second Difference during Interval
x h = Number of increments in Interval 4

For machine calculation, the above formula is transposed tos
b | L lah - Ave. dwv.l.-_-}.)
(b) , RK g 5
Constant Second Diff. for h. increments per Interval iss
(e) : s Avg. dv
. i

For interpclation of wvolume between 0.0 and 1.0 fto., 47 = 24.35; Avg. d" = .83, h = 12 |
' (i2 in. = 1 ft.), and similarly for other Intervals (See preceding page).

For calculation of right=hand factor of Formula (b) above, proceed as follows for all i
Intervals of table: o ~

(1) Set up di(24.35) at 4th Keyboard Dial decimal and multiply by h(12) at 5th
~ Upper Dial decimal, "

(2) Clear Upper and Middle Dials; and set up Avg. d"(.83) at 4th Keyboard Dial
" decimsl and reverse multiply at 5th Upper Dial decimal by 3(h-l), or 5.5.

Upper Dial shows ...994.50000(complement of 5.5)
Avg. an d'h - Avt, d!!(_h_;z;l;) 5 or 287.635 appears at 9th Middle Dial decimal

(3)  similarly obtain this amount for all other Intervals of the table, recording
them in Col. A. on Work Sheet at top of page 3.

(4) Set up in Keyboard Dial at 9th decimal 1/h2 (reciprocal of 1k = .00694LLLL)
as constant, and mltiply by amounts in Col. A, producing First Increments °
ag in Col. B of Work Sheet. . :






(5)

(6)

(7)

(8)

(9)

WORK SHEET

Argument A B ¢
7.0 £t First Increments Constant 2nd Diff.-
391.365 2.7178 .0198
S 362,620 2.5182 0164,
e 310,235 2.3627 0130
ay 322,755 2.2, ,0102
5 308.925 2,1453 .0081
2 297.545 2.0663 L0067
(1) 287,635 1.9975 0058

Without clearing Keyboard Dial, continue to multiply by the respective Avg. d"
values (.83, .97, 1.17, ete.) thus producing the values in Col (€ of teble
of Work Sheet.

INTEGRATION FOR TABULAR VALUES

With carriage in lst position, set up in Keyboard Dial at 4th decimal the First -
Increment of Interval (0 to 1.0 ft.) (1.9975) and add, clear Upper Dial. .

Likewise set up First Increment (1.9975) at 9th and corresponding Constant

Second Difference (.0058) at 4th decimal Keyboard Dial.
Keyboard Dial reads 1.99750-0058

and multiply by "1" at "O" Upper Dial decimal
Record 1,9975 as Table Value for C ft. 1 in.

Change Keyboard Dial at left so it reads same as Middle Dial at right
(2,0033) and multiply by “1n
Record 4.0008 as Table Value for O ft. 2 in.

Repeat step 8 for all values up to 1 ft., O in. developing table belows

1.ft 0 in. 24,3528 rounded off as 2435

i S 222915 n e 22,29

10 20,2360 " LR 20.24
9 = 18,1863 i woono. 1819
g n 16311"21, i ] ] 16°M .
ol 14,1043 % Y e 14,10 ‘ A
6 n 12,0720 » ] it n 12.07
5 " 10.0455 " ] ] 10,05 ;
L n 8,0248 1 f " 8.02
" 6,0099 S L 6,01
2 n 4.0008 (] " n 4,00
1 (1] 109975 " i it 2\m i
0

Upper Dial will show 12, equaling h, as control; though the approach to
2435 shows completion of steps in First Interval.







e TR
- Page &

(19)

)

(12)
(13)

NOTE A:

NOTE Bt

: NOTE Cs

NOTE D:

" Likewise seb up First Increment (2.0663) at 9th and corresponding Constant .

or in this case -

Clear Keyboard and Upper Dial, set up in Keyboard' Dial such an amount as

when subtracted will leave only the computed value to start next Interval

(24.35) in Middle Dial at 9th decimal, and subbract.
Set up in Keyboard Dial at 4th decimal the First lncremeni for Interval 1.0

 to 2.0 ft. (2.0663), and add.  Clear Upper Dial. k-

Second Difference (.0067) at 4th Keyboard Dial decimals and proceed as in
steps 7 to 9 to develop table values between 1 ft. and 2 ft.

Repeat steps 10, 11; and 12 for the remaining Intervals, thus completing the
table between 2 ft. and 7 ft. ' :

The example shows d? and d" as positive and table is ascending. The method

is just as suitable for negative differences or with d° and d" of opposite
sign., If Constant Second Difference is opposite in sign from First Increment,
set up complement of Constant Second Difference; preceding by 97s and reducing

right-hand digit of First Increment by "1". If tabular values are descending .

(1.e., d* is minus) reverse multiply in the integration steps. ,

A quick check of correctness of First Increment and Constant Second Difference
is that they satisfy the following: ' .

Interval Step = h X d' - ih(h-1)d"

204,35 # 12%1.9975+ 66X .0058 = 24.2528
which is as sat’i';factory as can be obtained with places available.

Rounding off of right-hand digit of Constant Second Difference causes a

possible maximtm . error of its value of, in this instance, -0005. By integrau, 1

tions this ie magnified to %(h-1)(h-2) times .0005 at table value h-l, or in

this case. 55X .0005 = .0275. This explains why values obtained by integration

to 4 places at right of decimal are rounded off to 2 places.. :

The use of the Upper Dial as a control of count in the integration is most
helpful if it be desired to go immediately toc any specific intermediate

value, The Upper Dial always records the particular tebular vilue as numbered

from point of origin of the Interval.

i deiet i U i e R B
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NATHEMATICS

MARCHANT —s+e==— METHODS ™

DIRECT INTERPOLATION AND SUB-TABULATION
(IF FOURTH DIFFERKNCES DO NOT EXCEED 1000)

EXPLANATORY APPENDIX TO MARCHANT METHOD MM-189

A NOTE ON OBTAINING 4TH DIFFERENCES
FOR USE WITH "COMRIE THROW-BACK" IN EXAMPLE IV

Reference was made in the second paragraph of the "Remsrks” section, Page 1, of Mar-
chant Hethod WM=38¢, tothe fact that in sub-tabulation it 1s not necessary to obtain
third and fourth differences, except at infrequent intervals, and then only in order
to obtain their general range as a guide tothe selection of method or as a means of
obtaining the 4th difference correction of Example IV.

Inasmuch as a 4th difference must be known before the "4th difference correction" can
be determined, it might appear that the statement is inconsistent, because obviously
4th differences will normally vary somewhat from interval to interval.

Actually, however, inordinary computing practice, it will be found that the 4th dif-
ference correction generally can be obtained without the necessity of completely tab-
ulating the 3rd and 4th differences. This is because the large majority of functions
which are tabulated to the number of places used in ordinary eomputing, - rarely more
than 7 places - will have no great variation in 4th differences; that 1is to say, a
small 5th difference.

By following the procedure below, the tabulation of 4th differences for every inter
val may usually be avoided.

A plan that does this is to obtain 4th differences at about every fifth or tenth in-
terval and observe their trend, plotting them graphically and obtaining the 4th dif-
ferences for the intermediate intervals from the curve so drawn.

This will ordinarily give quite as accurate a 4th difference as would actual differ—
encing at each interval, because the graphical method eliminates the error forced in-
to the 4th difference due to rounding up of the right-hand digit of the tabulated
function. Such round-ups can affect vhe right-hand digit of the 4th difference by as
much as §.

In considering the precision of this approximation, it is to be noted that in the
computation of the interpolates only "0,184 x 4th difference" is used. This is addi-
tional justification for the procedure of eliminating 4th differencing for every in-
terval when the work falls within the class of Example IV.

MARCHANT CALCULATING MACHINE COMPANY OAKLAND, CALIFORNIA
PRINTED IN U. 8. A.
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M M 245
MATHEMATICS
APRIL 1943

MARCHANT—==2==— METHUDS

HANSEN-AHLBERG METHOD FOR OBTAINING
PARABOLIC TRENDS

Remarks:  Statisticians who extend second-degree curves may reodilP/ do so by
the procedure herein. This application to cases of statistical trends wcs
brought to our attention by Mr. Raymond Ahlberg, Statistician, Denver,
Colo. Similar procedures have been used for interpolation by integra-
tion of constant differences (see Marchant Method MM-152).

Outline: The second degree curve is characterized by having a constant second difference.
Advantage is taken of this as the basis for the method. The curves may have any
of several forms. Examples are

(1) Y=a+bX+cX (2) Log Y=a+bX+cX?

(3)F Y =ai-t b/X 5 c/ X 4 Y= 1/{a 4 bX 1+ cX?)’
The example herein is in the form of (1). If (2) applies, it is only necessary to obtain
anti-logs of the log ¥'s that appear in the Marchant. If (3) applies, it is put in the
form X*¥ = aX* + bX + c. The Marchant then gives the values of X?Y, which when
divided by the X*s gives Y. If (4) applies, it is put in the form 1/Y = a + bX + X2
The Marchant then gives values of |/Y, the reciprocals of which are the desired ¥'s.

Example:  Given ¥ = 7.2131 — .51 14X - .3044X2, obtained from a least squares
analysis. It is desired to tabulate the trend by intervals of 0.1 from
X=120

Preliminqry: Compute four adjacent values of Y in the neighborhood of X = 2.0 and tabulate
with differences, a check of correctness being the constancy of the second difference;

- thus,
X 5 Ist diff. 2nd diff.
1.8 7.278836
19 7.340324 o 006088
20 7.407900 it 1006088
2.1 7.481564 :

Decimals:  Upper Dial I, Middle Dial 10 & 6, Keyboard Dial 10 & &. Non-Shift
Key down on any 10-column'M model.
(1) By suitable means, obtain initial entries as follows: Upper Dial 2.0; Middle
Dial 7.408 at [0th decimal and .073664 at 6th decimal; Keyboard Dial
.074 (rounded .073664) at 10th decimal and constant 2nd difference.
.006088 at 6th decimal. These are starting values and are always set
up in this pattern when signs of both differences are plus (see Note B).
(2) With carriage in Ist position, depress No. | Key of Single Row Keyboard.
Y for 2.1 (7.482) appears at left of Middle Dial and the new Ist dif-
ference (.079752) appears at right. The Keyboard Dial at 10th Decimal
is then changed so it reads .080 (the rounded value of .079752). See
Note A. :
(3) Depress No. | key of Single Row Keyboard. ¥ for 2.2 (7.562) appears at left
of Middle Dial and the new Ist difference (.085840) appears at right.
The Keyboard Dial at 10th Decimal is then changed so it reads .086 (the
: rounded value of .085840).
(4) Repeat Step 3 for succeeding values, the Upper Dial showing values of X.
NOTE A: Constant 2nd diff. should be set up as nearly exact as possible. Rounding that space
limitations require should be in Ist diffs. and Y's.
NOTE B: If ¥'s increase but 2nd diff. is negative, set it in complementary form, bridge with 9's and
proceed as herein.
If ¥'s decrease but 2nd diff. is positive, have Manual Counter Control toward operator,
and depress Reverse Bar prior to depressing No. | key.
If ¥'s decrease and 2nd diff. is negative, invert the table; i.e., start from the smallest Y.
Then, proceed exactly as outlined in the above method except have Manual Counter
Control toward the operator.

Submitted by Garland McWhirter
Kansas City, Mo.

Reprinted from MATH-MECHANICS, February 1943

MARCHANT CALCULATING MACHINE COMPANY OAEKLAND 8, CALIFORNIA
PRINTED IN U. 8. A



(¢ ! aﬁl&gm.ﬁn 4 gmyga n’J
TR solided Yo portamensh ke o
m R ﬂ B

mﬁdmw 5 & wmﬁ-ﬁ :mﬂa»m gmu:gm ‘k’:r «saam bt #m
'91;{ snok i eatologatai To yiions 54T ﬁmmpmm
1 - o bemusto. 2 Sidoiey pionine sl Tiv gy el
4 s:ff mﬂ w&hindiﬁ amﬁﬁqci:; zbs-?ﬁ érz,wmx# aﬂ%w

I e e
e Mwbﬁmﬁﬁﬁﬂwtgéfw‘
1 B8 1F 280 6 YTOL8V ho e p Suss dood

e 5

M gﬂ&fﬁ‘ &8 AqA n iy 3 5t 1649 gg:-aa-‘ :

o 491 NONE 31 5\/\.&1 wr‘lﬂl,?"ﬁ : G

s

el "d g#q%:mﬁm, Bt aﬁrxswqumbm' ol ke
X ,@m gm BH o= 61 Suls¥ ssed 51 helasD suleV gv&m
: L ey fevistat o el bosr of Mwm

eabivib aﬁ@ki%&&hﬁ?@mwm@hﬂww £

= o eSReR he sl sulai iy ol pucode feiQ gl - -

: u‘a,,mm 0o o mmmﬁiﬁwrﬁﬁibﬁmad&## @
1 5 bo u sldos sHirein o priinEasin SM womaosh ol gisvib

o sonchl 58 Yo 001 EEi sulo¥ avasQ v ¥ slymons ot el

ot pinsesase \dm & H aw’ﬂ‘f el 2 *3%2" $e et mm‘
: sﬁﬁaﬁi‘bmﬁ yd suls¥ ‘a’soﬁwatﬁgé#a’f‘lﬁio&w

o] .wt;,v hmaﬂ »ilf of ioulong mﬁhm i




gy

-

ARCHANT
ETHODS

ﬁmmfmmm MM = 434 B1

A SHORT METHOD FOR EVALUATING DETERMINANTS
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FOREWORD
by
MARCHANT CALCULATORS, INC.

By permission of the author and publishers, we ar e privileged to issue this highly significant and valuable paper
as a part of our Marchant Methods series.

In addition to the applications mentioned in the author’s introduction, examples similar to No. 4 on page 4 are
frequently found in the field of Statistical Method.

It will be noted that each element of the calculation is obtained as a result of one continuous calculator operation
comprising a series of positive or negative summations of products, with or without final division. This being the
case, it is obvious that calculators selected for this work should preferably conform to the following specifications:

(1) Multiplication and division, either positive or negative, with accumulation when desired.

(2) Complete capacity carry-over in both product and counting registers.

(3) Straight-line figure proof of entry of multipliers, multiplicands, dividends and divisors; and particularly
that both multiplier and multiplicand shall be visible for permitting check of correctness of entry of the
multiplication factors at each step of the continuous process.

(4) Positive decimal control, assuring no uncertainty in the entry of amounts with reference to decimal or
in the pointing off of the intermediate and final products or quotients.

The within paper, as published, included a Mathematical Appendix containing the mathematical foundation of the
method, and also consideration of complex equations whose symmetrical elements are conjugate. This appendix is
not reprinted herein,

A SHORT METHOD FOR EVALUATING DETERMINANTS AND SOLVING SYSTEMS
OF LINEAR EQUATIONS WITH REAL OR COMPLEX COEFFICIENTS
Prescott D. Crout

1. INTRODUCTION. The purpose of this paper is to describe without proof a short method for solving arbitrary systems
of linear algebraic equations, and evaluating determinants, the quantities involved being either real or complex.
The cases considered are: '
(1) Arbitrary systems with real coefficients, which occur in obtaining stresses in structures, in solving
systems of linear differential equations with constant coefficients (transient problems), etc.
(2) Symmetrical systems with real coefficients, which occur with direct current networks, undamped vibration,
deflections in structures, least square processes, Ritz’ method, etc.
(3) Symmetrical systems with complex coefficients, which occur with alternating current networks, and forced
vibration with dissipation. '
(4) Arbitrary systems with complex coefficients, which occur in certain vibration problems involving gyro-
scopic action.
(5) Systems involving two sets of variables, which occur when the currents in a network are to be found for
a variety of impressed voltages, also in the approximate solution of integral equations arising in electric
field problems.

(OVER)

PRINTED IN U. S A
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The work of solving a system of equations (or evaluating a determinant) is largely concentrated in the determination
of an “auxiliary matrix”, and is roughly half that required by a matrix multiplication. The process is particularly
adapted for use with a computing machine, for each element is determined by one continuous machine operation (sum
of products with or without a final division). The setting down of this matrix and of the final solution is the only
writing required by the process. The work involved is cut almost in half if the given equations (or determinant) is
symmetrical, as very often happens. A “check column” can be carried along if desired.

The amount of work required to obtain a solution is considerably less than that required by Gauss’ methodl, even
when there is symmetry and the coefficients are real, in which case Gauss’ method has been considerably refined
by Doolittlez. (Gauss' method is much shorter than a solution by determinants.)

The method as given is applicable to m equations in n unknowns, there being no restriction on the rank of the matrix
of the coefficients.

2. DESCRIPTION OF THE METHOD. Let the given system of equations be specified by its given matrixS, thus:
(1) 12.1719 27.3941 1.9827 73757 6.6355
8.1163 23.3385 9.8397 4.9474 6.1304
3.0706 13.5434 15.5973 7.5172 4.6921
3.0581 3.1510 6.9841 13.1984 2.5393

the first equation being 12.1719x%; + 27.3941x, + 1.9827x3 + 7.3757x4 = 6.6355. The solution requires the
formation of one matrix and a set of final results; thus we have an auxiliary matrix:

uh % A3 Xg =
: 12.1719 2.2506 .16289 .60596 .54515
(2) 8.1163 5.0720 1.6793 .0057629 .33632
3.0706 6.6327 3.9585 1.4193 .19891
3.0581 -3.7316 12.7526 67332 .060806
and a final matrix:
X] == 15049
(3) X2 = 14687
X3 = ahpe
X4 = .%0806

The procedure for obtaining the auxiliary matrix from the given matrix is contained in the following rules.

(1) The various numbers, or elements, are determined in the following order: elements of first column, then
elements of first row to right of first column; elements of second column below first row, then elements
of second row to right of second column; elements of third column below second row, then elements of
third row to right of third column; and so on until all elements are determined.

(2) The first column is identical with the first column of the given matrix. Each element of the first row
except the first is obtained by dividing the corresponding element of the given matrix by that first element.

(3) Each element on or below the principal diagonal is equal to the corresponding element of the given matrix
minus the sum of those products of elements in its row and corresponding elements in its column (in the
auxiliary matrix) which involve only previously computed elements.

(4) Each element to the right of the principal diagonal is given by a calculation which differs from 3) only in

that there is a final division by its diagonal element (in the auxiliary matrix)3.
(Confinugd)

1 “NUMERISCHES RECHNEN”, BY RUNGE, P. 65.
2 . “PRACTICAL LEAST SQUARES”,.BY LELAND, P. 40.

3 A MATRIX IS A RECTANGULAR ARRAY OF NUMBERS, OR ELEMENTS. THOSE ELEMENTS WHICH HAVE THE
SAME ROW AND COLUMN INDEX FORM THE PRINCIPAL DIAGONAL, WHICH SLOPES DOWN TO THE RIGHT
STARTING WITH THE ELEMENT IN THE UPPER LEFT CORNER. THE DIAGONAL ELEMENT OF ANY ELE-
MENT TO THE RIGHT OF THE PRINCIPAL DIAGONAL IS THAT ELEMENT OF THIS DIAGONAL WHICH LIES
IN THE SAME ROW AS THE GIVEN ELEMENT. THE CIAGONAL ELEMENT OF ANY ELEMENT BELOW THE
PRINCIPAL DIAGONAL IS THAT ELEMENT OF THIS DIAGONAL WHICH LIES IN THE SAME COLUMN AS THE
GIVEN ELEMENT.
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As examples we have the following typical calculations made in obtaining (2), the letters R and C representing the ,
words “row” and “column”, respectively.

RI1C3 6289 =441.9827 =121 719

R2@2 i 35072015 =5283885 ==+ 811163:2:2506

RA4G25 =3 731 60 =3 1510~ 3,058 2.2506

R2C5 33632 = (6.1304 - 8.1163:.54515) + 5.0720

R3C3 3.9585 = 155973 - 3.0706°.16289 - 6.6327:1.6793

RAG3 12,7526 — 6.9841— 2310581016280 -t 37 316:1.6793

R3C4 1.4193 . = (7.5172 - 3.0706°.60596 - 6.6327°.0057629) ~ 3.9585

R4C4 -6.7332 = 13.1984 - 3.0581°.60596 + 3.7316°.0057629 -12.7526°1.4193

R4C5 .060806 = (2.5393 - 3.0581:.54515 + 3.7316°.33632 S 12526219891 == (=673 32)

Since a modern computing machine gives in one continuous operation a sum or difference of products with or without
a final division, we see that each element of the auxiliary matrix is given by a single machine operation.’

The procedure for obtaining the one-columned final matrix from the auxiliary matrix is contained in the following rules.
(1) The elements are determined in the following order: last, next to last, second from last, third from last, etc.

(2) The last element is equal to the corresponding element in the last column of the auxiliary matrix.

(3) Each element is equal to the corresponding element of the last column of the auxiliary matrix minus the sum
of those products of elements in its row in the auxiliary matrix and corresponding elements in its column in
the final matrix which involve only previously computed elements.

We see that in forming products only those elements of the auxiliary matrix are used which lie to the right of the prin-

cipal diagonal and to the left of the last column. The calculations made in obtaining (3) are:

R3GIN 261 .19891 - 1.4193 *.060806
R2C1 .14687 33632 - 1.6793 -.11261. - .0057629*.060806
RIC1 .15942 = .54515 — 2.2506 °.14687 - .16289°.11261 - .60596°.060805

It may be noted that each element of the finahmatrix is given by a single machine operation.

It is not necessary but is strongly recommended that the values of the unknowns, which compose the final matrix, be
substituted in each of the given equations, the result being a number of checks equal to the number of equations.
Since the satisfaction of these checks guarantees the correctness of the solution, it is not necessary to check the
calculations which gave the auxiliary matrix and the final matrix~, The first of the four checks obtained from (1) and
(3) is:

12,1719 -.15942 + 27.3941°.14687 + 1.9827°.11261 + 7.3757°.060806 = 6.6355

Evidently each check requires but one machine operation.

The above method is applicable as described to n equations in n unknowns. The only writing involved is that required

in recording the auxiliary matrix and the final matrix.
i (OVER)

4 ALL NUMERICAL DATA (EXCEPT WHERE EXACT) WAS OSTAINZED 3Y OMITTING A CERTAIN NUMBER OF
' DECIMAL PLACES FROM THE CORRESPONDING ORIGINAL DATA, WHICH WAS O3TAINED USING A TEN
3ANK COMPUTING MACHINE RETAINING TEN DECIMAL PLACES THROUGHOUT. THIS APPLIES TO THE
GIVEN EQUATIONS AS WELL AS TO OTHER DATA, FOR THE PROBLEMS USED HERE AS ILLUSTRATIONS
WERE, FOR THE MOST PART, PREVIOUSLY SOLVED FOR OTHER PURPOSES.

S IN CARRYING OUT SUCH AN OPERATION IT IS NOT NECESSARY TO FORESEE WHETHER THE RESULT IS
POSITIVE OR/NEGATIVE.

6 SINCE IN SOLVING A GIVEN SET OF EQUATIONS ONLY A LIMITED NUMBER OF DECIMAL PLACES CAN 3E
CARRIED, THE QUESTION ARISES AS TO HOW MUCH THE ERROR ACCUMULATED DURING THE COURSE
OF THE CALCULATIONS AFFECTS THE FINAL RESULTS. AN ANSWER TO THIS QUESTION CANNOT BE
GIVEN, SINCE IT DEPENDS UPON WHETHER OR NOT THE DETERMINANT OF THE SYSTEM IS ON THE
POINT OF VANISHING (OR, MORE GENERALLY, UPON WHETHER THE MATRIX IS ON THEPOINT OF SHIFT-
ING RANK) . NEVERTHELESS IT WILL BE MENTIONED THAT IN SOLVING EACH OF SIX SYSTEMS OF FOUR
EQUATIONS IN FOUR UNKNOWNS USING A TEN BANK COMPUTING MACHINZ, THE FINAL CHECKS SHOWED
THE GIVEN EQUATIONS TO BE SATISFIED EXCEPT FOR ERRORS NUMERICAL LY LESS THAN THREE UNITS
IN THE NINTH DIGIT. ALSO IT IS KNOWN (FROM A SEPARATE INVESTIGATION) THAT THE VALUES (10) OF
THE UNKNOWNS OF THE COMPLEX SYSTEM (8) COMPUTED WITH A TEN BANK MACHINE CONTAIN ERRORS
EACH OF WHICH IS NUMERICALLY SMALLER THAN FOUR UNITS IN THE TENTH DIGIT. ALTHOUGH NO
GENERAL STATEMENT CAN BE MADE, IT IS BELIEVED THAT IN THE USUAL CASE THE ACCURACY TENDS
TO REMAIN HIGH DURING THE COURSE OF THE CALCULATIONS.
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3.SYSTEMS HAVING SYMMETRICAL COEFFICIENTS. If there is symmetry, the work of computing the auxiliary matrix
is cut almost in half by the fact that if the coefficients of the unknowns (or the elements of the given matrix) are
symmetrical about the principal diagonal; each element of the auxiliary matrix below the grincipal diagonal gives, if
divided by its diagonal element, the symmetrically opposite element above this diagonal.” Elements below the prin-
cipal diagonal of the auxiliary matrix are thus obtained as by-products of calculations made in determining elements
above this diagonal.

As an example the symmetrical set of equations:

245.95 768.49 233.08 261.13  40.384
(4) 768.49 2665.85 880.54 . 915.95  90.887
233.08 880.54 688.91 458.17 6.5783
261.13 915.95 458.17 652.85 24.471
has the auxiliary matrix:
Eflnd A %3 o s
245.95 3.1246 .94769 1.0617 .16420
(5) 768.49 264.63 .57536 .37800 -.13338
233.08 152.25 380.42 40259  -.029928
261.13 100.03 153.15 276.13 -.0017367
and the final matrix:
X; = .55591
X, = -.11591
©) Xg = -.029229
X4 = -.0017367

In the auxiliary matrix the element in row 3 and column 4 is:

{458.17 - 233.081.0617"-""152.25°'.37800) "~ 153.15 _

380.42 380.42

the numerator 153,15 being recorded in the symmetrically opposite position before the final division by. the diagonal
element 380. 42 is carried out.4 The final matrix is obtained in the usual manner.

40259

4.EVALUATION OF DETERMINANTS. It is true that the value of a determinant is equal to the product of the el-
ements which form the principal diagonal of the auxiliary matrix. The auxiliary matrix is computed as described in
Section 2, the elements of the determinant being treated in the same manner as the coefficients of the x’s before.
Thé auxiliary matrix is square, since there is no column corresponding to the last column in (2); also, there is no
final matrix.

As an example, the determinant composed of the first four columns of (1) has an auxiliary matrix composed of the
first four columns of (2); hence the value of the determinant is (12.1719) (5.0720) (3.9585) (=6.7332) = - 1645.4.

If the determinant is symmetrical about the principal diagonal, the work of evaluating it is cut almost in half be-
cause of the smaller amount of work required in computing the auxiliary matrix. (See Section 3.) For example, the
determinant composed of the first four columns of (4) has an auxiliary matrix composed of the first four columns of

(5). The value of the determinant is hence (245.95) (264.63) (380.42) (276.13) = 6.8368°10° . 4

5.CONTINUOUS CHECK ON CALCULATIONS. If desired, a “check column” may be written at the right of the given
matrix, each element of this column being the sum of the elements of the corresponding row in the matrix. This
column is now treated in exactly the same manner as the last column of the given matrix, the calculations being
carried along with those for the other columns, and the result being the addition of corresponding “check columns”
to the auxiliary matrix and the final matrix. The check columns thus obtained for (1), (2), and (3) are, respectively,

55.560 4.5646 1.1594
7) 52,372 3.0214 W 1.1469
44.421 2.6182 1.1126
28.931 1.0608 1.0608

These columns provide checks at all stages of the computation, because:
(1) In the auxiliary matrix any element in the check column is equal to one plus the sum of the other el-
ements in its row which lie to the right of the principal diagonal.

(Continued)
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(2) In the final matrix any element in the check column is equal to one plus the sum of the other elements
S in its row.

For example noting (2), (3), and (7), two of the checks are:

1 + 1.6793 + .0057629 + .33632 = 3.0214
1.+ 11261 = 1.1126

The above statements are true and the procedure the same for any number of equations and unknowns; also, for the
evaluation of determinants, in which, however, only Statement 1 is applicable.

6.IMPROVEMENT IN ACCURACY. Since the number of decimal places in the computations is limited, the values
obtained for the unknowns are in general not exact. However, if they are placed in the given equations and the dif-
ferences between the two sides are obtained, and if these differences are then inserted in place of the right hand
sides of the given equations, the resulting equations have as their solution the corrections to the values first ob-
tained. Noting that the above differences are obtained in applying the final checks (see Section 2), and that the
auxiliary matrix for the modified equations is the same as that for the original equations except for the last column,
it follows that if the column of the differences7 obtained in applying the final checks be annexed to the given
matrix and then treated in the same manner as the last column, the corresponding column obtained in the final
matrix is composed of the required corrections.

Since the problem of solving the modified equations is similar to the original problem, the above process may be
repeated; thus the final checks on the corrections give data for another column in the given matrix, which leads to

a column in the final matrix composed of corrections to the first corrections, etc. In the usual case each application
of this process increases the number of significant figures in the results by approximately the same number obtained
with the original sclution, the data in the given equations being considered exact.

7. SYSTEMS OF EQUATIONS HAVING COMPLEX COEFFICIENTS. Since the proofs which establish the above method
do not require the quantities involved to be real, the method is applicable to complex equations. The only question
is that of whether the required calculations can be easily performed on a computing machine.

Since (a +jb) (¢ +jd) = (ac — bd) + j(ad + bc) we see that the real and imaginary parts of a sum of products of
complex numbers are each a sum of products of real numbers, given by one machine operation. It follows that each
e element of the final matrix, and each element of the auxiliary matrix which lies on or below the principal diagonal
can be obtained by two machine operations one of which gives the real part, the other, the imaginary part. It also
follows that each check run on the final matrix consists of two machine operations.

Each element of the auxiliary matrix which lies to the right of the principal diagonal is given by a sum of products
with a final division. The sum is first computed and recorded, after which the final division by the diagonal element
A = a+jbis carried out as a separate multiplication by 1/A = a/(a? +b%) - jb/(a2 + b2). Since the best form for
recording the supplementary data depends upon how much of it there is, we shall consider separately the following
two cases.

Case 1 = SYMMETRICAL EQUATIONS. Noting Section 3 we see that if the coefficients in the given equations are symmetrical
about the principal diagonal, the sum required for computing any element of the auxiliary matrix above the principal
diagonal is already recorded as the symmetrically opposite element below this diagonal. It follows that only the last
column of the auxiliary matrix requires separately recorded sums, which may be written in a right supplementary
column. Data on the final multipliers 1/A may be placed in two left supplementary columns. (See (9).) In determining
the auxiliary matrix the elements in any row which lie in the supplementary columns are determined just before those
in that row to the right of the principal diagonal.

As an example the given set of four equations:

84.276 -91.342 32.463 -45.417 6558.50
71.184j 10.741j =12.142] -32.984 -185.00j
(8) -91.342 45,374 =211 212 80.414 -8780.75
10.741j 52.741 74.342j -20.732j 670.75i
32.463 =091 P 72,713 37.642 -3463.25
-12.142j 74.342j -20.221j -77 .814j —3535.41]
-45.417 80.414 37.642 =20r114 -4268.87
-32.984 ~20.732] -77.814j -29.741j 1449.04i (OVER)

7 IN RECORDING THE COMPUTED VALUES OF THESE DIFFERENCES, AS MANY NON-VANISHING DIGITS
SHOULD 3E KEPT AS CAN 3E HANDLED IN THE SUBSEQUENT MACHINE CALCULATIONS.
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where the imaginary part of each element is written below the real part for compactness, has the auxiliary matrix:

a2 § p2 1/A Xy Xy X3 X4 = RS
12170. .0069251 84.276 -.56973 15379 -.50745 44.336
-.0058493 71.184 .60867 =7 3975 .037241 -39.644]
13101.  -.000009789 | -91.342 V1282 41654 -.10413 =2088 7 —5156.8
9) -.0087368 10.741 114.458 .087841 -.30098 45.088 | -3426.6
7119.4 .0111588 32.463 -10.107 79.444 75944 -29.404 =257 4.0
.0039928 A2 149 | 47.665] -28.426 -.77633j =18.3789 170.19
3284.5 -.00050088 -45.417 34.462 38.265 —1.6452 =S8 1369.5
-.0174415] -32.984; -11.880] -83.263 | 57.287 292421 =2925.6
where the supplementary columns are partitioned off by vertical lines, and the final matrix:6
Xy = 20471
10.782j
Xo = -42.652
(10) 37:913j
X3 =" 21.275
-31.498
Xt .= -51.713
=22:121

The following are typical calculations made in obtaining the above solution. In each case the part computed is
specified by “real” or “imag.”, after which the letters R, C, LS, and RS are used4in place of “row”, “column”, “left

supplementary”, and “right supplementary”, respectively. In the auxiliary matrix:

Real, R3C3 79.444 = 72.713 - 32.463°.15379 + 12.142°.27397 + 10.107°.41654 + 47.665°.087841
Imag., R4C3 —-83.263 ==77.814 - 45.417:.27397 ++.32.984°.15379 - 34.462:.087841, + 11.880:.41654

Real, R3CRS -2574.2 =-3463.25 - 32.463°44.336 + 12.142°39.644 - 10.107°29.887 + 47.665°45.088
R3CLS] 71194 = 79.444-79.444 + 28.426°28.426

Imag., R3CLS2 .0039928 = 28.426 + 7119.4

Real, R3C4 75944 = .0111588:38.265 + .0039928°83.263

Imag., R3C5 -8.3789 = .0111588°170.19 - .0039928°2574.2.

In the final matrix:

Real R2CI -42.652 =-29.887 - .41654°27.275 - .087841-31.498 - .10413°51.713 + .30098-22.421

Case 2 ~NON-SYMMETRICAL EQUATIONS. In the general case where there is no symmetry, and a sum must be recorded for

every element of the auxiliary matrix to the right of the principal diagonal, the supplementary data may be recorded
in a supplementary matrix having the same number of rows and columns_ as the auxiliary matrix. Each element to the
right of the principal diagonal is the sum required in computing the corresponding element of the auxiliary matrix; the
diagonal elements are the final multipliers 1/A; and values of a“ + b2 may be placed in a left supplementary

column.

Since to obtain any element of the auxiliary matrix or the final matrix a real and imaginary part must be obtained, and
since the sums involved have twice as many terms as they would have in the case of real coefficients, we see that
the work involved in solving a set of equations with complex coefficients is a little more than four times that re-
quired in solving a similar set with real coefficients.

The procedures just described under Case 1 and Case 2 can be used to obtain the square auxiliary matrix required in
evaluating a determinant with complex elements. (See Section 4.)

A check column can be carried along if desired, the entries being complex. (See Section 5.)

8.EQUATIONS INVOLVING TWO SETS OF VARIABLES. If two sets of variables are involved, the above method may
be used to obtain one set in terms of the other. For example the given set of equations:

% X2 X3 Afesan= - Y2 Y3 Y4
12,172 27.394 1.983 7.376 6.636 0 0 0
an 8118 23.339 9.840 4.947 0 6.63 0 0
3.071 13.543 15.597 7.517 0 0 5.636 0
3.058 3.151 5.984 13198 0 0 0 6.63

(Continued)
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of which the first is 12.172x; + 27.394x, + 1.983x3 + 7.376x, = 6.636y; , has the auxiliary matrix:

12972 2251 .1629 .6060 .5452 0 0 0
(12) 8.116 5.072 1.679 .00576 =J87.24 1.308 0 0
3.071 6.633 3.958 1.419 1.039 -2.192 1.676 0
3.058 ~3.732 12.753 =) 2.699 -4.877 3.175 19855
and the final matrix:
Y] Y2 Y3 Y4
X'I = -9.187 17.053 -12.117 5.643
(13) X2 = 3.800 —6.607 4,734 =2.343
X3 = -2.791 4,730 —£2:8380 1.399
X4 = 2.699 —4 877 3175 - .9855

from which we see that Xy =l SO By TS 05 S0 12.117y3 i 5.643y4 , etc. Each y column of (11) is
treated in the same manner as the last column of (1), the result being a corresponding column in the final matrix.
Four final checks on each of these is obtained by equating the corresponding y to 1 and the other y’s to 0, and
substituting (13) in (11). If a check column is not used, it is desirable to finish one y column and apply the final
checks before filling in the other y columns. (The calculations for each y column are independent of those for the
others.) If a check column is desired, the procedure and rules given in Section 5 are worded so as to apply to the
present case, the y columns being included with the others. There is no restriction on the number of equations or
the number of 6’

9.m EQUATIONS IN n UNKNOWNS. UNUSUAL CASES. Let there be given m equations in n unknowns. These may
be arbitrarily (in any order) labelled 1, 2, . .. , m, and 1,2, . . . , n, respectively, and the above procedure followed
as though the equations and unknowns were actually written in the orders indicated by the labels. We shall consider
the rows and columns both numbered in the orders in which they are completed in the auxiliary matrix. In general
these orders are those in which the equations and unknowns are actually written, so that the labels are superfluous;
however, in determining the auxiliary matrix two unusual cases may arise, as follows.

(1.) If in completing a column the diagonal element is found to vanish, the (unlabelled) row chosen to be
completed and labelled is one which has a non-vanishing element in this column.

(2.) If in completing a column all of the newly computed elements are found to vanish, that column is left
unlabelled; but is (with its zeros)in its final form, and requires no further calculations.

The calculation of the auxiliary matrix is continued until either the rows or the unfinished x columns are exhausted,
the total number of labelled rows and columns then being R. (R is the rank of the matrix of the coefficients in the
given equations.) The m-R unlabelled rows and n-R unlabelled x columns will be called excess. Either, both, or

neither of the quantities mR and n-R may vanish, depending upon the given equations.

The one column (or more if there are several y columns as in Section 8) arising from the right hand sides of the
equations is now completed, the procedure being identical with that used in completing the last labelled column.
If in so doing the computed elements (which lie in excess rows) all vanish, the given equations are compatible;
otherwise they are incompatible.

If the equations are found to be compatible, we next omit the excess rows (the equations corresponding to which are
superfluous), and determine the final matrix from the remaining rows. Each excess column is treated like the last
column, and contributes a column to the final matrix, in which it is labelled -x with the appropriate subscript. We

thus obtain R unknowns as linear combinations of the others.

As an example, the given equations:

X1 X9 X3 My
47.126 -74.150 14.222 64177 27.304
-29.312 54.332 -37.998 70.028  -80.476
(14) 32.470 -46.984 « A 7770 -29.358  -12.934
- 57490 17.257 ~30.887 37.842  -66.824
8.9070 - 9.9090 -11.888 2.8280 -26.586

(OVER)

8 THESE CASES MAY ALSO ARISE IN EVALUATING A DETERMINANT. SHOULD CASE 1 OCCUR, THE SIGN OF
THE PRODUCT OF THE DIAGONAL ELEMENTS MUST 3E REVERSED IF THE NUMBER OF INVERSIONS OF
THE ROW LABELS IS ODD; OTHERWISE, LEFT UNALTERED. SHOULD CASE 2 OCCUR, THE VALUE OF THE
DETERMINANT IS ZERO. :
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have the auxiliary matrix:

X4 Xo X3 X4 s
47.126 -1.5734 .30179 -1.3660 .57938
=59.319 8.2113  -3.5502 3.6522 -7.7324
(15) 32.470 4.1056 0 0 0
- 5.7490 8.2113 0 0 0
8.9070 4.1056 0 0 0
and the final matrix:
~Xq ~Xg
(16) X; = -5.2843 4.3805  -11.5871
Xo = -3.5502 36502 - 7.734

The first unknown is X; = 5.2843x; - 4.3805x; - 11.5871. Since the two labelled rows and columns of the
auxiliary matrix are in consecutive order, the labels are omitted, the excess rows and columns being clearly in-
dicated by the block of zeros. Here R = 2.

m final checks can be obtained on each column of the final matrix by substituting the results in the given equations,
the other columns in the final matrix and the corresponding columns in the given equations being omitted.

If a check column is desired, the procedure and rules given in Section 5 are worded so as to apply to the present
case. In addition it is true that in the auxiliary matrix those elements of the check column which lie in excess rows
must vanish if the given equations are compatible.

If the given equations are homogeneous (right hand sides all zero), all columns of the final matrix arise from excess
columns of the auxiliary matrix. In those systems ordinarily met in stability and vibration problems m = n = R + 1.

—— g V';’/

sl
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NOTES ON USE OF THE MARCHANT CALCULATOR FOR SOLUTION OF
SIMULTANEOUS EQUATIONS BY THE METHOD OF PRESCOTT D. CROUT
AS DESCRIBED IN MARCHANT METHOD MM — 434B1

Those who frequently use the Crout Method soon memorize the procedure for selecting the
proper amounts for calculator entries, in accordance with the precise generalized instructions
given in Dr. Crout’s paper. However, when the process is to be used infrequently, it is
believed that a guide will be useful for showing the manner of progressing with the calculation,
as well as for selection of the amounts at each stage of the work.

Such a guide for third and fourth order real matrices is shown on pages 3 and 4 respectively.
Except where the amounts are the same in each maitrix, the elements of the auxiliary matrix
are designated by "row” and “column”, with lower case letters whereas those for the given
matrix are capitalized.

DECIMALS: For the computed elements to be accurate to as great a number of significant
figures as possible, it is advisable to place the Middle Dial Decimal as far to the left
as will barely accommodate the largest whole number (at left of its decimal) that exists
in the given matrix. The Upper Dial (or Keyboard Dial) Decimal should, likewise, be
as far to the left as will barely accommodate the largest whole number (at left of its
decimal) in the factor which is to be entered in the Upper Dial (or Keyboard Dial), and
the decimal for the Keyboard Dial (or Upper Dial) factor is then set in accordance with
the usual rule. There are a few instances, such as when terminal division is by amounts
less than 1, in which this rule will need modification.

This plan requires that under most circumstances the Upper and Keyboard Dial Decimals
must be re-set for each pair of amounts which are to be multiplied and simultaneously
subtracted.

In applying this rule for either the auxiliary or final matrices, it is possible that at
times there may not be sufficient capacity to accommodate the accumulation of products
of negative expressions which, when subtracted, actually increase the amount of the
first entry. In such cases, the eye should be kept upon the dial to be sure that the
number that would normally appear in the dial that would be next at the left will not

be lost.

Where extreme accuracy is not required, a single decimal setting often can be used

which will accommodate all amounts that are likely to be entered in computing the aux-
iliary (or final) matrix. Such a setting would provide for accommodating the longest whole
number likely to be entered in the Upper and Keyboard Dials respectively. The Middle
Dial Decimal is then set to conform to these decimals.

CALCULATOR ENTRIES: In the guide shown on pages 3 and 4, the factors are selected
from the Matrix in the following order; the left-hand of any pair of factors to be sub-
tractively multiplied is the one in the same row as the element being calculated, and
the right-hand of the pair is the one in the same column. It is suggested that this same
arrangement be used in calculating; viz, by entering the “row” factor in Keyboard Dial,
and entering the “column” factor in Single-Row Keyboard so it appears in the Upper Dial.

In computing the right-hand column of the auxiliary matrix, it is sometimes helpful to
imagine that the elements of the corresponding column of the given matrix are multiplied
or divided by some power of 10.

COPYRIGHT 1941 (over)
PRINTED IN U. S A,
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EVALUATING NEGATIVE AMOUNTS: When the Middle Dial shows an amount i its comple-
mentary of “negative” form; i.e., preceded by a succession of 9’s, it may be converted to
its “positive” form by duplicating the amount in the Keyboard Dial directly below its Middle
Dial position, preceding the Keyboard Dial set up with a few 9’s. When'negatively multiplied
by 2, the amount will show in its positive form in the Middle Dial at right of as many ciphers
as there are preceding 9’s in the Keyboard Dial.

DIVIDING A NEGATIVE NUMBER: In the evaluation of elements at right of principal diagonal,
a terminal division is necessary. If the Middle Dial amount prior to such division is in its
negative form, a positive quotient is obtained by dividing the negative number as follows:

1) Set up the divisor in Keyboard Dial around pre-set decimal and shift carriage until its
left-hand figure is directly below the Middle Dial figure that is directly at the right of
the succession of 9’s.

2) Multiply by any amount that will clear the 9’s from left of Middle Dial. (It is not neces-
sary to multiply by the exact amount that will do so. An “over-multiplication” will do
no harm.)

3) Without clearing Upper Dial, move Manual Counter Control toward the operator, and
divide so that Upper Dial does not clear: Hold down the Stop Key while touching Divi-
sion Key by a rolling motion of two fingers.

The quotient in positive form will appear in the Upper Dial.

READING ELEMENTS DIRECTLY FROM MATRIX: One of the important benefits of the Crout
Method is that intermediate copying to work sheet of all items except those of the Auxiliary
Matrix is eliminated. This may be aided by using the device illustrated below, which if
made from an easily erasable celluloid material permits pencil check marks to be placed
upon the edges so that the particular element being entered is positively ideatified. In
using this device, the vertical edge “C” is placed at right of the column and the horizontal
edge “R” is placed directly below the row from which elements are to be read.

(Cont’d.)
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THIRD ORDER SIMULTANEOUS EQUATIONS

Guide to Solution by Prescott D. Crout Method

ORIGINAL MATRIX:

X1 X2 X3 8
R1C1 R1C2 R1C3 RiC4
R20C1 R2C2 R2C3 R2C4
R3C1 R3C2 R3C3 R3C4
AUXILIARY MATRIX:
R1C1 ric2 rie3 ric4
RZC1 ra2c2 r2c3 r2c4
R3C1 r3c2 r3c3 r3c4

ric2 = RiC2 = RiC1
= R1C3 =~ R1C1
ric4 = R1C4 <+ RiC1
r2c2 = R2C2 — R2C1 » ric2
#r3c2 = R302 — R3C1 ¢ ric2
#¥pr2c3 = (R2C3 — R2C1 » ric3) == r2c2

r2c4 = (R204 — R2C1 ¢ ric4) == r2c2
r3c3 = R3C3 — R3C1 ¢ ric3 — r3c2  r2cd
r3c4 = (R3C4 — R3C1 + rlc4 — r3c2 * r2c4) 4+ rg C3
The final matrix is:
xa = r3c4

X2 = r2c4 — X3 e r2c3

X1 = ric4d — X3 s Tled — X2 e ric2

(*) If matrix is symmetrical, after recording this element, set up the corresponding
diagonal element as a divisor, thus producing the symmetrically opposite
element above the diagonal.

(**) If matrix is symmetrical, this element is produced by dividing its symmetrically
opposite element by the corresponding diagonal element.

(over)
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FOURTH ORDER SIMULTANEOUS EQUATIONS
Guide to solution by Prescott D. Crout Method — Marchant Method MM—-434B1

ORIGINAL MATRIX:

Xy Xg Xg X4 §
R1C1 R1C2 R1C3 R1C4 R1CS
R2C1 R2C2 R2C3 R2C4 R2CB
R3C1 R3C2 R3C3 R3C4 R3C5
R4C1 R4C2 P4C3 R4C4 R4C5
AUXILIARY MATRIX:
R1C1 ric2 ried rlc4 rich
R2C1 r2c2 r2csd r2c4 r2ed
R3c1 r3ec2 r3cad r3c4 r3cd |
R4C1 r4c2 r4c3 r4c4d r4cd

ric2 = R1C2 =~ RiC1
r1c8 = R1C3 = RiC1
rlc4é = R1C4 =~ RiC1
rlcS = R1C5 -+ R1C1
r2c2 = R2C2 — RRC1l ¢ rilc2
wpr3cl = R3C2 — R3C1 ¢ rile2
wrécl = R4C2 — R4C1 ° ric2
wiar2ed = (R2C3 = R2C1 ¢ ricd) == r2c2
wur2c4d == (R2C4 — R2C1 ¢ rilcd) <= rac2
r2cd = (R2C5 — R2C1 * ricd) =~ r2c2
r3c3 = R3C3 — R3C1 ¢ riec3 = r3c2 ¢ r2cd
“r4c3 = R4C3 — R4C1 * ric3 — r4c2 e« r2cd
wir3c4d = (R3C4 — R3C1 ¢ ricé — r3c2 ¢ r2c4) == ri3c3
r3¢6 = (R3C6 — R3C1 * rlcd — r3c2 * r2ef) = ricd
rdc4d = R4C4 — R4C1l ¢ rlc4 — r4c2 e« r2c4é — rdc3d ¢ ricéd
rdch = (R4CS -- R4C1l » ricd — r4c2 » r2ch — r4cd » ricd) = r4c4d

The final matrix is:

X4 = r4cb
xs = r3cd = X4 o r3c4d
xz = r2el - X, ¢ r2csd — Xq ° r2c¢38

X1 = rich — X4 o ricd — Xa e ric3d = xz » rlc2

(*) If matrix is symmetrical, after recording this element, set up the corresponding
diagonal element as a divisor, thus producing the symmetrically opposite
element above the diagonal.

(**) If matrix is symmeirical, this element is produced by dividing its symmetrically
opposite element by the corresponding diagonal element.
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PREFACE:

THE BIRGE-VIETA METHGD
) of

FINDING REAL ROOTS OF RATIONAL INTEGRAL FUNCTION

Few realize tne extent that classical mathematical methods have evolved under the control
of the "parameter” (to use a mathematician’s word) that pencil-and-paper shall be used in

the calculations required by such methods. If the modern calculating machine had been avail-
able to the mathematicians of the Renaissance, it is possible that even such a familiar tool
as the Briggs Logarithm might not bave been developed. Certainly the art would have progres-
sed along far different lines if from the start there had been available a machine that could
multiply or divide as rapidly as one could enter amounts in a keyboard.

The disclosure herein is an interesting example of how an early method, which was dis-
carded because it involved so much numerical computation that was “unfit for a Christian,”
to quote from a writer of that day, has now been found to possess decided advantages when
compared with methods that displaced it. This is because present-day calculating machines
remove the drudgery element which caused the method to be relegated to the shelf over 200
years ago.

The method to which we refer was originally proposed by Francis Vieta (1540—1603).
Raymond T. Birge, Ph.D., Professor of Physics and Chairman of the Department, University
of California, is responsible for re-establishing it as a modern computing tool. Dr. Birge
has noted that it possessed many advantages over the methods that have been developed to
take its place (merely because of the excessive amount of pencil-and-paper work that it
entailed).

In applying the Vieta method to the modern calculating machine, Dr. Birge has reduced it to
simple systematic procedure that permits speedy determination of the root under conditions
of controlled accuracy.

USES OF THE BIRGE-VIETA METHOD: The method is ideal for finding a real root of the usual algebraic

OUTLINE:

equation when rough approximation of the root is known, particularly if the equation is of
higher degree than the second. It is also excellent for solvirg transcendental equations
(those that involve logarithmic or trigonometric functions in combination with analytic func-
tions), particularly when the equations are in such form that substitutions of odd amounts

in the equations or in their first derivatives are difficult, Inasmuch as the usual problem of
inverse curvilinear interpolation is one of finding the root when the value of the function is

a given amount, it will be seen that the Birge-Vieta method is adapted to such work, assuming
of course that the tabular values are first expressed as an Interpolation Polynomial of degree
“n” that fits n + 1 equidistant values of such tabulated function (See Marchant Method 434-F).

In the case of solving equations involving transcendental functions, tabular values are,
likewise, obtained. An Interpolation Polynomial is then fitted to the values and then solved
for the desired root. If, however, the equation has a simple first derivative and substitution
of amounts in the original equation or its first derivative is not too difficult, the Newton-
Raphson Method of obtaining the root is to be preferred.

It is assumed that the reader is familiar with the usual Horner Synthetic Division process
which is described in most College Algebra texts. However, a Note is appended which
describes this procedure in a way that will enable it to be understood by a computer who is
not familiar with it. (See top of Page 4).

(over)

PRINTED IN U. S A




Page 2

An algebraic statement of the sample computation is given. This is followed by detailed
instructions for performing the work on a Marchant calculator. An Appendix then states
the particular advantages of the Birge-Vieta Method, as compared with methods that are

ordinarily used for such work.

(‘/\* ¥
\_J

The symbolism of the Horner Method is employed insofar as possible.

Find correctly to nine figures the real root nearest to x'= 1.0 of the following equation:

EXAMELE?
y=g () = x* - x - 0,2 (true value is 1.044 761 700,,)
Assume x = + 1 = p, as first approximation of the root.
I Transfer from g (x) to g' (x - p,) = g' (x - 1) =g' (W
Transfer factor, p, = +1. Apply Horner Shift for A, and A,
‘ (See Note A. Page 4).
x4 s x3 x?2 x! x?
Coefficients 1 0 0 0 =1 =0.2
1 1 1 1 0]
1 1 1 1 0 -0.2 = A,
1 2 -3 4
1 2 3 4 4 =A,
: A -
Therefore “=‘Tf=7‘%‘2‘=+°°°5="‘p1
4
or R 1.0+0.05=1.05=Pp,, &s second approximation.
: 1
It will be noted that the above represents the first steps of an ordinary Horner synthetic
division. Only Ay and A, need be found. -
IT Transfer from g(x) = g"(x - pz)- = g"(x - 1.05) = g" (V).
It is a characteristic of this method that the calculations need be carried only to the re-
liability that the ratio of the next coefficients (in this case, By and B,) is likely to have.
A practical rule is to carry twice as many decimal places in all sums and products used in
obtaining By as there are decimal places in the transfer factor. Hence, since 1.05 is the
transfer factor, carry By calculations to four decimal places. We find, in this problem, three
significant figures for By, and hence carry all calculations for By to at least three significant
figures (it is really simpler to carry four and round off to three).
We now return to the original coefficients, an essential of the method, and one of its best
features from the viewpoint of accuracy control.
P, = 1.05 transfer factor. -
x> e x3 x_2 x! x 0
Coefficients 1 0 0o 0 ==l - 0.2
1.05 1.1025 1,1576, + 1.2155,, + 0.2262,4
1 1.05 1.1025 1.1576, + 0-215501 + 00,0263 = By
- 1.05 2.2050 3.472 4.860
1 2.10 3.307 4.629 5.075 = B,
By inspection v = - B,/B, will have two ciphers. Therefore, by rule given, the ratio should

be correct to two significant figures. .
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B
Therefore v==—2=x +0.0263 _ _ 0.005187

Bi 5.07
rounded to - 0,.00562

It will be noted that four decimal places carried in the B calculations were sufficient to
give By to three significant figures, as is desired in order to be sure that By/B, is cor-
rectly calculated to two significant figures (i.e., in addition to the two ciphers with which
it starts).

. s
Therefore %Ry ?"- =1.06 - 0.0052 =1.0448 = P,
1

as second approximation.

III Transfer from g(x) to g'''(x - py) = g'"'(x - 1.0448) = g''' (W)
P; = 1.0448 transfer factor
As before, since there are four decimal places inv = - Bo'/B,| or in pg, the next transfer
factor, we carry eight decimal places in getting Cg, i.e., close to full capacity of a ten-key
calculator, so for simplicity the full ten-key capacity is utilized. Then from the C, result,
carry only six significant figures in computing C,.
x5 x4 “ w2 ik x0
1 0 0 0 =i 1 = 02
1.0448 1.091 607 04 1.140 511 035, + 1.191 605 929, + 0.200 189 8744
1 1.0448 1.091 607 04 1.140 511 035, + 0.191 605 929, + 0.000 189 875 = C,
1.0448 2,183 21, 3.421 53, + 4.766 41,
1 2.0896 3.274 82 4.562 04 4.9568 02 ik 1
There will be four ciphers in Cy5/C,, therefore carry five or six significant figures.
C
Therefore w= -—0 =- *+0.000 189 870 —_ 0.000 038 296 5,
C, 4,968 02

This ratio should be satisfactory to four significant figures. However, we retain five as
this is to be the final approximation.

C
P3 -E-°- =1.0448 - 0.000 038 29865, = 1.044 761 703, = P,
i
This root should be accurate to nine digits. It is seen that the error is 0.3 in the 9th digit.

Therefore x

A continuation of this process with transfer factor 1.044 761 703 gives Dy = + 0.000 000
0l4; and D, = C,(closely enough) = 4.958

Therefore - DO/D1= - 0.000 000 002, or pg= pu"Do/D1 = 1.044 761 700,

which is correct to ten figures.

An alternate continuation process is to use p, = 1.044 761 7 as transfer factor and by double
multiplication (see Marchant Method 421A) carry all products to full 20-digit capacity of the
calculator, thus producing pg correct to 18 or 19 digits (1.044 761 700 075 552 795).

Note that the actual error in p, is —0.045, in p, is +0.0052, in p5is +0.000 038, and in
p, is +0.000 000 003. Thus, each approximation is correct to about double the number of
digits of its predecessor. This is a characteristic feature of the present method. For this
reason, pg should be correct to about 18 digits.

(over)
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NOTE A — THE HORNER SHIFT
For those not familiar with the Horner Shift, the procedure is easily understood by reference
to the calculation for B,/B, on Page 2, with factors manipulated as below:

Transfer factor p

x° x* x> x?2 x! x0
Coefficients a b c d e f
of % pa pm pn po Pq

a m n (o] q r =B,

in whichm=b + pa, n=c+ pm, o=d + pn, etc. and similarly for the next row that
produces B,. :

MATHEMATICAL BASIS OF METHCD
The Birge-Vieta process obtains the value of the function and of its first derivative when
the approximate roots (the transfer factors) are substituted for “x”. That part of the process
which obtains Ay, By, CO’ etc., obtains successively more accurate values of the function,
and Ay, By, and C,, etc. are these successive values. The step that obtains Ay, By, C,,
et¢., similarly obtains successively more accurate values of the first derivative when the
transfer factors are substituted for *x”. This is done, however, not by duplicating the first
step with respect to the equation of the first derivative of the function but by taking advan-
tage of partial products and sums developed during the first step. This makes it unnecessary
to set up the equation of the derived function.

The successive transfer factors may have the same or different signs. Under some conditions
they may alternate in sign.

COMBINING SUBSTITUTION METHODS WITH THE BIRGE-VIETA PROCESS

Inasmuch as Ay, By, Cg, etc. are the values of the function when the transfer factor is
substituted for “x,” and Ay, By, Cy, etc., are the first derivatives of the function with
respect to “x” when the transfer factor is likewise substituted for “x,” there will be cases
in which the first two steps of the computation may be more easily done by taking advantage
of these facts, using a Table of Powers for direct computation of these amounts. This plan
reserves the Birge-Vieta process for cases in which direct substitution is not easy and
where the first derivative also is not easy to compute, which by the premise at bottom of
Page 1 is its indicated use, anyway. These conditions usually are met when the transfer
factor exceeds three figures if a Table of Powers of three-figure amounts is available. It is
met with two-digit transfer factors if a Table of Powers is not available, (assuming, of
course, that the usual small powers of integers 1 to 9 are known).

A readily available table of “First Ten Powers of the Integers from 1 to 1000” is that of
Works Project for Computation of Mathematical Tables, Table MT-1, Information Section,
National Bureau of Standards, Washington, D. C.; price 50 cents.

It happens that the example used to illustrate this method is in such form that with the aid
of a Table of Powers of three-figure amounts the results of the second section may be ob-
tained somewhat faster by substitution. (The work of the first section is obviously merely a
matter of inspection.)

As an example of this straight substitution, let us apply it to this second section. We first
note that the powers of 1.05, to four decimals, are x° = 1,2763 and x4 = 1.2155, (these are
the only powers needed for substituting in the equation or in its first derivative).



OPERATIONS:

(1)

(2)

(3)
(4)

(5)
(6)

(7)

(8)

(9)

(10)

(11)
(12)

(13)
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Feom this, we have 1.05° = 1,06 - 0.2 = 0.0263 = B,
and its first derivative 5§ Xx 1.0 - 1 = 5.07756 = B,_

APPLICATION OF THE BIRGE-VIETA METHOD TO THE-MARCHANT CALCULATOR

The skilled computer who prefers to add or subtract mentally, or who wishes to use aux-
iliary means for such addition or subtraction doubtless would prefer to set up the transfer
factor as a constant in the Keyboard Dial and multiply by the various factors as needed.
The amounts are then entered on a work sheet exactly as shown in the above analysis.

Others will wish to perform all additions and subtractions on the Marchant. The detailed
Marchant operations for this procedure, when applied to the calculation of p,, are as follows:

Decimals: Upper Dial 9, Middle Dial 18, Keyboard Dial 9. Use any 10 column Marchant.

Inasmuch as the coefficient of x° is 1.0, the calculator computation is started
for development of the x3 column; thus,

Enter 1.0448 ip Keyboard Dial and multiply by transfer factor (1.0448).
Copy 1.091 607 04 from Middle Dial to x3 column.

As there is no amount to add to this, the normal adding step is skipped. Shift to Position 10,
clear Upper and Keyboard Dials, and copy Middle Dial amount (1.091 607 04) into Keyboard
Dial, clear Middle Dial and multiply by transfer factor (1.0448).

Copy 1.140 511 035, from Middle Dial to x* column.
Repeat Step (2) with Keyboard Dial entry of 1.140 511 035.

Clear Keyboard Dial, shift to Position 10, set up 1.0, and subtract.
Copy 0.191 605 929, from Middle Dial to x'! column.

Repeat Step (2) with Keyboard Dial eatry of 0.191 605 929.

Clear Keyboard Dial, shift to Posijtion 10, set up 0.2, and subtract.
Copy C, (0.000 189 875) to x© column.

Clear all dials, enter 1.0448, and multiply by 2.0.
Copy 2.0896 from Middle Dial to x? column.

Shift to Position 10, clear Keyboard Dial and copy Middle Dial amount (2.0896) to Keyboard
Dial, clear Upper and Middle Dials, and multiply by transfer factor (1.0448).

Shift to Position 10, clear Keyboard Dial, enter 1.091 607 04, and add.
Copy 3.274 82 from Middle Dial to x3 column.

Copy Middle Dial amount (3.274 82) to Keyboard Dial, clear Upper and Middle Dials, and
multiply by transfer factor (1.0448).

Shift to Position 10, clear Keyboard Dial, enter 1.140 511 035, and add.

Copy Middle Dial amount (4.562 04) to Keyboard Dial, ¢lear Upper and Middle Dials, and
multiply by transfer factor (1.0448).

Shift to Position 10, clear Keyboard Dial, enter 0.191 605 929, and add.
Copy 4.958 03 from Middle Dial as C,.

(over)
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(14) Clear dials, enter Cp (0.000 189 875) and add.

(15) Enter C, (4.958 03) and divide.

-w = 0.000 038 296 appears in Upper Dial.

(16) Clear Middle and Keyboard Dials, shift to Position 10, enter 1.0448, and add.

(17) Enter 1.0 and negatively multiply by Upper Dial amount that is at right of decimal

(.000 038 296), reducing it to ciphers. :
Root (1.044 761 704) appears in Middle Dial.

That the error is “4” in the 10th significant figure, whereas the analysis on Page 3 shows
it to be “3,” comes about because the Marchant does not drop off right-hand figures in
producing 4.766 41g of Step (12). Slight variations of this sort from the analysis are to be
expected. The root, however, is still accurate to 9 figures, which is all that this stage of
the computation is expected to obtain.

The continuation of the process with transfer factor 1.044 761 704, if it is desired to go so
far, may be done in the same manner as above.

Reference is made in the analysis to “double multiplication” with carrying all products to
20 digits. This is assisted by the means mentioned in Marchant Method 421 A, “Multiplication
of Large Factors.”

APPENDIX —— ADVANTAGES OF THE BIRGE-VIETA METHOD
Dr. Birge gives the following reasons why the Vieta process, when adapted to a calculator, is
to be preferred, as compared with the more commonly used Ruffini-Horner Method. These ad-
vantages are in addition to the extra speed of the Vieta process because of there being fewer
steps.

(1) One always deals with the same original coefficients (which often contain relatively few
significant figures), instead of with constantly new sets of coefficients, which inevitably
get more complex, as in the R-H Method.

(2) Any error in the calculation affects only the particular transfer being made, and can
never affect the final result. The same thing is true for the Newton iteration method, and
constitutes the greatest advantage of that method. Thus, due to an error, a certain approxi-
mation may be poorer than the preceding approximation, but this fact immediately shows up
in the next approximation. In other words, Py P, p3 should constitute a series of numbers
that rapidly settles down to a constant value, just as x, x, x, etc. in Newton’s iteration
method (for square roots, etc.) rapidly become constant.

But in the R-H method, ary error makes the new function incorrect, and since we then proceed
to get the root 0 the new function, the final result is necessarily incorrect. In other words,
any such error carries through to the end. This advantage of the Vieta method over the k-H
method can scarcely be overemphasized, and should be alone sufficient to make the R-H
method completely obsolete.

(3) In the Vieta method the transfer factors p; p, etc., are all approximately the same size,
and since the original coefficients are always used (advantage 1), all corresponding
products and sums appearing in successive Horner shifts are approximately the same. Hence
we do not need to figure the position of the decimal point, after the first Horner shift has

been made. This fact is of great advantage in avoiding errors, and it results in much time saved.

(4) As already stated, one needs to calculate only the first two coefficients of each new
function, whereas all coefficients must be calculated in the R-H method.

(5) In calculating these first two coefficients, we do not need, at first, to get the various
sums and products to the final desired accuracy (as is necessary in the R-H method).
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APPROXIMATING POLYNOMIAL FROM DIFFERENCE ARRAY (STIRLING METHOD)

REMARKS:

OUTLINE:

EXAMPLE:

It is often desired to obtain an algebraic expression for a function that is determined by the
relation that a series of tabulated amounts bears to corresponding values of the independent
variable. When values of the latter are taken at equidistant points so that an array of dif-
ferences may be set up, an equation in the form of an Approximating Polynomial may be readily
obtained. If the nth difference of the array is constant, the Approximating Polynomial will re-
present the function correctly provided differences up to, and including those of the nth order
are taken into account. If there are differences in the array which are of higher order than those
taken into account, the Approximating Polynomial will approximate the function insofar as it
can be done by a polynomial of degree “n”. ‘

{(n

Obtaining an Approximating Polynomial by means outlined herein provides the most rapid method
of fitting an equation to non-periodic tabulated data of scientific and statistical computations.

It is assumed that the data are “smoothed”; that is to say, the obvious errors of observation are
eliminated as is the case when the tabulatéed values are taken from a curve or determined by
least- squares methods. If functions appear in periodic form, the Approximating Polynomial found
by the method herein is generally suitable only for showing one quarter-period (approximately) of
the periodic function. Fourier Series analysis is generally employed for obtaining equations of
periodic functions.

The Approximating Polynomial described herein has the form

2
(Bt = a,+ a,u +au + aau3 .......+anun

in which the “a” values are coefficients to be determined, and “u” represents the independent
variable reduced to the initial condition that u= 0 when y = a, and that the difference between
tabulated values of the independent variable, in terms of “u”, is “1”. For example, in the table
showing the relation between x and y, below, the values of “u” are shown in the middle column
assuming that the 0 point of “u” is to be at x=0.3. It is obvious that if an Approximating
Polynomial in the form of (1) is obtained, it is easy to convert it to one that shows y as a
function of x. This simple transformation is not discussed herein.

FUNCTION DIFFERENCES

u SEaY 1st 2nd 3rd 4th 5th
-3  1.00000

-4865
-2 .. 0.95135 1547

-3318 -299
=1 ' 0.91817 1248 100

-2070(d' _,) -199 (a"™_,) -32(d"_,)

0 0.89747 1049 (d" ) 68 (d™ ;)

-1021(d',) -131(d™,) -32(dv*)
+1 0.88726 918 36

- 103 - 95
+2  0.88623 823

720

+3 0.89343

(over)
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The method exemplified herein will be applied to the tabulated values listed on the previous page
which are shown with differences. An Approximating Polynomial is to be obtained in such form that
it will show optimum accuracy in the vicinity of x = 0.3. This value is then chosen as the base
point for obtaining the “a” coefficients, so “u” is set at 0 when x = 0.3.

The formula used is that of Stirling and is chosen because it is the easiest to apply. The Bessel
formula * gives somewhat more accurate results in the region that is half-way between the equidistant
tabular values. This difference, however is exceedingly slight so that rarely will it be advisable to

go to this refinement. The Newton formula * is useful for obtaining an Approximating Polynomial when
only the values at the top of a table are obtainable. However, even in this case the Stirling Method
may be used if it is satisfactory to extrapolate probable differences upward from the known differences.

In the Approximating Polynomial (1), Page 1, the Stirling formulas for coefficients, up to consideration
of Sth differences, are below:

(2) a, =% (a'_, +4d') - 1/12 (am_, +adm) + 1/60 (d"_* + d"i)
(3 a,=3%d"; - 1/24 d"",

(4) a, =1/12 (am_, +d™,) - 1/48 (@'_, +a%)

(6) a,= 1/24 d"",

(6) ag=1/240 (a'_, + a'))

The terms up to 4th differences appear in Scarborough: Numerical Mathematical Analysis, 1930 edition,
Page 80. Those for 5th differences were supplied by courtesy of Dr. Raymond T. Birge, Professor of
of Physics, University of California, to whom we are also indebted for other helpful data in connection
with this process.

.The nomenclature of equations (2) to (6), inclusive, applies to the preceding difference array and is
further explained in Marchant Method 439 E2. It will be noted that certain factors are repeated or bear
simple ratios to others. '

For ordinary computing, any terms that do not affect the final result in one place at the right of the one
that is to be retained would be omitted. If values of the polynomial are desired close to the centering
point, it is often possible to shorten the work if advantage is taken of this priaciple. In this case, it
is not possible to do this if S-place accuracy is desired without uncertainty within the range u = -1 to
u = +1, because the maximum effect of the 5th difference is noted in coefficient ag as 0.000 013 3
(see below) so it would affect 6th piace by 13.

If accuracy to the number of places of the tabulated values is desired up to the limits of the values
from which differences are taken; i.e., the extreme range of the tabulated values, the higher-order
coefficients must be taken to more places than those of lower order. For example, at the extreme
range of the table, u = t3. As the coefficient ag multiplies ud , or 243, it is evident that ag must
be carried to a sufficient number of places so that the error of its right-hand digit when multiplied
by 243 will not affect Gth place.

(*) Scarborough: Numerical Mathematical Analysis, 1930 edition, the Johns Hopkins press, pages 80 — 81, gives
coefficients for Newton, Bessel, and Stirling formulas up to and including 4th differences.

Values including those due to Sth differences will be supplied upon application.
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Using these principles, the coefficients are obtained as follows:

a, = -0.016 455 - (-0.000 275) + (~0.000 Qll) = =0,0156 191

a: = 4+0.0056 245 - 0.000 028 3 = +0.006 216 7

‘a4 = -0.000 275 - (-0.000 013 33) = -0.000 261 67
a, = +0.000 028 33
ag = -0.000 002 667

The Approximating Polynomial, aceordingly, is

(7)y = 0.89747 - 0.015191u +0.0062167u? ~ 0,00026167u’ + 0.000028333u" - 0.000002667u°

To show how closely this approximates the tabulated function, when u varies from -3 to +3, its
values are computed to six places.

x u y Computed to 6 places Tabulated y 6th place error
(] -3 1.000 000 1.000 00 0

0.1 =2 0.951 351 .961 36 1

0.2 -1 0.918 170 .918 17 0

0.3 0

0.4 +1 0.887 260 +887 26 0

0.6 +2 0.886 229 .886 23 i

0.6 +3 0,893 429 .893 43 1

MARCHANT CALCULATOR APPLICATION

No exemplification of the details of Marchant application to this work is given because it embodies
the simplest of calculator manipulation. Because work of this sort is usually infrequently done and
because some of the factors of equations (2) to (6) inclusive are repetitions or bear simple numerical
ratios to others, it is usually advisable to evaluate each factor individually, copying the amounts to
work sheet and summing them afterwards. For these reasons, the accumulation of partial products is
not recommended, though this procedure should undoubtedly be followed if there is a great volume of
the work to be done.

In nearly all cases, except where it is desired to obtain an empirical formula (see below), it is usually
satisfactory to use the function in terms of “u”; thus, for direct interpolation and related work the “x”
is converted to the corresponding “u” before applying the formula, and in cases of inverse interpolation

and the like, the “x” is obtained after the “u” has been found.

APPROXIMATION OF FUNCTIONS BY POLYNOMIALS

Polynomials of the type considered herein for the representation of a tabulated function have not been
given the consideration in mathematical literature that their importance warrants. It is believed that
this is due to the usual comparatively laborious process of setting them up by solving systems of
linear equations, which has long been the conventional method of converting n tabulated values into
a power series of degree n. Now that it is recognized that they are much more easily obtained from
their difference arrays, more and more uses are certain to be found for them.

One principal use of these polynomials is to provide means of handling complicated analytical or
transcendental functions in which substitution is. difficult owing to the complexity of the terms.

Equidistant values are established, sufficient to determine the Approximation Polynomial. A few
intermediate values are obtained for a later check of the error. The Polynomial is then used in

(over)
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place of the function for which it is a substitution. When given the “u” value, the “y” is obtainable by
direct substitution in the polynomial. When given the “y” value, the “u” is easily obtained by the
Birge-Vieta Method (see Marchant Method 434 D) i

The above-described procedure is particularly helpful in cases where the differential or integral values
of a complicated function are desired. Many of these cannot be integrated directly and differentiation
is often difficult. If the expression is approximated as a polynomial, however, it is a simple matter to
obtain successive differential or integral forms and without the discountinuities which use of the orig-.
inal expression might entail. A characteristic of the Approximation Polynomial is that its graph has
minimum curvature.

The use of these polynomials in cases of large volume of interpolation, such as in table preparation, is
obvious, though in such instances the procedure of Marchant Method 439 E1 should be compared. Inverse
interpolation is easily handled by using the Birge-Vieta Method for solving for “y”. (Compare also
Marchant Methods 439 J2, 439 H, and 439 J1.

The polynomials readily lend themselves to extrapolation provided it is understood that the uncertainty
of the result increases (sometimes rapidly) as one leaves the region contained between the extreme
values from which the differences are tabulated.This effect becomes increasingly serious as the degree
of the polynomial increases.

The polynomials also provide a way of exploring the effect of the powers of the independent variable in
cases of experimental tabulated data, thus leading directly to an empirical formula to express the re-
lationships. Obviously, if the coefficient of, say, the third power of x (not of u) is large and those of
other powers are negligible, the experimenter will be on the lookout for influences that vary according
to the cube of the independent variable. Care must be taken not to accept too literally the significance
of the polynomial as a working formula, however, because an empirical formula should, if possible, have
some physical meaning or reasonable basis for being in the form used.

If the polynomial shows comparatively large coefficients of x (not of u) for certain powers, an empirical
formula, however, may generally be set up using those coefficients and powers only. The values of y
corresponding to the tabulated x’s may then be computed from this new polynomial and compared with
the original tabulated values. The residuals then.may be considered as n values of another new poly-
nomial containing only the powers that are to be retained in the proposed empirical formula. By solving
these as a system of linear equations, applying least squares methods, a modification is obtained of
the coefficients of the powers that are to be retained in the empirical formula. This modified formula
then becomes the improved empirical formula.*

The above-described procedure is the usual one of taking advantage of an approximating polynomial
(power series) as a base for an empirical formula. Another case in which such a polynomial may be
converted into a simplified empirical formula is that in which the successive coefficients follow a
definite law, indicating a convergent series, which represents some other function such as an expo-
nential, trigonometric, etc.

(*) Steinmetz: Engineering Mathematics, 3rd Edition, M'cGraw~Hill Publ. Co., Pages 215-16. See also Marchant Method 434B2

and Marchant Method 434B1 (Page 7, Section 6). These relate to the Crout Method for solving such systems of equations.
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NOGRADY METHOD FOR SOLUTION OF CUBIC EQUATIONS

REMARKS: The application of the Birge-Vieta Method (See MM-434p) to the solution of a
cubic (third degree) equation gives the real root that is nearest to the first
approximation. The work must then be repeated for other real roots. No imag-
inary roots are found. Special study has been given by Henry A. Nogrady* to
the problem of obtaining all roots. of such equations, both real and imaginary.
Complete exposition of the method is given in his monograph, "A New Method for
the Solution of Cubic Equations."* By aid of a table included in this book,
the work is greatly simplified.

The description herein exemplifies the use of the Marchant calculator when
applied to the general cubic equation having three real roots, or having one
real root and two conjugate complex roots. Modification to fit cases of two
real roots, one real and two non-conjugate complex roots, and three complex
roots, as well as tests for recognizing in what classification any equation
comes, 1s fully covered in the Nogrady monograph, which is assumed to be in
possession of the reader.

OUTLINE: The general cubic equation
(1) ax3 + bx? 4+ cx+d =0
where a, b, ¢, and d are any numbers, is transformed into
(2) y2+py+q=0
by substituting

s 3ac - b? d2b5 be  d
—— and —— = — —_—=
? 3a? # 274> 3a? a .

(2) then becomes
(¢) 22 +nz+n=0

by substituting

If n is real, eq. (4) has at least one real root. Its value 1is tabulated in the
Nogrady monograph as z, . By substitutions not outlined herein, the other roots
of (4) are

z, z, -
(6) z,=—| -1+
2 z, + 1

z, zZ, -3
(7) and z; = - -1 - w21 e

(*) %A New Method for the Solution of Cubic Equations” by Henry A. Nogrady, 29——318-
Detroit, Michigan. For sale by the author, price $1.25 postpaid.
18987 SANTA Banmama Daive

1

(over)

PRINTED IN U. 8. A,



Page 2
When z,, z,, and z, are found, the corresponding y's are foundby multiplying
the z's by the ratio a/p.

The corresponding x's are found by subtracting b/3a from the y's.

The computation is expedited if the following terms are evaluated in the order
named:

3a, 3ac, 3a?, 27a%, p, be, q, b/3a, a?, n, a/p, (z, - 3)/(z, +1). Extract
root of previous amount, and then evaluate the y's and x's. This listing of
elements of the computation does not comprise the bettering of the table ‘value
of z, (see Eq. 6).

EXAMPLE I
Find roots to 5 places of x> + 2x? +10x - 3 =0
By substitutions outlined above
y% + 8.66667Y - 9.07407 = 0
and ;
| 23 + 7.90502z + 7.90592 = 0

From Nogrady Table, Page XXIV, the ne’aresﬁ n = 7.911462 for which the corres-
ponding root z, is--0.906.

This value is improved to six figures by the following process:

2213 -n NOTE: A four-figure value ‘requires only
S linear interpolation except at
3z,2 + n certain extremes of table.

(8) Six-figure value of z, =

in which z, = -0.906 and n = 7.90592; or Six-figure z, = -0.905950

from which z, = .45298 + 2.91919 1 and z, = .45298 - 2.91919 1

Multiplying these z's by q/p, we have
¥y = 0.94854; Yoo -0.47427 + 3.05642 1; ya = =0,47427 - 3.05642 i

Subtracting b/3a, we have
X, = 0.28187; X, = 1.14094 +3.05642 i; x3 = 1.14094 - 3.056642 1

Ihe latter two roots, because of symmetry, are termed Conjugate Complex Roots:.
The symbol "i" indicates V-1. '

OPERATIONS:Decimals; Upper Dial 6, Middle Dial 11, Keyboard Dial 5. Use any Marchant 8
or 10 column model.

NOTE: Because the coefficientsare simple integers, certain operations listed
below normally would be omitted. For sake of completeness, however, they are
listed. Whether a multiplication or division is positive or negative depends
upon the sign of the factors and whether their product is tobe added or sub-
tracted. The procedure given below requires this obvious medification in the
case of examples that have different signs from the equation considered herein.
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(g)
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(14)
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Set up in Keyboard Dial "a" (1,00000) and multiply by 3.
Copy "3a" (3.00000) from Middle Dial to Work Sheet.

Clear Upper and Keyboard Dials, transfer Middle Dial amount to Keyboard Dial,
clear Middle Dial, and multiply by "c¢" (10.00000) .

Copy "B8ac" (30.00000) from Middle Dial to Work Sheet.

Clear Upper and Middle Dials, and multiply by "a" (1.00000) .
Copy "3a?" (3.00000) from Middle Dial to Work Sheet.

Clear Upper and Keyboard Dials, transfer Middle Dial amount to Keyboard Dial,
clear Middle Dial, and multiply by "a" (1.00000) .

Clear Upper and Keyboard Dials, transfer Middle Dial amount to Keyboard Dial,
clear Middle Dial, and multiply by 9.

Copy ng7a3n (27.00000) from Middle Dial to Work Sheet.

Clear all dials, set up in Keyboard Dial "3ac" (30.00000) , shift to 7th position,
and depress Add Bar. Then depress Subtract Bar, set up "b" (2.00000) in Key-
board Dial, and reverse multiply by "b" (2.00000) .

Change Keyboard Dial to read "3&2" (3.00000) , and divide.
Copy "p" (8.66667) from Upper Dial to Work Sheet.

Clear all dials, set up in Keyboard Dial "b" (2.00000) , and multiply by "c"

(10.00000) .
Copy "be" (20.00000) from Middle Dial to Work Sheet.

Clear Upper and Middle Dials and multiply by "b" (2.00000) .

Clear Upper and Keyboard Dials, transfer Middle Dial amount to Keyboard Dial,
clear Middle Dial, and multiply by "2b" (4.00000) .

n2b3n (16.00000) appears in Middle Dial, but it need not be copied to Work
Sheet. :

Change Keyboard Dial to read n27a3" (27.00000) and divide.

Clear Keyboard and Middle Dials, set up in Keyboard Dial "be" (20.00000) , shift
to 7th position, depress Add Bar and then depress Subtract Bar, change Key-
board Dial to read "3a2" (3.Q0000), moye Manual Counter Control toward the
operator, and depress Division Key in the manner that will not cause Upper
Dial to clear.

Clear Keyboard and Middle Dials, set up in Keyboard Dial "d" (3.00000), shift to
7th position, depress Add Bar, and then depress Subtract Bar, change Keyboard
Dial to read "a" (1.00000), and inasmych as "d" is negative the Manual Coun-
ter Control will be left as it was in Step 12; i.e., toward the operator. De-
press Division Key in the manner that will not cause Upper Dial to clear.
Move Manual Counter Control away from operator.

NOTE: It will now be observed that Upper Dial shows a negative amount.
This is evaluated as a positive amount and copied to Work Sheet as "g"
(-g.0%7407).

Clear all dials, setup "b" (2,00000), ands with carriage in 7th position, depress
Add Bar.

(over)



Page 4
(15)

(16)

(17)
(18)

(19)

(20)

(21)

(22)

(23)

(24

(25)

(26)

(27)

Change Keyboard Dial to read "3a" (3.00000) and divide.
Copy "b/3a" (0.66667) from Upper Dial to Work Sheet.

Clear all dials, set up "q" (9.07407) and multiply by "q" (9.07407) .
Copy "q?" (82.33875) from Middle Dfal to Work Sheet.

Clear all dials, set up "p" (8.66667) and multiply by "p" (8.66667) .

Clear Upper and Keyboard Dials, transfer Middle Dial amount to Keyboard Dial,
clear Middle Dial, and multiply by "p" (8.66667) .

Change Keyboard Dial to read "g?" (82,33875) and divide.
Copy "n" (7.90592) from Upper Dial to Work Sheet.

From Table of Nogrady Roots, Page XXIV, the nearest "n" is 7.911462 for which
corresponding root "z, " is -0.906.

NOTE: The computation for improving this root too.go5950 by formula 8 is
obvious. It is taken to 5 places as -0.90595.

Clear all dials, set up in Keyboard Dial "q" (9.07407) and, with carriage in 7th
position, depress Add Bar. Change Keyboard Dial to read "O" (8.66667) and di-
vide.

Copy "q/p" (1.04701) from Upper Dial to Work Sheet.

Clear all dials, set up in Keyboard Dial "z -3“ (3.90595) and with carriage in
7th position, depress Add Bar. Change Keyboard Dial to read "z, + 1" (0.09405)
and divide.

Copy (21‘3)/(21+1) or (-41.53057) from Upper Dial to Work Sheet.

Extract Square Root of -41,53057 by a Marchant Table, producing a five-figure
root of 6.4444 which is expressed as 6.4444 i, indicating that it is the square
root of a negative number.

NOTE: This square root may be improved, if desired, to 6.44442 1

Clear all dials, set up in Keyboard Dial "z /2" (0.45298) and multiply by square
root from Step 23 (6.44442).

Copy coefficient of i (2.91919) from Middle Dial to Work Sheet, thus com-

pleting all figures from z, and Zye

Clear all dials, set up in Keyboard Dial "q/p" (1.04701) and multiply by z,
(0.90595) and the real and imaginary partsofz, and zq4 (0.45298) and (2.91919)
producing

¥y (0.94854) ; ¥, (-0.47427 + 3.05642 1) ;

and y, (-0.47427 - 3.05642 1) .

Clear all dials. With carriage in 7th position, set up ¥, (0.94854) , and add.
Set up "b/3a" (0.66667) and, with Non-Shift Key down, reverse multiply by 1.

x, (0.28187) appears in Middle Dial.

Clear Middle Dial and touch Add Bar. Set up the real part of y,andy, (0.47427)
and add, thus completing values for

X, (1.14094 + 3.05642 1)
Xg (1.14094 - 3.05642 1)
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EXAMPIE II
Find roots to 5 places of x> -7x +6=0

This is in the form of y34-py-kq = 0, so the operations following Step Na. 15
need only be done with certain obvious deletions. The outline 1s below:

n =p3/q? = - 343/36 = -9.52778.

From Table, nearest "n" is -9.516913 for which z, is -1.169.
This value is improved by (8) to

3
g 2 (-1.169%) + 9.52778 _ _6.33276 _ _y,16667
3 (-1.1692%) - 9.52778 -5.42810

o/p = 6/-7 =-0.85714
Uz, -38)/(z, +1) = Y25 =5

z, = -0.58333 - 4 = -2,.,33333
25 = -0.568333 + -6 = 3.50000
X, =y, = -0.856714 + ~1.16667 = 1.
X, =Yy, = -0.85714 * -2.,33333 = 2.
Xy =¥ = -0.85714 - 3.50000 ‘= -3

The Marchant operations are similar to most of those following Step 16 of
Example I. -
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REMARKS :

OUTLINE:

STARTING VALUES FOR MIINE-METHOD INTEGRATION OF ORDINARY
DIFFERENTIAL EQUATIONS OF FIRST ORDER, OR OF SECOND ORDER
WHEN FIRST DERIVATIVES ARE ABSENT ‘

T, H-E METHOD 0.F k¥ L OR '8 SERIES
(Compare also Marchant Method MM-437El

Harchant Method MM-437E3describes the Milne Method of integrating differential
equations in the form of dy/dx = y' = u(x,y), and Marchant Method MM-437E4 sim-
ilarly relates to equations in the form d?y/dx? = y" = v(x,y). Each requires
that a few starting values at equidistant values of x be known. Integration
then proceeds from these starting values by quadrature processes.

This method relates to obtaining starting values for use in MM-437E3 (and 437E4)!
when the functions y' (or y") maybe differentiated with respect to x, and each
derivative so found may likewise be differentiated until a sufficient number
of derivatives of successively higher order are obtained for substitutionina
Taylor's Series that will give the desired y's to the accuracy required. In
cases where this successive differentiation is impracticable, see Marchant Me-
thod MM-437EL.

It is assumed that a knowledge of Taylor's Series 1s had. The method herein
is subject to the limitations in the use of this series that have to do with
convergence, continuity of the successive derivatives with respect to both x
and y, etc. However, the use of this series for obtaining the few terms ne-
cessary to provide starting values for subsequent Kilne-Method integration ifn-
troduces certain matters which are not discussed inusual texts. Such subjects
are covered herein (see particularly Note 2).

The Taylor's Series in the form (1) below

(1) £(x) = f(xp) + ' (xp) (x-x) + _fﬂziol(x-xo) R il g 3+£'"%ﬂl (x-x)* + R

(2) Y =

3!

is written in the equivalent form (2), as follows:

y" ym ym
Yo tptgh¥ —thz + ‘?’—'Qh3 - —'Oh” + R (Remainder)
° 49

in which h = (x-x,), ok G

Inasmuch as the initial condition gives the value of y = y, when x = x, in
functions of the type dy/dx = u(x,y), and furthermore gives y' = y', in the
case of functions of the type d?y/dx%? = v(x,y), and the successive differen-
tiations give the y",, Y™ g9 Y™ g ceee etc., everything is known for substitu-
ting in (2) , thus obtaining y corresponding to the value of x which differs from
X, by the amount h, except for the Remainder.

If h is chosen sufficiently small and enough terms are taken, the Remainder may
be reduced to as small an amount as we please, which provides accuracy control
of the method.

Four consecutive starting values of y which correspond to equally-spaced values
of x are required to start the Milne-Method solution by the Milne 3-term for-
mulas. Six values are required if the 5-term formulas are used, etc. As one
of the required values is the initially known y, three and five new values have

to be computed, respectively. Ry

PRINTED IN U.S. A.
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To aid in the identification of the y's found by Taylor's Series with the start-
ing values of the Milne-Method integrations of MM=L37E3 & L37El,the table below
is given. It also shows how h in (2) is obtained. As to this, the Taylor's
Series procedure, as outlined herein, uses a variable interval h to obtain the
successive y's. The intervals, however, are in multiples of s, which is equal
to the "h" of the Milne-Method integrations; that is to say, certain intervals
of the Taylor's Series integrations (those which are X,-s and x, +.s, respec-
tively) are the same as the h of the Milne-Method integrations, but one is twice
as large when obtaining a Taylor's Series set of starting values for Milne-
Method 3 or 5-term formulas, and another is three times as large for obtaining
the last starting value for the Milne 5-term formulas. This will be clear from
inspection of the following table and the example.

Taylor's Series Notation Milne-Method Notation
x y Interval h of MM-L37E3 and L3T7EL
Corresponding to 3-term Milne formulas:
X_1 Y1 ou ' Y-3
X0 Yo X, initial values ¥os
b ¥ Xo+ S ¥
X, ¥ X, + 2s Yo
Corresponding to 5-term Milne formulas:
X_2 Y2 Xo = 28 Y_s
X_1 Y1 b ’ Yoy
X5 Yo X5 initial values Y_3
X4 Yy e Y-,
X, Y, X, + 2s - £
X3 Y3 x, + 3s ¢ Yo

The foregoing procedure is recommended for obtaining the few starting values
for subsequent integration by the Milne (or other) method. This is mentioned
because some texts when describing the Taylor's Series procedure suggest pro-
ceeding from each x to the next; that is to say, each new y with its corres-
ponding x is taken as a new pair of initial values. Such a plan has the dis-
advantage that a new set of derivatives must be evaluated for each pair of x,y
values. Furthermore, it cannot take full advantage of the simplification of
work when obtaining such derivatives that occurs when the initial x is zero. In
such a case, terms of each derivative which contain x as a factor drop out and
the series reduces.to that of Maclaurin.

The example given herein shows the use of the Taylor's Series method for ob-
taining starting values for integrating by the Milne 3-term formulas of MM=}37E3
dy/dx = -xy. Similar procedure would be followed if a double integration of
d?y/dx? = (x? - 1)y of MM-Li37EL were to be made. In the latter case, y'; is
also known as one of the initial conditions so everything is required for sub-
stitution in (2), just as is the case when using the method for the first-order
equation of MM-L437E3.

EXAMPLE: Find starting values for integrating by Milne 3-term formulas dy/dx = u(x,y)
= -xy with initial condition that y = 1 when x = 0, with intervals in multi-
ples of s = 0.1, corresponding to Milne-Method integration when h = 0.1; the
final y, is to be accurate to 5 places; i.e., 6th place error is to be less
than 5.

We start by obtaining the successive derivatives of y' = dy/dx = -xy. Because
of ‘the fact that ‘the Anitial'x = X, 1s zero, 1t is unnecessary to find the de-
rivatives in terms of x and y. Time is saved by expressing each succeeding de-
rivative in terms of the former, as follows:
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y' = -xy as x,= 0 and y, = 1 o = 0
yn — __xy' - y " " "on " " " " yno — _1
" = -Xy" - 2y!' n " non L} y! o "0 y" 0= 0
ym = -xy™ - 3y" " nooaon L} yno = -1 ym™ 0= 3
ViR o) VW
y = _xym! = 4ym L " non " yl" O— 0 y 0 — 0
and similarly yVi = -15, yVH = 0, and yViii-= 105.

Substituting in (2) the various values of the derivatives at x = Xgs &8 well
as the initial Yos it will be seen that terms having odd powers of h vanish,
leaving

(3) y =1 - h?/2 + 3n*/4! - 15h%/6! + 105h8/8! + Remainder

NOTE 1:

As this is analternating converging series (see Note 1), the Remainder 1is less
than the first term discarded.:Thus, if we discard the term containing h6 the
error will have an upper bound, as follows:

When obtaining ¥y R will be less than -15 x .000001/720 = - .00000002
W ¥, I ) i W Y -15 x .000001/720 =-.00000002
" " ¥o. " w w i It -156 x .000064/720 =-.00000133

Inasmuch as this is less than the permitted error of 0.000005 and it is obvious
that fewer terms will not be satisfactory, the desired values of y to y, are
found using terms of (3) up to and including the one containing n* ’ as follows:

h 1st term 2nd term 3rd term Total
y_, -0.1 1.00000 -(-0.1)%/2 = -0.056 ,3(-0.1)%/24 = 0.0000125 0.99501
Yo (0} 1.00000 e — 1.00000
¥y 0.1 1.00000 -(0.1)%/2 = -0.056 3(0.1)%/24 = 0.0000125 0.99501
Y, 0.2 1.00000 -(0.2)%/2 = -0.2 3(0.2)*/24 = 0.0002 0.98020

Inasmuch as this integration may be done analytically, the prediction of the
value of the Remainder may be verified. The correct ¥y, to8 places 1s 0.98019867.
The Remainder, R, in (8) is thus, -0.00000133, which is the same as the upper
bound that was predicted. However, if more places are taken, the absolute va-
lue of R will be found to be minutely less.

Though knowledge of the principles of Taylor's Series 1is assumed, it may be
helpful to mention that when the series has its terms of the same sign, as dis-
tinct from the alternating series of the example, a strictly mathematical com-
putation of the Remainder ordinarily is not easy.

Though an explicit expression for it is sometimes possiblé,theusual means of
expressing the Remainder in (2) is in the form of the first rejected term of
the series, with the exception that the derivative is taken not at x = Xgs but
at some value of x, unknown, which lies between x, and x, + h. To compute the
maximum possible value of the Remainder under this condition requires that the
derivative of required order be known in terms of x and y (or the y for any x
approximated) and also that such value of x (with its corresponding approxima-
ted y) be used as will cause the Remainder to be a maximum. Though this pro-
vides a true upper bound, it may be much higher than the actual Remainder, so
more terms of (2) would be taken than actually would be required if the true
Remainder were known.

(over)
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NOTE 2:

Now, when obtaining starting values for subsequent continuance by the Milne
Method, it is not important to know the exact value of the Remainder in (2);
it 1s only necessary to know that it does not exceed a certain permissable er-
ror in the final y.

The most practicable way of determining this is to compute a few extra terms,
plot their values with respect to the order of the term, and, by inspection,
obtain some idea of the ratio that the value of each succeeding term bears to
its predecessor. By adding the values and projecting them to a 1limit —- they
will usually converge rapidly -- it may be readily determined whether their
sum will cause the total error to be less than the permissable error. ’

It will have been noted that the starting values for the Milne integration are
obtained herein by the expedient of first integrating backwards by the inter-
val h = - s when values for the Milne 3-term formulas are being found, and by
the additional backward integration by the interval h = —-2s in the case of the
5-term formulas. This differs from customary practice in Taylor's Series in-
tegration of always integrating ahead from x = Xge It thus provides an unwanted
value (or values) and fails to compute, instead, a value (or values) that can
be used.

This objection does not hold if the computer establishes the initial values be-
cause 1in such a case these values would merely be taken greater by s (or 2s)
than the starting value that was required to be known.

Regardless of this, the reason for recommending the within procedure; i.e., in-
tegrating backwards at the start, is that doing so reduces the coefficients of
the last retained term so that desired accuracy usually may be had by using
fewer terms of the series, with the further advantage that much differentiating
is avoided. The time so saved more than offsets the slight extra time of com-
puting an additional Milne-Method value (or two), for the latter is done very
rapidly once the Milne-Method computation is started.

To show the advantage of starting the Taylor's Series integration by backward
integration instead of forward, there is given below the error of Y3 if it were
obtained by forward integration by Taylor's Series in the conventional manner.

When obtaining y, R will be less than (as previously computed) -0.00000002
" n y2 " " " L n " " " _0.00000133
" " 2 I S e " -15 x .000729/720 -0.00001519

which 1s 3 times that permitted. As a consequence, in this case, the term con-
taining h® in (3) would have to be retained if the conventional plan of inte-
grating forward were followed.

The effect described becomes increasingly significant when obtaining starting
values for Milne-Method integration by the 5-term formulas, or larger. In the
case of the 5-term formulas, for example, the remainders when computing the ne-
cessary y, andy, are often sogreat as substantially to invalidate the process.
Even in the case of a series which converges as rapidly as (3) and discarding
the term containing h®, 1t will be found that if the plan outlined herein is
followed (using backward integration to obtain y_, and y_, and thence forward
successively toyj), 6-place accuracy of the last value is had, whereas if for-
ward integration from Yo to¥sgs inclusive, is used according to the conventional
method, only 3-place accuracy of the final value is obtained.
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CURVILINEAR INTERPOLATION BY LAGRANGEAN COEFFICIENTS
Example, with Table, Supplied by and Reproduced by
courtesy of
George Rutledge, Ph.D., Professor of Mathematics
Massachusetts Institute of Technology

In the preparation of scientific and mathematical tables it is customary to make obser-
vations or calculations only sufficiently close together to clearly show the trend of
the function. Interpolation for in-between points may then be done by "curvilinear inter-
polation" so that the points found fall on a smooth curve connecting the known values.
These interpolated values are then included in the table. After issuance of the table,
the ordinary user employs "straight line" interpolation for intermediate values (see Mar-
chant Methods 439A1, 439B, 439C, 439A2, 439A3), though when great accuracy is de-
sired the "curvilinear" method will be used.

This method relates to "curvilinear interpolation" when given five equidistant points.
Similar procedures enable interpolation to a closer degree when given 7 points, or up
to 17, if desired. Further information is contained in the paper of Dr. Rutledge (with
Prescott Crout), "Tables and Methods for Extending Tables for Interpolation Without
Differences," Jour.of Math. and Phys., Vol. IX, No. 3, 1930.

Whereas the method herein refers to curvilinear interpolation without use of "differences"
(see Marchant Method 419), the conclusion must not be drawn that interpolation by using
differences is any less exact. Differencing has an advantage that it indicates errors in
the tabulation from which the interpolation is made. Direct and Inverse Curvilinear
Interpolation, using differences, is fully discussed in the works of Dr. L.H. Comrie,

late Supt., H.M. Nautical Almanac Office and now Managing Director, Scientific Com=
puting Service, Ltd., London. (List of references supplied upon application.)

Let us assume that in preparation of a table of 7 place logarithms, calculations are
made as follows:

For "n” equals 4.8 loglonequals 0.68124 12

4.9 69019 61
5.0 " " .69897 00
5.1 " .70757 02
5.2 v " .71600 33
5.3 . 72427 59

It is desired to interpolate for loglof1 for “n” equals 5.04 (as one step in the preparation
of a more detailed table).

NOTE: As all values are known, the solution to a known result clearly exemplifies the
method.

By reference to the table of Rutledge Crout 5 point Lagrangean coefficients attached
hereto, it will be observed that interpolation may be made forward from 5.0, with the
interval (lambda) being 0.4, or it may be made backward from 5.1with the interval be-
ing —0.6. The double computation is essential because it is only through agreement in
the two results that any conclusion as to accuracy is justified.

(ove;)

PRINTED IN U S A,
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The result desired is the algebraic sum of the products of the five logarithms and their
respective “coefficients” as taken from the table for intervals 0.4 and —0.6 respective-
ly. The point from which interpolation takes place is the median.

OPERATIONS: Decimals: Upper Dial 7; Middle Dial 14; Keyboard Dial 7. Set Tab Key 7.

INTERPOLATING FORWARD FROM 5.0

In this case the median is 5.0 and the 5 points are 4.8, 4.9, 5.0, 5.1 and 5.2.

(1) Set up in Keyboard Dial value of function for 4.8 (.68124 12) and multiply by coefficient K_szr in-
terval .4 (.0224000).

(2) Clear Upper and Keyboard Dials, set up in Keyboard Dial the value of function for 4.9 (.69019 61)
and negatively multiply by coefficient K_;(-.15360 00).

(3) Proceed as above for the following multiplications:
K0 .69897 00 x .80640 00
K1 .70757 02 x .35840 00
KZ .71600 33 x-.03360 00 (multiply negatively)

Middle Dial shows Log;,5.04 equals 0.70243 05 plus.

(It may be noted that “straight-line” interpolation gives the erroneous value .70241 01)

INTERPOLATING BACKWARD FROM 5.1
In this case the median is 5.1, and the points are 4.9, 5.0, 5.1, 5.2 and 5.3.

As the interpolation is backward, the coefficients for lambda equal to —.6 as indicated by the bottom line
of the table are used.

(1) Set up in Keyboard Dial value of function for 4.9 (.69019 61) for interval —.6 and negatively multiply
by coefficient K_, (~.04160 00).

(2) Clear Upper and Keyboard Dials, set up in Keyboard Dial the value of function for 5.0 (.69897 00)
and multiply by coefficient K_; (.58240 00).

(3)- Proceed as above for the following multiplications:

Ky .70757 02x  .58240 00
K; .71600 33 x-—.14560 00 (multiply negatively)
K, .7242759x .02240 00

Middle Dial shows Log105.04 equals 0.70243 06 minus.

Agreement may be expected (on the basis of error formulas) in this range to 7 places with an uncertainty
of 1 in the final place if 7 place data is used.* With 10 place data we may expect (on the basis of the
same error formulas) agreement in the forward and backward interpolation to essentially 9 places. These
error predictions vary according to the range or degree of curve between the five points.

NOTE: Using a similar 7 point interpolation method and data from 10 place British Association Tables

of logarithms, the value for 5.04 is found by this method to be 0.70243 05364 plus, with agreement to 10
places in forward and backward interpolating.

(*) The Rutledge-Crout error formulas show that this error, when seven place data are used in this part of
the table, cannot exceed .00000 007.

(Cont’d)
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RUTLEDGE CROUT
FIVE POINT LAGRANGEAN COEFFICIENTS
(Exact Values)
Interval K_o K} Ko Ky Ko Interval®
hN
R
0.1 .00783 75|-.05985 00 |.98752 50 |.07315 00 |-.00866 25 -0.1
2 .01440 00|-.105€0 00 {.95040 00 |.15840 00 |-.01760 0O - o2
.3 .01933 75|-.13685 00 |[.88952 50 |.25415 00 |-.02616 25 - 3
-4 .02240 00|-.1536C 00 |.80640 00 |.35840 00|-.033G60 00 - 4
.5 .02343 75| -.15625 00 |.70312 50 |.4€875 00|-.03906 25 - <5
-6 .02240 00|-.14560 CO |.58240 00 |.58240 00]-.04160 00 - 6
o7 .01933 75| -.12285 00 |.44752 50|.69615 00|-.04016 25 - 7
8 .01440 00|-.08960 00 |.30240 00/.80640 00}|-.03360 00 - 8
.9 .00783 75|-.04785 00{.15152 50|.90915 00|-.02066 25 - +9
b L e ) o | K2
*The values K—Z’ K—l’ KO’ Kl’ K2 for negative values of>\ are indicated by the bottom line of
this table.

Thus for >\ equals —.6, K_, equals —.0416000, etc.
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DIRECT INTERPOLATION AND SUB~TABULATION
(IF FOURTH DIFFERENCES DO NOT EXCEED 1000)

EXPLANATORY APPENDIX TO MARCHANT-METHOD MM-439E 1

A NOTE ON OBTAINING 4TH DIFFERENCES
FOR USE WITH "COMRIE THROW-BACK” IN EXAMPLE IV

Reference was made in the second paragraph of the "Remarks” section, Page 1, of Marchant
Method MM-439E1, to the fact that in sub-tabulation it is not necessary to obtain third and
fourth differences, except at infrequent intervals, and then only in order to obtain their general
range as a guide to the selection of method or as a means of obtaining the 4th difference cor-

rection of Example IV.

Inasmuch as a 4th difference must be known before the "4th difference correction” can be
determined, it might appear that the statement is inconsistent, because obviously 4th differ-
ences will normally vary somewhat from interval to interval.

Actually, however, in ordinary computing practice, it will be found that the 4th difference cor-
rection generally can be obtained without the necessity of completely tabulating the 3rd and
4th differences. This is because the large majority of functions which are tabulated to the
number of places used in ordinary computing, — rarely more than 7 places — will have no great
variation in 4th differences; that is to say, a small 5th difference.

By following the procedure below, the tabulation of 4th differences for every interval may

usually be avoided.

A plan that does this is to obtain 4th differences at about every fifth or tenth interval and
observe their trend, plotting them graphically and obtaining the 4th differences for the inter-

mediate intervals from the curve so drawn.

This will ordinarily give quite as accurate a 4th difference as would actual differencing at
each interval, because the graphical method eliminates the error forced into the 4th difference
due to rounding up of the right-hand digit of the tabulated function. Such round-ups can affect
the right-hand digit of the 4th difference by as much as 8.

In considering the precision of this approximation, it is to be noted that in the computation of
the interpolates only *0.184 x 4th differences” is used. This is additional justification for
the procedure of eliminating 4th differencing for every interval when the work falls within the
class of Example IV. '

PRINTED IN U. S A,
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REMARKS:

EXAMPLE:

INVERSE CURVILINEAR INTERPOIATION BY "DIVIDED DIFFERENCES"

When it is desired todetermine the argument (independent variable) that cor-
responds to some function (dependent variable) which lies between values for
which there are correshonding tabulated arguments, recourse must be had to
Inverse Interpolation. If it is desired to take into account the fact that
the function lies ona smooth curve connecting its tabulated values, the pro-
cess is designated Inverse Curvilinear Interpolation.

The method herein, basically due to LaGrange, is suitable for infrequent cal-
culations. If extensive work is to be dome, such as when transferring tables
from one set of coordinates to another, the Comrie Two-Calculator Method is
much more suitable. The method herein is also useful for obtaining a real
root of a function which is known onlyby its tabular values or which is dif-
Fficult to determine from its analytic form.

The method is LINMITED to cases in which the first differences of the function
do not change in sign during the intervals from which data are obtained to
compute the intermediate functions used in the process. From this it follows
that the method is applicable only to cases in which the tabulated values are
either CONTINUALLY INCREASING or CONTINUALLY DECREASING within the intervals
from which data are obtained to compute the intermediate functions.

If the tabulated values are those of an analytic function of usual form having
continuous derivatives up to but not including the order of differences which
tend to disappear, then the argument so obtained will correspond to the spec-
ified value of the function.

Find X when Y= 0.32999 in the table below. (For other purposes to be des-
cribed later, the table 1is shown with its differences, as computed by Mar-
chant Method MM-)19) .

Argument Function Differences
X Y 1st (dr) ond (d'!) 3rd (d''')  4th (dr110)
1.1 0.45360 -454 3
-9124 92

1.2 0.36236 =362 3

-9486

1.3 0.26750 -267 1
-9753

1.4 0.16997 -171
-9924

1.5 0.07073 1
-9997

1.6 0.02924"”’,,,,

By inspection of differences, it will be observed that they are continucus
and that the first differences (d') do not change sign.

{over)

PRINTED IN U.S. A.
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OUTLINE OF CALCULATION

The array of differences on the preceding page shows that 5th differences are substan-
tially zero. For precise work, the 4th differences should be taken into account. For
reasons outlined on Page 4, they should not be disregarded as would be the case with di-
rect interpolation. The ordinates tobe considered in this computation,therefore, are those
contained between the left ends of the two diagonal lines; i.e., from 1.2 to1.6 inclusive.
It will be noted that the column of 4th differences tends to vary, probably because of
forcing errors from rounding of the functions. For purposes of a correction after com-
pletion of the work, the 4th differences are plotted anda "true amount" of 1.3 at argument
1.4 is taken.

RETABULATION WITH DIVIDED DIFFERENCES: The argument and function columns are interchanged
below, though to prevent confusion of nomenclature they are 1eft with their original desig-
nations. Certain "divided difference" functions f,, fz’ etc., are included in this array,
the values of which are obtained in the next step of this outline. The "y" column has
also been altered to express the difference between the actual "y's" and the one for which
the unknown "x" is to be found; i.e., 0.36236 - 0.32999 = 0.03237, 0.26750 = 0.32999,=
-0.06249, etc. The argument that is to be found is now a function of the value of the new
nyn when it is zero; i.e., £ (0).

y x= £ (y) £, f, £y T,

"Divided Differences" inserted from next steps
03237 (y,) 1.2 (fy))
~1.054185(f ) ,
--06249 (y,) 1.3 (fyy) -0.150006 (f,) {
-1.025326(fy) ,, ' - =0.206491(f))
--16002 (¥;) 1.4 (fy,) -0.089787(f,) , 0.072495 (f)) ,
-1.007658(f ) ,, . -0.178102(f,) ,,
-+25926 (¥;) 1.5,(fy,) ~0.036937(f,) 4
=1.000300 () 5,
--356923 (v,) 1.6 (fy,)

The computed figures were actually made to 8 places, though they are rounded to 6 in the
above array. ' This practice is followed throughout this method and serves to explain why
the six-place figures, when substituted, may not produce the exact six-place result that
is shown.

CALCULATION OF DIVIDED DIFFERENCES: The values of f1, f,, etce, of the above array are
computed in accordance with the plan of the diagram below, in which the actual nf* values
shown are individually described and computed on the next page.

nyn nxn vDivided Difference" Functions
v o £y ; £,
y f(y,)
0 0
¥y £(yy) st G5 (¥ ¥.%7) PR
e i vl (Y. ¥,Y,7.5,)
v, £(y,) £(y,¥,Y5) RSN
£(y,55) ’ £(y,¥,¥,5y)
Y3 £(¥,) £(¥,¥,5y)
£(y,¥,)

3o f(yy)
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The actual computations in accordance with the outline at bottom of preceding page are as

follows:

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(g)

(10)

CALCULATION

(1)
" (2)
(3}
(4)

(5)

£y )= T, -0.1
— 0 1 — L] ey a3
BTl = X, = 0.00486 .~ ~1.064185
£y, = £(y,) -0.1
£ = 1 2 ki
(7% ¥, - 7, 509753 1.025326
f(y,) - £(y3) " =0.1
1& i1 s 2 gy
£(y,¥;) = 7, T, = 5090z~ — ~1.007658
£(y,) =~ £(¥y) -0.1
T IT =~ NY,) -0.028860
Ol 12 _— s | s o
f(y,vy,) = £(¥,¥,) -0.017667
e 152 B g Ok
(¥, 5,7y = v, -7, 5.19677 0.089787
£y, y,) = £(¥,7,) -0.007358
o Z 9 3“4 e T e e bl
£(y,¥,5y)) = =, TN 0.03693
Y ). o P Y. 5, 0.060219
i 0% 1% 2 o iy o0 — -
F(¥¥,¥,7,) = Y, - 7, D o9t 0.206491
£ (v,¥,¥,)) - £(y,¥,y,) __ -0.082850 __ . ... 0o
et ¥, =Yy 0.29674 '
: £(y,y,¥,¥,) - T(y,¥,¥,¥,) __ '0.0173338 __ . .. .05
(V¥ ,¥,95Y,) = AR i sohth .
OF ARGUMENT: The formula applying is f(0) = f(y,) - yo(fl)*4— Yad e
-yoylyz(fB)u-{— yoylyzyB(fu)z
Substituting values, we have
£y, NOTE: 1.2
Take "y" values from
-yo(f1)g left-hand column of + .034124

+y,¥,(f,),
-yoylyz(fB)lﬁ

i PRI 5 R EEh B

FOURTH DIFFERENCE CORRECTION:
1.4 is taken.as 1.3 instead of as 2.
of the 4th difference, this reduction of 35% should reduce item (8) correspondingly, and
as it is positive, the interpolate is decreased to 1.23449566¢ For reasons givenatbot-
tom of Page 4, it is not good practice, (providedthefhnctidn values are rounded, as is
usually the case) to take this value tomore figures than 1,23450, with an uncertainty of
1 or 2 in the last figure.

middle array on Page 2.

+ .000303
Take "f" values from
same array at right. -+ +000067
+ .000002
1.23449643 (to 8 places)
4th difference correction .00000077
(see below) 1.23449566

As stated at top of Page 2, the 4th difference at argument

Inasmuch as the 5th item, above, §hows the effect

(over)



Page 4
NOTES

NUMBER OF FIGURES TO BE TAKEN: The value obtained is the most precise result that this
method makes possible. It contains né uncertainty because of a Remainder Term, which is
substantially non-existant. However, it cannot be used to the number of places shown be-
cause the function values contain an error from rounding off their final figures. Because
of this, the rule is to take the number of places of the change in argument tonomore than
the number of significant figures in the first difference of function, and if the latter
begins with 1, 2, or 3, to take ome less place. For example, in this case there are four
significant figures in the first difference of the function (Y), which begin with a num-
ber greater than 1, 2, or 3. The number of places in the change in argument cannot be
taken as more than 4. (The change in argument is the set of figures at right of 1,2; viz.,
3449566) - These can be taken only to four figures, making the value that can be used as
1.23450 with an uncertainty of 1 or 2 in the last figure.

WHY METHOD LIMITED TO CASES WHERE FIRST DIFFERENCE CF FUNCTION DOES NOT CHANGE SIGN: If
it changes sign, the function rises and falls in the imterpolation interval, thereby having
a tangent point in which a change in Y produces a change in X at an infinitely greater
rate. Should the intervals be small, the differenses that are divisors in produecing fi's
(see middle of Page 2), may produce extraordinarfly large fivs, leading to asymptotic con-
ditions of unreliability. Not all cases where first differences change sign will produce
these effects, but it is necessary to stress this asa limitation to the application of the
method.

SELECTION OF ARGUMENTS TO BE TAEKEN INTO ACCOUNT: A frequently heard criticismof the Di-
vided Difference Method is that it provides no means of knowing how many function values
should be taken into account. This point is covered herein by means of the difference ar-
ray and the diagonal lines mentioned at top of Page 2. It might be thought that the higher
order differences which involve small amounts could be disregarded by applying the same
rules as for direct interpolation; viz., disregard 2nd, if they are less than 4, 3rd, 1if
less than g, 4th, if less than 12 (for Descending Difference formulas). This does not ap-
Ply in the case of the inverse operation unless the corresponding derivative of function
with respect to argument is ni" or more. As it is not easy to determine the higher-order
derivatives from differences when the variables are interchanged(though mathematical me-
thods render this comparatively simple) it is believed advisable to include in the calcu-
lation all orders of difference that appear in the array. This makes it unnecessary to
compute a Remainder Termof the interpolation polynomial because the next higher order of
difference would be non-existant (for the usual type of functions found in computing prac-

tice) .

Quite a satisfactory result is obtained in the example used if 4th differences are disre-
garded. A skilled computer would know that this would be true because he would make a

rough estimate of the probable fourth derivative at argument 1.4 by considering it as of
lope of the tangent to the curve of "3rd differences

application of this method is somewhat uncertain
significant differences,

about the order of magnitude of the s
divided by cube of interval." However,
and inasmuch as very little extra labor is required to include all
the method herein has been developed in that manner.

CHECK OF VALUE FOUND BY DIRECT INTERPOLATION: If by MM-439El or otherwise, we interpolate
a function between tabular values that corresponds to argument of 1.234406; it will be found
to be 0.33000 1> the exact amount depending upon the formula that 151::ed; Ht:sw:vefx:;’l ::eo ::
argument 1,23450 produces an interpolate of 0.32999+. It is not poss e to y it
is more "correct" than the other, as it is not unusual for the values of the inverse a

direct interpolations to vary slightly in an opposite manner.



Page 5

MARCHANT COMPUTATION

The previous outline appears somewhat formidable, but the actual calculation on the Mar-
chant is simple, requiring surprisingly few steps, as follows:

OPERATIONS: Decimals; Upper Dial g, Middle Dial 16, Keyboard Dial g8, No. 9 Tab Key

(1)

(2)

(3)

(4)

(5)
(6)

(7)
(8)

(9)

depressed. Use any 10 column Marchant. (The method is also adapted
to 8 column Marchants. ) :

Compute the differences in the array at bottom of Page 1, using Marchant Method MM-
419, andat the same time compute the differences between any two of the ar-
guments whose differences are not shown on the array; i.e.,yo - y2=0.19239;
Yy = ¥3= 0.19677; ¥y, = ¥,=0.19921; ¥y, - y3=0.29163; ¥y = ¥, = 29674 ;
Yo = ¥y, = 0.39160.

With carriage in gth position, set up in Keyboard Dial the constant interval of the
argument (0.1) and add. Similarly, setup the firstdivisor y, - y, (0.09486)
and divide.

(fi) (1.05418512) appears in Upper Dial, which is copied to array at
middie of Page 2, with minus sign, as it is a quotient of a minus amount
divided by a plus amount.

Similarly, obtain all values of fl’ fz’ fB’ and fu’ the factors being given on Page
3. Clear all dials.

Obtain the amounts YoVyseee Yo¥,¥,¥, as shown in the formula for computing argument
(see bottom of Page 3) as follows: Set up in Keyboard Dial Yo (0.03237) and
multiply by y, (0.06249) , copying answer y vy, fromMiddle Dial (-0.00202280);
clear Upper and Keyboard Dials, transfer MiddleDial amount to Keyboard Dial;
clear Middle Dial and multiply by ¥, (.16002), copying answer Yo¥.¥, (0.00032369)
and in the same manner obtain Yo¥1¥,¥5 (-0.00008392) and YoV ¥,¥5Y, a8
(0.00003015) , affixing signs according as the individual factors are plus or
minus.

Clear dials, shift to 9th position, set up in Keyboard Dial f‘(yo) (1.2) and add.

Clear Upper Dial, set up (f ), (1.05418512) and multiply by y, (0.03237) because
the first factor is minus, the second is plus, and the product is to be sub-
tracted (see Item 2 of formula at bottom of Page 3), sothe product is to be
added.

Clear Upper and Keyboard Dials, and similarly multiply (f,), (0.15000561) by XYoo
(0.00202280) , obtaining the latter value from Step 4, above.

Clear Upper and Keyboard Dials, and similarly multiply (fa) 13 (0.20649059) by Yo¥y¥,
(0.00032369) s obtaining the latter value from Step 4, above.

ClearUpper and Keyboard Dials, and similarly multiply (f,) ,(0.07249451) by Yo¥i¥,Y,
(0.00003015) -

Inverse Interpolate for 0.32999 (1.23449643) appears in Middle Dial.
After 4th difference correction is made (see Page 3), value is 1,23449566.

NOTE: The number of figures of the above that may be takenas correct, assuming rounding off of func—
tional values, is discussed on Page 4.

Whether or not the multiglications of steps ¢, 7, §, 0or 9 are made so as to add the products,
as formed, or to subtract them, depends upon the sign of the product in accordance with the
signs of its factors, and also whether or not the product is to be added to or subtracted from
the previous amount. It is assumed that the computer is familiar with this matter.
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THE A. C. AITKEN METHOD OF CURVILINEAR INTERPOLATION
WITH EQUAL OR UNEQUAL INTERVALS OF THE ARGUMENT

REMARKS: Straight-line interpolation between two points may be performed as described in Marchant Method
MM-439A1 according to the following well-known principle: If given two functional values u,
and up corresponding to arguments “a” and “b”, an intermediate value u, corresponding to
argument “x” between “a” and "b”, may readily be obtained by a continuous calculator

operation as follows:

Srun(bisi)is ub(a - x)

u —
%S b-a

This relation also holds if “x” does not lie between “a” and ®b”; that is to say, the formula
is suitable as a means of straight-line extrapolation.

A. C. Aitken* has published a method of curvilinear interpolation based upon the above
relationship. The method first obtains a set of approximations to u, by applying the above
formula successively for pairs of values ab, ac, ad, ae, etc., and then by considering the
approximations thus found to be a new set of functional values, the process is again applied
to the new set to give a second set of approximations still closer to the desired value, and
so on unt il successive iterations produce no change in the interpolate to the number of

places it is desired to retain.

The method is equally suitable for interpolation if the functional values are tabulated at
equal or unequal intervals of the argument; i.e., the method is suitable for either direct or

inverse interpolation.

The particular field of use for the method appears to be cases in which (1) interpolation

must be made to an argument-value bearing fractional relationship to the tabulated arguments

of more than three decimals, because there are readily available tables of Bessell, Everett,

and LaGrange coefficients** for fractional values differing by .001, or (2) for interpolation

when values are tabulated at unequal intervals of the argument, in which case the method

serves the same purpose as the Method of Dividend Differences (See Marchant Method MM-439] 2).
Aitken has shown that his process is the same as using the general divided-difference

formula to the same order of differences as the number of stages of his process.

Particularly do we recommend that this method be given consideration in cases of interpolation
at unequal intervals of the argument. The exceedingly simple manner in which the example of
Marchant Method MM-439]2 responds to the Aitken method is shown herein on page 4.

(=) A. C. Aitken, Edinburgh Math. Soc. Proc., s. 2, v. 3, 1932, p. 56. An excellent synopsis of the
method written by J. R. Womersley appears in Math. Tables and Other Aids to Computation,
v Vol. Il, No. 15, p. 112, July 1946, National Research Council, Washington, D. C.

(**)  of Marchant Methods MM-439G, 439E1, 439H; 439]1, 228, which relate to various methods of direct
and inverse curvilinear interpolation. MM-228 gives 7-place Lagrangean 5-point interpolation
coefficients for values of p from 0 to 2, by .001. U. S. Bureau of Standards, Mathematical Tables,
Project, offers more extensive tables of Lagrangean coefficients, and many of its tables of other
functions show supplementary tables of Bessell and Everett coefficients. L. ]. Comrie’s tables
and explanatory information, “Interpolation and Allied Tables,” H. M. Stationery Office, York
House, Kings Way, London, W.C. 2, are indispensable to anyone working in this field.

(over)

PRINTED IN U. S A.
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CASE 1: INTERPOLATION WITH EQUAL INTERVALS OF THE ARGUMENT
EXAMPLE: The example used is the one given in Aitken’s paper. Given the tabulated values Sud

below, to find the value of “u” for argument 0.68327. Development of the computation is
also shown.

Argument u Stage (1) Stage (2) Stage (3)  Stage (4) Parts
-2 5772 1566 -2.68327
-1 5608 8546 53 339732.4 -1.68327

0 5447 8931 $ 37113384 39 2588.8 -0.68327
1 5289 2109 . . 401987.0 .« 2128.1 227 4.0 0.31673
2 5132 7488 . . 432306.6 . 1674.9 66 82 1.31673
3 4978 4499 1 462107.2 .. 1229.9 o o5 a3 G A4 2.31673

DECIMALS:  Upper Dial 8 and 1, Middle Dial 16 and 9, Keyboard Dial 8 and 1.
Use 10-Column Marchant. Division-Clear Lever toward operator.

OPERATIONS: In the following, multiply with reference to the Upper Dial decimal at 8 and Keyboard
Dial decimal at 1. Enter divisors at Keyboard Dial decimal 8 and read quotients at
Upper Dial decimal 1. Use “parts” as multipliers.

1) Compute the column of “parts” by setting up the argument to which interpolation is
to be made (.68327) and subtracting it to produce its complement (..99.31673) in the
Middle Dial. Then enter the greatest positive argument (3.0000) in Keyboard Dial
and add, producing 3 - .68327 = 2.31673 in Middle Dial. The other values in this
case are obtained by inspection, though if there are unequal intervals of the
argument, after each addition, the amount added should then be subtracted to
restore the negative constant (..99.31673) in the Middle Dial.

2) Each value for Stage (1) is computed as a continuous cross-multiplication and
division process as follows:

(57721566 x -1.68327) - (56088546 x -2.68327) = 5333 9732.4

This step has no division operation as the argument interval is 1.

The successive computations are thus

(5772 1566 x =0.68327) ~ (54478931 x -2.68327)

; = 53371133.4
(57721566 x 0.31673) : (52892109 x -2.68327) _ 53401987.0
and so on to

(57721566 x 2.31673) - (49784499 X —2.68327) _ g34¢9107.2

5

(continued)



MM-439K
Page 3

The well-known rule of signs governs the Marchant entries; that is to say, in the preceding expression,
the second multiplier (~2.68327) is not entered in negatively as would be indicated by its minus sign.
Instead, it is entered directly as a positive amount because the product (4978 4499 x -2.68327) is to
be subtracted. This is equivalent to adding (4978 4499 x 2.68327) to the amount that is already in the

Middle Dial.

NOTES:

3)

4)

5)

Values for Stage (2) are similarly computed as'follows:
(339732.4 x -0.68327) ~ (371133.4 x -1.68327) = 392588.8

732.4 x 0.31673) - (401987.0 x -1.68327
(339732.4 x 0.31673) - ( X ) 3O

2
and so on to

(33 9732.4 x 2.31673) - (462107.2 x -1.68327)

= 1 X
m 391229.9

The values for Stage (3) are similarly computed as follows:

(2588.8 x 0.31673) — (2128.1 x -0.68327) = 2274.0
and so on to

(2588.8 x 2.31673) - (1229.9 x -0.68327)

227923
3

The values for Stage (4) are as follows:
(4.0 x 1.31673) - (6.6 x 0.31673) = 3.2

(4.0 x 2.31673) - (9.3 x 0.31673) _ 5 ,

2

which completes the iteration to 53392273.2

In Step (5) obvious reduction of length of multipliers would be made because only two

significant figures are desired.

It is not necessary to write the individual steps in formula form as ocutlined above because
the computer soon has the relationships in mind so it is only necessary to make the
computation and copy the respective values as shown under the heading, “EXAMPLE.”

(over)
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CASE 2: INTERPOLATION WITH UNEQUAL INTERVALS OF THE ARGUMENT

If the arguments are tabulated at unequal intervals, the method is applied in a similar way.

EXAMPLE: The example of Marchant Method MM-439]2, solved therein by divided differences, is
easily and quickly solved as below for argument 96.94:

Argument u Stage (1) Stage (2) Parts

96.70 1.449 8542 -.24
96.90 1.456 0764 1.457 3208 -.04
97.02 1.459 8272 = s e 252 .08
97.25 1.467 0530 e 5L S0 3l

The value of “u” corresponding to 96.94 is thus seen to be 1.4573252.
The process is obvious, but we show a few typical computations, as follows:
From Stage (1)

(1.4498542 x - 04) - (1.4560764 x ~.24) _ | 4573208
96.90 - 96.70

(1.4498542 x .08) - (1.4598272 x -.24)

= 1.457 0
97.02 =96.70 et

From Stage (2)

(208 X .08) = (340 X "‘.04) = 252
97.02 - 96.90

NOTES: If the final value is inserted in the column of amounts of any stage in line with the argument
(untabulated) to which it corresponds, it will be found that the amounts in that stage converge to the
value. This is a helpful broad check on the progress of the work.

As in all interpolation, it is recommended that the points used be those which centrally surround the
unknown value to the extent that this is possible. In cases where it cannot be done, as at the end

of a table, the convergence is slower and rounding errors magnify themselves. As a consequence,
usually more points will have to be used to obtain the desired result unless, of course, the tabulated
values exactly represent a polynomial of degree at most one less than the number of points used.
When interpolating in the end interval, it makes no difference whether the work progresses away

from the unknown value or toward it. The former plan gives progressive values in the various

stages that are closer to the final value, but the convergence is correspondingly slower. The final

result is the same, within limits imposed by -rounding.

In the extreme case of using the method for extrapolation to a point one equal argument-interval

outside of the set of points, the method gives the same result as is obtained by differencing the

tabulated values and extrapolating by assuming a constant (n — 1) the difference, where “n” is the
. number of tabulated values that have to be used to produce convergence.

Yp s
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SUMMATIONS OF X, Y, X2,Y2 AND 2XY
TWO-DIGIT AMOUNTS.

EXAMPLE: X and Y
95 85
96 91
97 95
75 69
70 65
433 405
DECIMALS: For 10-column Marchant: Keyboard Dial 7 and 0; Upper Dial 7 and 0; Middle Dial 14, 7

and 0. Set Tab Keys 9 and 2.

OPERATIONS: (1) With Carriage in Position 9, enter X at left and Y at right of Keyboard Dial, around
pre-set decimals. (Keyboard Dial shows: 095.0000085.)

(2) Enter X and Y in Multiplier Keyboard so that X appears at left and Y at right of
Upper Dial, around pre-set decimals:

With Carriage in Position 9, enter X (95.) in Multiplier Keyboard. Shift Carriage
to Position 2. (If your Marchant has “live” tab keys, simply touch Tab Key “2”
to position Carriage.)

Enter Y (85.) in Multiplier Keyboard.

Upper Dial now shows: 095.0000085. and
Middle Dial shows: 9025.0016150.0007225.

NOTE: Always read Upper Dial entries (X and Y) direct from Keyboard Dial instead of from
original work.

(3) Shift Carriage to Position 9. Change Keyboard Dial to second values of X and Y
(096.0000091.). Reading from Keyboard Dial, multiply by this same number.

(4) Proceed as described above for subsequent X and Y values. Upon completion, Upper
Dial shows3X, 3Y: 433.0000405.; Middle Dial showsZX?,32XY,3Y?:
38175.0071502.0033517.

3XY = 71502 x .5 = 35751

CHECK: Add the X’s and Y’s as they appear on the original work. If the amounts agree
with Upper Dial readings, it is substantially proved that the X’s and Y’s were properly
entered in the Keyboard Dial and were properly used as multipliers. This would not
necessarily be true if there were two equal and offsetting errors, but it is usually satis-
factory to regard the likelihood of such errors as too remote for consideration. It will be
observed that this check is not reliable unless the multipliers are read from the Keyboard
Dial.

NOTE: AN ELEVENTH UPPER DIAL PROVIDES CAPACITY FOR APPROXIMATELY
200 PAIRS OF AMOUNTS.

PRINTCD IN U S A
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EXAMPLE:

DECIMALS:

OPERATIONS:

SUMMATIONS OF X, Y, X2, Y2 AND XY

195
215
185
225

820

and Y

187
198
176
214

775

Keyboard Dial 0 and 7, Upper Dial 0, Middle Dial 0 and 7. Set Tab Key 3.

(1) With carriage in Position 3, enter first value of X at “0” Keyboard
Dial decimal and first value of Y at “7” Keyboard Dial decimal.
(Keyboard Dial reads 187.0000 195.), Multiply by first X (195.).

(2) Without clearing any dials, shift carriage to Position 3, change Key-
board Dial to second values of X and Y (198.0000 215.) and multiply
by second value of X (215) copying from right of Keyboard Dial rather
than from worksheet.

(3) Repeat (2) for each value of X and Y. At conclusion, Upper
Dial shows ZX (820.), Middle Dial shows =XY (159745.), and
5x2 (169100.)

Clear all dials and repeat process, this time entering X values at
7th Keyboard Dial decimal and Y values at “0” Keyboard Dial
decimal and multiplying by Y values. At conclusion, Upper Dial

shows 2Y (775.), Middle Dial show 3XY (159745.), and 2Y2('|50945.)

If summations of XY agree in the two computations it is a satisfactory
check that all summations are correct.

PRINTED INU S A,
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DECIMALS:

OPERATIONS:

2

SUMMATIONS OF X, X2 AND XY,OR Y, Y~ AND XY

95
96
97
75
70

433

TWO-DIGIT AMOUNTS

and

85
91
95
69
65

405

Keyboard Dial 0 and 6, Upper Dial 3, Middle Dial 3 and 9. Set Tab Key 5.

(1) With carriage in Position 5 enter first value of X at “0” Keyboard Dial deci-
mal and first value of Y at “6” Keyboard Dial decimal. (Keyboard Dial reads
0085.000095.) Multiply by first X (95.).

(2) Without clearing any dials, shift carriage to Position 5, change Keyboard
Dial to second values of X and Y (0091.000096.) and multiply by second
value of X (96.).

(3) Repeat (2) for each value of X and Y. At conclusion, Upper Dial shows
3X(433.), Middle Dial shows 3XY (35751.) and £X2(38175.).

If summations of Y, Y2 and XY are needed follow above operations, enter Y values
at “0” Keyboard Dial decimal, X values at “6” Keyboard Dial decimal and multiply

by Y.

PRINTED INU S A
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SUMMATIONS OF X2 AND (UX?), or X3

A frequent summation required in Statistical Method and Least Squares is that of (UX2) in which U

equals 1/10, 1/100

or 1/1000 of X. It will be seen that this is similar to summing X3 because U is

the same as X except for the decimal point. (It is also often desired that summations of X2 be made

as a part of the sam
(A) Summations of

EXAMPLE:

DECIMALS:

OPERATIONS:

(1)

(2)

(3)

(4)

(5)

e operation.)

X2 and (UX2) for two-digit amounts:

U X U X
.65 65 74 74
+46 46 .89 89

Keyboard Dial 8 and 0; Upper Dial 1; Middle Dial 9 and 1.
Set Tab Keys 3 and 5.

With Carriage in Position 3, enter first X (65.) in Keyboard Dial at *0” decimal,
and multiply by X (65.) around 1st Upper Dial decimal (reading X from right of
Keyboard Dial, not from original work.)

First X 2 (4225.) appears in Middle Dial.

Enter first U (,65) in Keyboard Dial at 8th decimal, with right hand digit reduced
by “1”, and fill in columns to right with 9’s.

Keyboard Dial now reads: .64999999.
(Be sure, in entering U, to read it from right of Keyboard Dial, not from work sheet.)

Shift Carriage to Position 5, and multiply by amount appearing in Middle Dial at 1st
decimal (4225.).

Now first (UX 2) appears in Middle Dial at left (2746.25) and Middle Dial at
right shows all ciphers.

Clear-TAB Keyboard Dial only. Repeat steps 1, 2 and 3 for each succeeding pair.
Upon completion,

Z(Ux2) appears in Middle Dial at 9th decimal (14821.54)
£(X?%) + £X appears in Upper Dial (20012)

To subtract £ X from Upper Dial, negatively multiply by £X (274, as separately
totaled), leaving remainder in Upper Dial: £X 2(19738).

(OVER)

PRINTED IN U. S A,



MM=-441 B (Cont’d.)

NOTE: If directions have been followed, the work will be practic'allly error-
proof. However, there is no check of this except by obtaining £(X2)
by accumulative multiplication. If it agrees with L(x2) as found in
step 5, Z(UX‘?) is subst antially proved, provided the entries in
step 2 were actually the same (less 1) as the X at right of the Key-
board Dial.

(B) Summations of X2 and (UX2) for Three-Digit Amounts.

This is done in a similar manner to that of Example A, except that a 10 column
Marchant must be used. ‘

The capacity is about 40 pairs of three-digit scores averaging 500. If the
scores tend to concentrate at any -other value, the capacity of the process
would be affected correspondingly.

(C) Summations of (UXZ) without obtaining Summation of X2.

By clearing Upper Dial after steps 2 and 3, Z(UXZ) will be obtained with a
somewhat better proof of accuracy, particularly if the entry at left of Key~

board Dial in step 2 is made by copying it from the Upper Dial and checking
it with the amount at right of Keyboard Dial, thus providing a “closing proof”.

The fact that after step 3, Middle Dial at right shows all ciphers is proof that
multiplication was actually made by X2,
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OUTLINE OF SUMMATION — WORK FOR LINEAR MULTIPLE CORRELATION

REMARKS: It is assumed that the computer is familiar with the customary method of obtaining the
regression equations of multiple linear correlation in the form

X, = a + b X, + ng3

Xln a + baxa-t b3X3+ b4x4

for two and three variables, respectively. The calculating work principally comprises
obtaining the required summations that become the coefficients of the terms of the
normal equations.

These normal equations are then solved for the respective a and b values, preferably
by the Crout Method (see Marchant Methods MM-434 B1 and MM-434 B2). It is recom-
mended that the original scores be reduced to two-digit amounts in cases where they
are larger. This may be done by either subtracting a fixed amount, or by dividing by
10, 100, etc., and rounding to a two-digit amount. The coefficients obtained by use
of these modified scores are easily converted to ones suitable for use with unmodified
scores.

It is also recommended that the original scores be used instead of their deviations from
the point of averages. Though this adds slightly to the work of solving the normal
equations, the time is believed to be more than offset by the elimination of obtaining

o deviations from the point of averages, as well as the time of converting the resulting
regression equation into one that is usable with raw scores.

OUTLINE FOR CASE OF TWO INDEPENDENT VARIABLES:
The normal equations are

1 (X)) = aN+ b 3(X) + b 3(X))

II  E(X,Xp)=  aL(X,) + b (X2) + bJ (X,X,)

III XX X))=  al(X)) + b, T(X X))+ bL (X))
The summations are found as follows:

1st. According to Marchant Method MM—441 A1, find £X2; qu; E(Xg) ON DT (Xg) H

2nd. Enter in Keyboard Dial each X,at left and X3 at right, and multiply by the
corresponding X, producing by accumulation

b (xlxz) and Z(szg)

The first step is self-checking if the procedure of Marchant Method MM—-441 A1 is
followed, so it need not be repeated for proof. The second step should be repeated.
Sub-totals taken every 20 scores will aid in the proof.

(over)

gﬂﬂMARﬂHANT Division of SMITH-CORONA MARCHANT JNE. Oakland 8, California

PRINTED IN U.S. A,
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OUTLINE FOR CASE OF THREE INDEPENDENT VARIABLES:

The normal equations are

1

1

I

$(X,)= aN+ bI(X) + bI(X) + bI(X,)

I S(X,X)= aX (X)) + b, T (X3)+ bT (X X))+ b, T (XX))

II I(X,X)= aT(X)+ b, T (X,X) + b X (X7) + b, T (X;X))

IV T(X,X) = aZ(X)+ b, T(XX)+ b, T (X;X)) + b, T (X))

The summations are found as follows:

1st.

2nd.

3rd.

4th,

The first a

According to Marchant Method MM—441 A1 L X_; zxa; b3 (Xg) 5
TED; @K,

Similarly find E£X;3 EXg; I(x3); € (x:) 3 E(2X,X))

Eater in Keyboard Dial each X, and X3 and multiply by the corresponding

X1, producing

Enter in Keyboard Dial each X, and X3 and multiply by the corresponding
X4 , producing

z(x2x4) and z(x3x4)

nd second operations are self-checking if the procedure of Marchant Method

MM—441 Al is followed, so they need not be repeated for proof. The third and fourth

operations,

however, should be repeated.
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REMARKS:

EXAMPLE:

DECIMALS:

OPERATIONS:

SUMMATION OF X, XY AND XY2

In certain cases of statistical computing, it is often desired to find 3, x*, 3 xyand 3 xy2,
when given a large number of pairs of factors "x” and “y”. This method is suitable for
cases in which the factors have no more than two digits each.

Given: X y Find:
2 7 SE =h5S
SO
31 43 Sixys L=a1730
14 17
22 3xy2 = 64315

Keyboard Dial 5 and 0; Upper Dial 5 and 0; Middle Dial 10, 5 and 0.

(1) Enter first *y” (7) in Keyboard Dial at 5th decimal, and'multiply by first *x” (2) so
it appears in Upper Dial around “0” decimal.

(2) Decrease right-hand figure of “y” in Keyboard Dial by “1”, and enter all 9’ s in
columns at right so that Keyboard Dial reads 6.99999.

Position Carriage and multiply around Sth Upper Dial decimal by “xy” (14) which
appears directly below in Middle Dial around 5th decimal.

The Middle Dial should now show all ciphers at right of 10th decimal.

xy2 (98) appears at 10th Middle Dial decimal, and
xy (14) appears at 5th Upper Dial decimal, but the
amounts need not be separately noted.

(3) Clear Keyboard Dial only, and proceed as in Steps 1 and 2 for the remaining pairs of

values.

S, xy2 appears at left of Middle Dial.
3. xy appears at left of Upper Dial.
S, x  appears at right of Upper Dial.

NOTE: If 3x at right of Upper Dial equals the sum of the x values when they are sepa-
rately added, it is substantially a proof that all x values have been correctly
entered as multipliers. Any error of entry of xy as multiplier in Step 2 or the
improper filling-in of 9’s, is signalized by Middle Dial failing to clear after Step

2.

It will thus be seen that this process provides first-run accuracy control, except
for values of “y”. However, the likelihood of an error in setting "y” is remote
because it appears in the Keyboard Dial and it is also separatcly noted in that
dial when its right-hand figure is reduced by 1.

(*) The symbol Sindicates “the summation of.”

PRINTCD IN U S A.
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SUMMATION OF FACTORS OF THE TYPE OF 2B WiEN 4, B, AND K ARE VARIABLE

EXAMPLE:

SETUP:

QPERATIONS:

74

K

546.32 x 39.75 392.56 x 78.62 425,87 x 55.83

176.32 + 194.55 L 187.72

= 408.46

Decimals: Keyboard Dial 2; Upper Dial 3; Middle Dial 5. Teb Key No. 5

(3)

(4)

(5)

(6)

depressed.

Enter in Keyboard Dial the first A (546.32), and multiply by the
first B (39.75), around pre-set decimals.

Clear-TAB Keyboard Dial only. Enter the first K (176.32) in Keyboard
Dial as divisor. Touch Stop and Division Keys so that Upper Dial does
not clear.

The first quotient, plus the first B, appears in Upper Dial (1962.91) ,
but it is not separately noted.

Enter in Keyboard Dial the second A (392.56) . Enter second B (78.62)
in Multiplier Keyboard.

Clear-TAB Keyboard Dial only. Enter second K (194.55) as divisor.
Touch Stop and Division Keys so that Upper Dial does not clear.

The sum of the gquotients, as well as of the first and second B's
appear in Upper Dial (400.171), but it is not separately noted.

Repeat steps 3 and 4 for the third expression.
The sum of the quotients, as well as of the three B's appear in
Upper Dial (582.659), but it is not separately noted.

Clear KeyboardDial. From a separately made summation, the B's = 174.20.
(Sum the B's with Carriage shifted to extreme right, if desired.)

With Carriage in Position 6, touch Repeat-Neg.X Keys; negativelymul-
tiply by the sum of the B's. '

The desired sum of the quotients (408.459) appears in Upper Dial.

NOTE: The above shows calculation with positive amounts. Similar
calculations when there are mixed positive and negative
amounts are easily handled. In such cases, perform all
multiplications as if the factors were positive. If inspec-
tion shows that the quotient is negative, move Manual
Counter Control toward the operator before touching Division
Key. The subtraction of B's in step 6 should then be the
sum of all of the B's considered as positive amounts, even
though some of them may be negative.

PRINTED IN U.B.A.
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STATISTICAL METHOD

MEAN AND STANDARD DEVIATION — DATA GROUPED BY EQUAL CLASS INTERVALS

REMARKS:

EXAMPLE:

OUTLINE:

“Standard Deviation” is an index figure widely used in statistical analysis. It is the
square root of the quotient obtained by dividing the sum of the squares of the deviation
of each of a number of amounts from its arithmetic mean by the number of such amounts; thus

%(x%)
o=/———
N

in which 0 = Standard Deviation (the Greek small letter Sigma)
‘individual deviations from arithmetic mean
total number of items

N

The Standard Deviation is computed with respect to either the X or Y axis.

This method relates to obtaining the Standard Deviation with respect to either the X or Y
axis when the data are grouped by “equal” classes; that is to say, the data are sorted into
groups, the X (or Y) spread of all of the classes being the-same, and each class being
successively of an equal higher amount than.its predecessor. This is by far the most
usual form in which problems involving Standard Deviation appear.

221 average grades of students vary between marks of 59.0 and 93.8. They are grouped
for convenience of calculating into class intervals of 2 points each, ranging from 58.0
to 100.0. The number of students whose average marks fall in each class interval is
shown by tallies on the attached sheet. The total in each group, or “frequency”, is
shown in column f. The number of the class interval, reading from the bottom, is
shown in column d. This column also designates the interval, or “deviation”, of

each group from the Arbitrary Origin (A.O.) of 59, which is the mid-point of the lowest
group. The columns at the right are, respectively,

42 equals the square of amount in column d
d;  equals d increased by “1”

d; 2 equals the square of amount in column dj

For any given pattern of calculating, sheets are prepared in advance and mimeographed
or printed with all amounts in columns d, d 2, d; and d; 2 completed. The only part
filled in by the operator is the tally marks and their totalizing in the column headed “f”.

In this method the actual deviations from the arithmetic mean are not obtained. The
final result, however, is the Standard Deviation exactly as defined.

The Charlier Check of the summations is a part of the process.

(over)

PRINTED IN U S A,
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DECIMALS:

OPERATIONS:

PART I:  SUMMATIONS OF £, £d, £(d%), fdy, £(d; 2)

Keyboard Dial 8 and 0; Upper Dial 6; Middle Dial 14 and 6.
Set Tab Key 8.

In all of these summations, the multipliers (f) are entered as if they were two-digit
amounts; e.g., “3” is entered as *03”, etc.

D

2)

3)

4)

59

6)

7)

8)

With carriage in Position 8, and without Keyboard Dial entries, multiply by the
frequency (01) corresponding to the group at Arbitrary Origin (59).

Note: This is done to record that there was 1 tally in class 60-58. As the midpoint
is the Arbitrary Origin, there is no deviation, so the operation is one of multiplying

the “0’s” of column d and d? by the f of the group. Touch TAB BAR.

Enter in Keyboard Dial at 8th and ®0” decimals respectively the amounts that
are in columns d and d2 for group 62-60 (1.0 and 1.0) and multiply by corresponding
frequency (03). Touch TAB BAR.

Change Keyboard Dial to read the next greater amounts of d and d? (2.0 and 4.0)
and multiply by corresponding frequency (15).

Touch TAB BAR.

Change Keyboard Dial to read the next greater amounts of d and d2 (3.0 and 9.0)
and multiply by corresponding frequency (19).

Touch TAB BAR.

Proceed as in Step 4 for all other groups.

Sigma f (221) appears in Upper Dial.
Sigma fd (1,429.0) and Sigma f(cl2 ) (11,265.0) appear at left and right of Middle Dial.

Clear all dials and with carriage in Position 8 enter d; and d; 2 (1.0 and 1.0)
at 8th and "0” Keyboard Dial decimals respectively and multiply by corresponding

frequency (01).

Change Keyboard Dial to read the next greater amounts of d; and d12 (2.0 and 4.0)
and multiply by corresponding frequency (03).

Proceed as in Step 7 for all other groups.
Sigma f (221) appears in Upper Dial.

Sigma fd (1,650.0) and Sigma f(dl 2) (14,344.0) appear at left and right of Middle Dial.

(continued)
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PART II: THE CHARLIER CHECK

In order to prove the correctness of the summations, they are checked as follows:

(a) Zfd (1429) + 3£(221) = fd; (1650)
(b) Zf(d2) (11265) +2 Tfd (2858) + 2 £ (221) = Tf(dy ) (14344)

Any failure to reconcile will require a re-run of the summations.
1) With carriage in Position 1, enter Sigma f (221) in Keyboard Dial at *0” decimal. Touch ADD BAR.

2) Similarly enter Sigma fd (1429) and multiply by “1”.
Sigma fd; (1650) appears in Middle Dial.

3) Clear Upper and Middle Dials and multiply by 2.
4) Change Keyboard to read Sigma f(dz) (11265) and add.
5) Enter Sigma f (221) and add.

Sigma f(d1 2) (14344) appears in Middle Dial.

PART III: STANDARD DEVIATION IN CLASS INTERVAL UNITS

Much work of this type merely requires that the Standard Deviation be obtained in terms of Class
Intervals; that is to say, each Class Interval (in this case 2) is regarded as the unit of measurement.
Obviously, the Standard Deviation in terms of the units from which the Class Intervals are obtained
equals the “Standard Deviation in terms of Class Intervals” multiplied by the *Number of Units

in a Class Interval”.

The formula is:

Standard Deviation in _/(Sigma f) (Sigma £(d)?) - (Sigma fd)?
terms of Class Intervals ~ Sigma f
or, in this example, = 4 221 x 11265 - 14292

221

DECIMALS: Keyboard Dial 8, 5, and 2; Upper Dial 5 and 1; Middle Dial 13, 10 and 7.

1) Eater Sigma f (dz) (11265) in Keyboard Dial at decimal 2 and multiply by (Sigma f) (221)
at Upper Dial decimal 5.

2) Clear Upper and Keyboard Dials. Move Manual Counter Control toward the operator.
Enter Sigma fd (1429) in Keyboard Dial at decimal 2, and negatively multiply by Sigma fd (1429)

at Upper Dial decimal 6. Move Manual Counter Control away from operator.
The amount under radical sign (447524) appears in Middle Dial at decimal 7.

3) Refer to Marchant Table of Square Root Divisors, No. 82,,)4475'21 = 668.97 +
4) Enter 668.97 in Middle Dial at decimal 10.
5) Shift carriage to Position 6. Change Keyboard Dial to read Sigma f (221) at decimal 5 and divide.

6) Standard Deviation in Class Interval Units is 3.0270 (see Note C?.

(over)
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PART IV: STANDARD DEVIATION IN UNITS
FROM WHICH CLASS INTERVALS ARE DERIVED

This is obviously the result of Part III, Step 6, multiplied by the number of units per Class Interval, or,
in this case,

2 x 3.0270 or 6.0540 (See Note C)

PART V: ARITHMETIC MEAN

Sigma fd
This is“sﬁ:ﬁ'x Number of Units per Class Interval + A.O., in which A.O. is “Arbitrary Origin”, or,
in this case, (-I;%X 2>+ 59, or 71.9321 (see Note E).

NOTES
A. The work has been subdivided into parts in order to clarify the individual parts of the work.

B. If it is desired to obtain directly the Standard Deviation in Units from which the Class Intervals are
derived (Part IV), the divisor in Step 6 of Part III can be Sigma f divided by the number of units
that comprise a class interval.

C. The method is based upon the assumption that all scores are concentrated at the mid point of each
class interval. It is probable, however, that fhey are continuously distributed throughout the
interval. The inherent error from this assumption causes the Standard Deviation to be slightly
less than the values shown in Parts III and IV. For this reason it is recommended that the Standard
Deviations be rounded downward to not more than 3 significant figures, thus,

For Part III to 3.02
For Part IV to 6.05

Most textbooks dealing with this subject show how to correct the Standard Deviations obtained
by this method for continuous distribution in an interval and tapering frequencies.

D. "Sigma f” is also referred to as "N” in many formulas. It is the total number of individual scores.

E. After the division, the addition of 59 may be made in the Upper Dial by multiplying by 59. This
causes Upper Dial to provide a direct reading of 71.9321

F. The distribution shown herewith would be described as
Mean 71.932 with Standard Deviation of 6.05

(continued)
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Page 5
WORK SHEET FOR MARCHANT METHOD
MEAN AND STANDARD DEVIATION
Data Grouped by Equal Class Intervals
Computer Name of Report
Checker Description
Class Interval 2 Mean TL132
Arbitrary Origin 59 Standard Deviation .08
GROUP SCORE TALLIES £ d d? d dlz
RANGE
00 - 98 20 1 400 21 ddl
98 - 96 19 361 20 400
96 - 94 18 324 19 361
94 - 92 |/ 1 17 289 18 324
92 - 90 e} 16 256 17 289
= 88 4 15 22¢ 16 | 256 |

88 - 86 1/ 2 14 196 13 225
86 - 84 |/ 1 13 169 14 196
84 - 82 |,y 4 12 144 13 169
82 = 80 |ne// 7 11 121 12 144
80 - 78 |, /x/ / 11 10 100 11 121
78 - 76 | /;xy ¢/ X/ XS/ 21 9 81 10 100
16 =74 1 e/ ey Dyr /7 19 8 64 9 81
4 -2 | sy vy I ) A 774 28 7 49 8 64
72 - 70 /%y My I Bt XU XL KL L 40 6 36 7 49
70 - 68 /% /o /2% O 1% / 26 5 25 6 36
68 - 66 | Ny /X/ /NS /7 19 4 16 5 25
66 - 64 IN/ N/ M Y7774 19 3 9 4 16
64 - 62 | )y v I 15 2 . 3 9
62 - 60 | ,/,/ 3 1 1 2 4
60 - 58 | / 1 0 0 1 1

2for N 221

NOTE: All items that are printed on the above form appear in regular type. Only the tallies and the
italicized figures are entered by the computer.
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REMARKS:

EXAMPLE:

OUTLINE:

DECIMALS:

OPERATIONS:

STATISTICAL METHOD
LINEAR “LEAST SQUARES” LINE OF REGRESSION

AND COEFFICIENT OF REGRESSION

It is often desired to know the equation of the straight line that best represents a scatter

diagram according to the principle of “least squares;”

e.g., the line is such that the sum
of the squares of the deviations of observed values of Y from the corresponding values of
Y on the line will be a minimum. If this line be represented by the equation Y = a + bX;
the coefficient "b” represents the slope of the line or defines its angle with reference to
the X axis (tan —1p) and *a” represents the Y intercept,

The coefficient "b” of this least squares line of regression is sometimes referred to as
the "Coefficient of Regression.”

Given the observed values of X and Y of Marchant Method MM 444 A, find the linear Coef-
ficient of Regression and also the equation of the line assuming the regression to be line-
ar. To avoid reference to MM 444 A, it is noted here that:

Sigma X equals 433 ' Sigma X2 equals 38175
Sigma Y equals 405 Sigma Y2 equals 33517
Sigma XY equals 35751 N equals 5

The equation for the line of regression is determined by the solution for “a” and “b” in
the two equations below:

(1) Sigma Y = Na +b Sigma X
(1) Sigma XY = a Sigma X + b Sigma X2

Solving these equations for “b” and transforming so the equation is best suited for ma-
chine calculation, we have:
(I | _ N Sigma XY — Sigma X Sigma Y
N Sigma X2 — (Sigma X)*

(IV) Sigma Y — b Sigma X

N

a=

Upper Dial 5. Middle Dial 10, Keyboard Dial 5.
Use 10 column Marchant.

To Compute “b”
(1) Enter in Keyboard Dial Sigma (Xz) (38175) and multiply by (5).

(2) Move Manual Upper Dial Control toward operator, clear Upper and Keyboard Dials,
enter in Keyboard Dial Sigma X (433) and negatively multiply by Sigma X (433).

Middle Dial shows N Sigma x2- (Sigma X)2 (3386) Copy to report.

(over)

PRINTED IN U S A
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(3)

(4)

(5)

(2)

(b)

(1c)

(2¢)

(d)

%)

Move Manual Upper Dial Control away from operator. Clear dials, enter in.Keyboard
Dial Sigma XY (35751) and multiply by N (5).

Move Manual Upper Dial Control toward operator, clear Upper and Keyboard Dials,
enter in Keyboard Dial Sigma X (433) and negatively multiply by Sigma Y (405).

Middle Dial shows N Sigma XY — Sigma X Sigma Y (3390).

Move Manual Upper Dial Control away from operator, clear Keyboard and Upper Dials,
enter in Keyboard Dial the amount copied to report from Step 2 (3386) and divide.

Coefficient of Linear Regression “b” (1.0012) appears in Upper Dial.
To Compute “a”
Enter in Keyboard Dial Sigma Y (405) and multiply by “1.”

Clear Keyboard and Upper Dials, enter in Keyboard Dial Sigma X (433), move Manu-
al Upper Dial Control toward the operator and negatively multiply by “b” (1.0012).
If the amount in Middle Dial were positive, procedure would be as in Step “1c” below.

Move Manual Upper Dial Control away from.operator, clear Upper and Keyboard dials,
enter N (5) in Keyboard Dial,and divide. :

Coefficient "a,” the Y intercept, dppears in Upper Dial.

In this case the amount in Middle Dial is a negative number, i.e., (...99971.4804).
This amount may be evaluated as a positive number and then divided by N, or ad-
vantage may be taken of the ability of the Marchant’to divide a negative number
directly; thus, as in this case, proceeding from Step “b”;

Move Manual Upper Dial Control away from the operator.

The Middle Dial after Step “b” reads (...99971.4804). Clear Upper and Keyboard Dials,
enter N (5) in Keyboard Dial . Shift to Position 7 (so the left digit of the divisor is
directly below the first digit to the right of the 9’s), multiply by anything that clears
the 9’s (in this case multiplying by “1” will do so).

Move Manual Upper Dial Control toward the operator and divide.* Coefficient *a”
(5.704) appears in Upper Dial, but it is to be written as —5.704, because the Upper
Dial was producing negative quotients while “a” was developed.

The equation for the Linear “Least Squares” Line of Regression is thus:

Y =-5.074 + 1.0012X

Depress Division Key in the manner that prevents Upper Dial clearance.



