MACHINE CODE
PROGRAMMING

ON THE

PSION

ORGANISER

Machine Code
Programming
on the
Psion Organiser

Bill Aitken

Kuma Computers

Acknowledgment

First Published 1990 To Psion PLC for providing some of the technical information which
Second Edition, revised and enlarged, 1990 made the publication of this book possible.
Kuma Computers Lid
12 Horseshoe Park
Pangbourne

Berkshire. RG8 7JW
Tel 0734 844335. Fax 0734 844339

Copyright © 1990 Bill Aitken
Printed in Great Britain
ISBN 0-7457-0138-8

This book and the programs within are supplied in the belief that its
contents arc correct and they operate as specified, but the authors
and Kuma Computers Lid. shall not be liable in any circumstances
whatsoever for any direct or indirect loss or damage to property
incurred or suffered by the customer or any other person as a result
of any fault or defect in the information contained herein.

ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior
wrilten permission of the author and the publisher.

Other books available from Kuma:

Using and Programming the Psion Organiser Il
by Mike Shaw

File Handling and Other Programs for the Psion Organiser II
by Mike Shaw

Z88 Magic
by Gill Gerhardi, Vic Gerhardi and Andy Berry

The Amstrad PC1640 Programmers Databook
by John Hawthome

Foreword

Firstly, thank you for buying my book! I hope that it is all you
expect and that it lcads you into a very rewarding arca of study. I
have tried to pitch it somewhere in the middle between extremely
dry and too funny for words. Whereas I have tried very hard indeed
to ensure that the material contained within these covers is free from
error, owing 1o the detailed nature of the subject matter, it is always
possible that Murphy's Law will prevail. I would therefore welcome
any comments from readers on either this publication or any future
one they would like to see.

In wriling a book, as in accepting Oscars, there is always a host of
people to be thanked, without whom... Firstly, there is my long-
suffering wife Maggie, who was beginning to feel that she was the
head of a one-parent family. Thanks for all the support, especially
through the last ycar.

Secondly, there is Tim Moore of Kuma who has been patience and
encouragement personified. Despite the fact that the book was
planncd to take eight months and went on for more than twice that
amount, he has been very supportive.

So, enjoy the read, make sure you keep backups of all your datafiles
and long may the dreaded TRAP keep from your screen.

Bill Aitken

v e N A Lk AWl

Contents

Chap page
1. The Ancestry of the Psion Organiser............ccccociveeciueuns 4
The Organiser and Computer Structurecooooee.co.. 10
Number Systems... = PRy)
Byteing The Bullet S R RS R 34
Machine Code - ALLASE!cooeereecrrcereescenreesnrrerseasd 44
Simple Arithmetic. ! 56
Decisions, Decisions 68
Give Me Arrays H.....cooceecrceinnene 86
There And Back S e 100
10. Organiser Operating System... e e = 108
Annex
Answers to Post tests...... 116
B. Number Bases Test Program .. 128
C. Memory Map 134
D. The Hitachi HD6303X Microcomputer Unit (MCU).......... 149
E. HD6303X Instruction Set Arranged Alphabetically 176
E Hexloader for the Psion 01’gar:iser 232
G. The Psion Organiser Operating SYSIEMccerereerrearsencs 286

Chapter 1

The Ancestry of the Psion Organiser

The Ancestry of the Psion Organiser

1: The Ancestry of the Psion Organiser

TRAINING OBJECTIVE:

At the end of this chapter, you will be able to describe the development of
the modern computer in general terms.

ENABLING OBJECTIVES:

To enable you to do this, you must be able to:
a. List the major land marks in computer development.
b. State the meaning of the word software
c. State the meaning of the word hardware

d. State the meaning of the term high level language

INTRODUCTION

1.0 In writing this book, I have tried to sirike a balance between the style
of presentation and the depth of content. You, the reader, may well
already be an expert in writing machine code programs on otlier
computers. For you, the book is intended as a reference work, to be
dipped into as need dictates. On the other hand, many of you will have
bought the Organiser for its business facilities and thereafter enjoyed the
challenge of writing programs in the Organiser Programming Language
(OPL). Now, you are looking to secure the benefits of speed and
flexibility machine code can give but you do not yet possess the
familiarity with computer structure which this type of programming
demands. The chapters which follow are designed with this latter Kind of
reader in mind. They start, therefore, right back at basics - the
development of the modern computer.

1.1 The Beginnings

THE BEGINNINGS

1.1 I suppose the real beginnings of computers could be traced back to
those ingenious clock-makers of the late Middle Ages, for they developed
the mechanical basis which formed the foundation on which computers
were built. But what about the Abacus and similar calculators? - do they
not form part of the history of computers? Well, it all depends on your
definition of a computer. Basically, I go for the one which runs “A
computer is a device which will store and carry out, at some future time,
a linked sequence of instructions”. You can see how your Organiser fits in
to this description. You have typed in your programs in OPL and watched
the computer store them. You decide when to tell the machine 1o RUN the
instructions. That being so, an Abacus could be seen really as a calculator
and not as a computer in the true sense of the word - more of a distant
relative rather than an ancestor, much in the same way as Apes and Man
are related in an evolutionary sense but not descended one from the other.

1.2 Carrying on this separate branch of the computer family tree, the
calculator was further developed in the 17th century by Pascal. He was a
tax collector and to help him work oul his sums, he developed a gear
wheel calculator. Admilttedly, it could only add and subtract but within 50
years the basic design had been modified by Leibnitz to enable
multiplication and division. This sort of machine was to remain in use,
with minor modifications, into the 1970s when it was replaced by its now
familiar electronic cousin. But at the same lime as Pascal was working on
the calculator, another type of machine was being developed in parallel -
the automata.

1.3 Automata were a completely different breed of machine, for they
could carry out a pre-determined, sometimes complex, series of
instructions. You've all seen the sort of thing I mean - music boxes for
example were automata. The barrel with the spikes which tripped the
notes as it rotated was, in effect, a sort of program. The 18th century was
known for its little mechanical singing birds which moved and twittered
away at the turn of a key. But the most exciling application of this
technology came when a Frenchman by the name of Jacquard designed a
weaving loom which could alter its pattern according to the program
which was fed into it via a linked series of punched cards. Change the
pattern of holes on the cards and you could have an entirely new weave 10

1.4 Charles Babbage

1.8 Transistors

the tapestry produced. Other versions of this type of thing carried on in
the shape of pianolas - the pianos which played music using rolls of
punched paper. Famous musicians actually played the machines which
produced the rolls. Their every nuance could be reproduced on card. All
this meant that we could have a machine which could store instructions
and execute tasks but how could this be combined with the mathematical
abilities of the calculator?

CHARLES BABBAGE

1.4 Babbage took the concept of the Jacquard Loom one step further in
the 19th century. He combined the programmable aspect of the loom with
the gear-wheel and ratchet concept of the mechanical calculator by (rying
to build his “Analytical Engine” (the very name has 19th century written
all over it!). Sadly, his design was too much for the engineering tolerances
of the day and the machine failed to materialize.

1.5 So, that was it until the 1940s. The impetus given by World War II to
the development of computers was enormous, mainly for use in
cryptography and ballistic calculations. The British developed a series of
machines called Colossus for the former application, while the Americans
came up with ENTAC for the latter. The Germans were also aclive in the
field and a designer

actually suggested a machine that worked in binary. Fortunately for us,
bureaucracy won and the machine was not given the attention it deserved.

1.6 These computers were designed specifically for military applications
and as such were not particularly useful after the War. But a rash of more
general purpose machines sprouted in their wake, such as the EDSAC 1 at
Cambridge. This new breed was largely mathematically orientated but it
wasn't long before the business world realised the implications of
computerization and so, the UNIVAC was bom in the early 1950s. IBM
started to pay attention at about this time too.

1.7 To say that these early computers were difficult to operate is
something of an understatement. They ran on valves. Consequently, you
could fry eggs on them and they needed vast cooling plants just to keep
them working. Some were enormous in comparison with their capabilities
and contained thousands of hand-soldered joints which would often give

intermittent faults while the valves went “ping™ and blew like light bulbs.
They made their own fun in those days.

1.8 What turned everything around was the invention of transistors in the
late 40s. After a period of refinement, they were used in computers for the
first time during the early part of the next decade. Each was 1000 times
smaller than a valve and streets ahead in terms of reliability. So,
compulers started to be taken more seriously as a useful tool.
Consequently, their development went into overdrive. However, whereas
in the past users could twiddle the controls of the computer themselves,
the increasing complexity of the machines now coming into being meant
that the day of the gified amateur was over. Machines costing thousands
of pounds simply couldn’t be allowed to hang about while you worked out
in your own mind what you wanted to do with them. The running costs
alone were astronomical and to make the best use of these machines, they
had to be used round the clock. Users began to be kept at arms length
from computers. The only people allowed to touch the control panels
were the computer operators. This interposed an impermeable layer of
bureaucracy between the user and the machine and built in a high degree
of delay in getting the results of your program. Moreover, the languages
used on these machines were specific to each individual model. Thus,
your abilities to program one type of computer were of little help to you
on another. ’

1.9 All was not lost, however, for with the acceleration in development of
the computers themselves (the HARDWARE), advances were being made
in programming (the SOFTWARE). The concept arose of writing a
program which would translate “English™ of a sort into the code
understood by the computer. This meant that programming became easier.
More importantly, if the translator could be modified to translate the
“English™ into the different codes used by the more common computers it
would mean that a person could program one type of machine in “English™,
move (o a lotally different computer and program it in the same language.

Languages of this sort are known as High Level Languapes (OPL is an
example). The first of these was FORTRAN (FORmula TRANslation)
developed by IBM in the mid-50s. As you can imagine from the name, it
was geared up to mathematical and scientific applications but it wasn’t long
before the business world saw the light and COBOL (Common Business
Orientated Language) was bom. From then on, other languages began (o

sprout up.

Post Test

1.10 Finally, the advent of the silicon chip meant that many transistors
and other electronic compoenents could be put onto a small wafer of
silicon by a sort of micro-photography. This, in turn, lowered the cost of
computers drastically and paved the way for micro-processors -
computers on a single chip - and computers for all.

1.11 Before we go on to look at the intemnal structure of a computer, and
the PSION Organiser in particular, I would like you to try oul the
questions contained in the post test below. The answers are given at
Appendix A and show the paragraph/s you should consult if you give any
wrong response/s. Ideally, you should take a look at any problem areas
and re-attempt the questions before leaving this chapter.

POST TEST
1. Describe Pascal’s invention.
2. Who improved it and how?
3. What were Automata?
4. What was Jacquard’s claim to fame?
5. Who invented the “Analytical Engine™?

6. What occurrence gave computer development its impetus in the 20th
century?

7. What were Colossus and ENTAC?

8. Which invention started the process of miniaturizing computers?
9. What is a high leve! language?

10. Name the first high level language.

11. Name the first business language.

Chapter 2

The Organiser and Computer Structure

The Organiser and Computer Structure

2: The Organiser and Computer Structure

TRAINING OBJECTIVE:
At the end of this chapter, you will be able to describe the structure of a
computer in general and the Organiser in particular.
ENABLING OBJECTIVES:
To enable you to do this, you must be able to:
a. State the functions of:

i) The CPU.

ii) ROM.

iii) RAM.

iv) I/O chips.

v) The Address and Data Buses.

vi) The Crystal Oscillator.
b. State the CPU used by the Organiser.
c. State the amount of memory held by the CPU internally.
d. Name the modes used by the CPU.

e. State the 3 modes of most interest to uscrs of the Organiser and
describe their meanings.

f. State the 2 main functions of the semi-custom chip.

10

2.0 Introduction

INTRODUCTION

2.0 I am a biologist by trade and, understandably enough, see a computer
in terms of “parts of the body". This analogy has helped me understand
computer structure and, since most people have some degree of
knowledge of what the various bits of their respective bodies do.I aim to
use it here, too. Do remember , however, that it is only a loose analogy
and not to be taken too literally. Moreover, it is based on that mythical
entity, the “Typical Computer”. Variations will occur from computer to
computer, according to manufacture and application. The generalisation
will hold true for most, however, and certainly for the Organiser. As we
progress through the book, I will amplify some of the areas we are about
to discuss in the light of the needs of the chapter being read.

THE CENTRAL PROCESSING UNIT (CPU)

2.1 Let’s start at the top of our “Silicon Man". What controls your body?
Your brain. Deep down, there is an area of the brain which does the
thinking for you. You know the sort of thing - deals with logic and
problems requiring powers of reasoning. It is this ability which raises us
above Jellyfish. The equivalent component in our “Silicon Man” is the
CPU. As the name suggests, it processes information. You'd be surprised
at how little it can do in comparison with the human brain. Usually, it can
only add and subtract with numbers less than 256, do a few of what we
call logical operations and control the other chips connected to it. It scores
over the brain in that it can do these things very quickly. Thus,
multiplication is “faked" by repeated addition, division by repeated
subtraction and so on. The great British mathematician Alan Turing
showed in the late 30s that a computer can solve very complex problems
by such simple means as long as the problem has a logical solution.

READ-ONLY MEMORY (ROM)

2.2 So, the mind we have described so far can process data for us but what
tells it what to do? Let’s think of a brand-new baby. It comes into the
world complete with its own built-in programs. It knows how to feed,
how to move, how to cling and how to do the 1001 other things babies do.
We call this instinct. It's a set of survival strategies which nature has

11

2.3 Random Access Memory

2.6 Chips and Buses

installed in each of us. Man is rather distant from instinct, in evolutionary
terms, and has few obvious ones left such as self-preservation, the eye-
blink reflex and keeping a beer glass level. It is better seen in other
animals - a duckling, for example. As soon as it has hatched, it can paddle
off after mother and feed itself. It has no need to be taught.

2.3 Your Organiser has a version of instinct in that it can respond 1o you
as s00n as it is switched on. It offers you a menu and provides a wealth of
complicated routines, culminating in a complete language - OPL. All of
these things are the result of programs because, as you have just seen, the
native abilities of a CPU are normally rather modest. You did not have to
type them in, so where did they come from? The answer is - PSION. They
wrote the routines which give the Organiser its “identity” and placed them
on a particular type of memory chip called “Read- Only Memory” or
ROM for short. It’s a bit like a textbook lying open under a locked glass
case - you can rcad the words through the glass but you cannot write on
the page or erase anything already there. This is a good thing, for if you
were let loose on these routines, your Organiser would end up completely
useless once you had altered the routines in any way. This type of
program is known as FIRMWARE since it is written by the manufacturer.

RANDOM ACCESS MEMORY (RAM)

2.4 Of course, if all we had was unerasable instinct, we would be in a
- preity bad way - we could never learn anything or change our behaviour
since everything would be indelibly imprinted on our minds. That is why
we have a portion of our memory which is given over to storing facts
which we have picked up along the way. The interesting thing about this
sort of memory is that the data in it can be erased or altered by
leamning/relearning. You would find it extremely difficult to survive
without this type of memory. Indeed, there are some unfortunate people
who have 0. They cannot remember names, dates, faces or, indeed, who
they are themselves despite constant re-inforcement.

2.5 Computers have a version of this sort of memory, too. We call it
Random Access Mcmory or RAM. It is “random access” in that the CPU
can put data into it, alter it, read it or delete it entirely - whatever you tell
it to. This is an essential feature of the machine, for without it you could
write no programs - there would be nowhere to store them. The great

12

drawback of RAM is that when its power is switched off, the contents of
the memory cells are erased - a bit like forgetting everything you ever
learned each time you go to sleep! This is known as volatile memory and
is the main reason why data is saved onto discs, datapacks and tape - these
are relatively permanent media and their contents can be loaded back into
the machine when it is powered up again.

INPUT/QUTPUT CHIPS AND THE BUSES

2.6 Let’s recap, then. So far, in biological terms, we have described a
person that can reason, possesses instinclive strategies built into his mind
and can play about with data in his flexible memory. In other words, he
still lacks all of the “five" senses and is totally paralysed - he has no
communication with the outside world at all. So it is with the computer. If
all we had was a CPU and some ROM and RAM chips, the machine
would be rather useless - we could not program it and it could not tell us
anything. For argument’s sake, let's take hearing and speech and draw
parallels in the silicon world. Sound strikes the ears and is converted into
electrical impulses which the centre of hearing in the brain deciphers and
passes on to our centre of reasoning for action. Similarly, the brain figures
out what it wants to say and passes the data to the centre of speech which
encodes it into a series of impulses directed at a whole range of muscles
to produce the truly miraculous gift of speech. The point is that within il}e
brain, the data of both speech and hearing (and all the other senses) exist
as identical little peaks of electricity. To convert these from sound or into
sound, we need 2 things - specialized organs outside the brain which do
the business and discrete centres within it which deal with the conversion
to/from the electrical blips which the brain understands.

2.7 The electronic equivalents in your Organiser could be the liquid
crystal display (since it “talks” to you via the screen) and the keyboard
(since it “hears™ you through the keys). These are the external organs of
your computer and, just like the biological versions, they must be
comnected to centres which will decode the information. These “centres”
are collectively called Input/Output Chips ([/O).

2.8 But wait a minute. Go back to the biological system. How do the ears

send the impulses to the brain? How does the brain send its data to the
vocal cords? The answer is - through the nerves. The nerves are the

13

2.9 Address Bus

body’s lines of communication and, of course, the computer just has to
have its “nerves”, too. We call these “Buses”. These are a related
collection of “wires™ like a highway, connecting the CPU with all its chips
in exactly the same way that all parts of the body are connected 1o the
brain via the nervous system. There are 2 main Buses in the computer -
the Address Bus and the Data Bus.

2.9 Let’s look at the Address Bus first. We could regard our memory chips
each as a vast, isolated monastery, made up of thousands of little cells,
each one capable of storing a single number in the range 0-255. We could
send a message to one of these cells, telling it the number we wished to
store in it, However, the question arises, “How do we specify the
particular cell we want the number stored in?" The answer is simple - we
put the address on the “envelope” - the cell number. This number is
converted into its binary equivalent and put on the bus. (Binary is a form
of arithmetic that is so simple, it uses only 2 digits - “0" and “1". We will
look more closely at binary in the next chapter) A pulse of electricity on a
lane means a 1" and its absence means a “‘0". Don"t worry about this too
much at this stage. It is important to be able to specify a unique address,
for without it, you would find it awfully difficult at a later date to find the
data you had stored. Putting the address of the chip on the address bus
“opens the door” of the cell ready to accept the data. There is a limit to the
number of cells that can be addressed by the computer. Essentially, this is
decided by the number of “lanes” in the Address Bus highway. The more
lanes, the greater the number which can be coded up on it and therefore
the more cells which can be uniquely identified.

2.10 When the door of a specified cell has been opened by the Address
Bus, the data we want to store is passed to it from the CPU along a
different highway - the Data Bus. Again, this is in its binary equivalent.
As I said previously, the sort of numbers we can store lies in the range 0-
255. This is because the Data Bus is 8 lanes wide and the maximum
number which can be coded in binary along 8 lanes is 255. Note that
traffic on the Data Bus is bi-directional. In other words, it can move from
the CPU to the cell when the CPU wants to store/alter/erase a number and
from the cell to the CPU when it wants to retrieve a number previously
stored. Traffic on the Address bus, however, is uni- directional. It is
always the CPU that does the addressing and the address selected always
goes from the CPU outwards to the cell within the chip in question.

14

2.12 Polling the Keyboard

2.11 So, there you have it. The Address Bus opens the door and the Data
Bus pops the data in or retrieves it. Note that while you can put data in
and take it out of a RAM chip, you can only retrieve data from a ROM
chip - never put things in. If the CPU wants to display a message on the
Liquid Crystal Display (LCD), it will “open the doors” of the cell where
the message is stored and the I/O chip which controls the LCD. It then
removes the message from the cell (really, the message stays in there until
you actually erase it - only a copy is removed) along the Data Bus 1o the
CPU and back out along the Data Bus to the I/O chip. This chip then
translates the data into signals which the LCD can understand, passes it to
the display and your message appears. This is a very simplistic
description, but correct in ils essentials.

2.12 The same sort of system applies to the keyboard of a computer. The
CPU is told, at regular intervals, to check the entire keyboard to see if a
key is being depressed. This is known as “polling™ the keyboard. It does
this by addressing the keyboard controller chip. In the case of the
Organiser, this is a semi-custom-programmed chip. Under software, it
then scans the keyboard and if a key is being pressed, the identity of the
key is coded up into a specific value and passed along the Data Bus to the
CPU which then takes action as appropriate.

2.13. So, now we have our complete “Silicon Man” who can
communicate with the outside world. Other “senses™ and facilities can be
added to the ones we have just described - sound, RS 232, light pens,
joysticks, robotic limbs - the list is long but all work on the same basic
lines as those we've examined. To round off the biological analogy, we
could regard the power supply to the computer (normally around +5v) as
its equivalent of a blood supply - but what about a heart? Well, “Silicon
Man" has a version of that, too. It takes the form of a crystal. Attached to
the CPU, it oscillates when connected to the electrical supply and, just in
the same way that an orchestra plays to the beat of the conductor’s baton,
the CPU executes its instructions in step with the pulses. Thus, all actions
within our silicon Frankenstein are perfectly synchronised.

THE INTERNAL ARCHITECTURE OF THE PSION ORGANISER

2.14 While all the above is fresh in your mind, let's turn to the Organiser
and see how we can put it into context. Inside the outer casing, the

15

2.15 The System Board

Organiser is essentially made up of 2 printed circuit boards (PCB) - the
main system board and the power supply board. The latter contains the
circuitry necessary to ensure that all the chips in the computer receive just
slots and buzzer. I do not propose to go any deeper into the workings of
this particular board since it does not really come into the area of
programming. Instead, we will concentrate more on the main system
board.

2.15 Main System Board. The system board has all the digital electronics
we discussed earlier and connects to the Liquid Crystal Display (LCD)
and the keyboard. The space taken up by all this has been minimised by
clever use of chips which can be mounted directly on to the surface of the
PCB and by the design of a special chip which alone carries out functions
which would normally require a complete circuit. In addition, the power
consumption has been minimised by utilising CMOS chips, which require
very little current, wherever possible and by taking advantage of the
special “Sleep” modes of the CPU. All this, of course, is very important
since the Organiser is basically a battery driven computer.

2.16 The board holds:

a. CPU - the HD6303X 8-bit processor manufactured by
Hitachi.

b. ROM - 32 kilobytes (32*1024) on a Programmable Read
Only Memory (PROM).

c. RAM - depending on the version, this can be 8,16 or 31
kilobytes.

d. LCD - this is a 16 character by 2 line display, also by
Hitachi.

e. Clock - areal lime clock runs from a 32767 Hz crystal.

f. Connectors - connectors link the PCB with the power
supply board and the keyboard.

16

2.18 Two chips

2.17 The CPU uses an 8-bit data bus and a 16-bit address bus. The
processor can operate in 5 different modes - standby, resel, active, halt
and sleep. Since the halt mode is not used by the Organiser and reset is
used rarely, only the other 3 are of concem to us. In standby mode, the
Organiser is under power but switched off. The contents of the RAM are
retained and power consumption is at a minimum. In active mode, of
course, everything is up and running. This continues until either you
switch the machine off (and the CPU rctums to standby mode) or the
Organiser decides that it has been waiting around for long enough and it
accesses a particular memory address to switchitself off. Slcep mode is
used while the processor is active to reduce power consumption.
Typically. this can be as little as 0.2 of that consumed in active mode.
Using the crystal, the CPU runs at a frequency of .9216 MHz. In other
words, the Organiser’s “heart” beats 921,600 times per second! This may
seem incredibly fast but, in computer terms, it is rather on the tardy side.

2.18 The LCD is controlled by 2 chips. One is the boss of the two and
holds all the patterns for the characters which the Organiser can display
bumnt into a section of internal ROM. It also has a litle RAM inside (as
does the CPU) to hold the data currently being displayed on the screen.
The other chip is a sort of slave, used to extend the normal capabilities of
the main display driver.

2.19 The real workhorse of the board, with the sole exception of the CPU
itself, is the Semi-Custom Programmed Chip. It carries out a number of
essential operations:

a. Central Clearing House - as we discussed earlier on, the
CPU puts the “telephone number” of the chip it wants to talk
to on the Address Bus. That chip will then wake up. However,
the Organiser’s “telephone system™ or Memory Map as it is
called, is far more complicated than this and so, it acls as a
sort of memory manager, making sense of the CPU’s
demands and calling up the appropriate chips. It also has
dealings with the keyboard, the power supply board and the
buzzer. In addition, it has an important part to play in the
CPU’s startup and shutdown procedures.

b. Time-keeper - using the XTAL as a reference, it keeps time

17

2.20 Memory Map

for the computer. When you are actually using the Organiser,
it receives a pulse once per second from the chip and stores
the time in its own RAM. When you switch off the computer,
it stores the time elapsed since switch-off. However, it can
only keep track of the time diffcrence up to 34 minutes and 8
seconds. At that point, it will wake up the Organiser, update
its diary and clock and switch it off again. Having done so, it
can then zero its timer and start the process again.

2.20 Memory Map. The ROM chips are of CMOS construction. They, like
the RAM chips, are always powered up, irrespective of the operation
mode of the CPU, There are also 2 other areas of RAM not immediately
obvious to the user. The first is within the CPU itself. There are 192 byles
from $0040-S00FF located on board the chip. The contents are retained
even when the machine is switched off. Secondly, there is the RAM store
of the LCD driver but this is not within the Organiser's memory map.

2.21 Well, that’s all I want to say on computer structure. Later, we will
look more decply into the internal architecture of the Organiser itself,
prior to discovering how to program it in machine code. First, however, I
would like you to try out the questions contained in the post test below.
The answers are given at Annex A.

18

Post Test

POST TEST

1. What is a micro-processor?
2. What does CPU stand for?
3. State 2 functions of a CPU.
4. What does ROM stand for ?

5. What is the name given to routines stored in ROM chips by
manufacturers?

6. What does RAM stand for ?

7. How do 1/O chips allow the CPU to communicate with the outside
world?

8. What are the functions of the Address and Data Buses?

9. What is the maximum number which can normally be stored in a
Ilcelllﬂ?

10. What is the function of a crystal oscillator?
11. Which CPU is used by the Organiser?

12. How much memory does it hold intcrally?
13. Name the operating modes used by the CPU.

14, State the modes of most interest to users of the Organiser and state
their meanings.

15. Describe the 2 main functions of the semi-custom chip.

19

Chapter 3

Number Systems

Number Systems

3.1 Number Bases

3: Number Systems

TRAINING OBJECTIVE:

At the end of this chapter, you will be able to use numbers in decimal,
binary and hexadecimal.

ENABLING OBJECTIVES:

To enable you to do this, you must be able to:

a. Use number boxes.

b. State the number base used by the computer.

¢. Conven decimal numbers to and from binary.

d. Add two binary numbers together.

e. State the meaning of Two's Complement.

f. Subtract two binary numbers.

g. State the meaning of Hexadecimal .

h. Convert decimal and binary numbers to and from hexadecimal.
INTRODUCTION

3.0 Now that we have met “Silicon Man", our electronic cousin, and
looked at how the various parts of his “body™ equate to our biological
world, let’s look at how he handles numbers. In our organic framework,

you and I use numbers in a particular way - in groups of ten. This, too, has
a biological implication - we have ten fingers. Over the centuries and by

22

courtesy of the Arabs, we have developed the unique digits 0-9 into the
system we know and love as DECIMAL.

3.1 But what if we want a number bigger than ten? Well, we can look
upon numbers as being made up of an infinite series of empty boxes, each
of which is capable of holding a single digit in the range 0 to 9. For
example, the number 156 would look like this :

wy — 000000 E

We know that the 6 is just 6 and that the 5 stands for 5x10 and the 1 is
really 1x100 - but how? Through years of practice at school and in adult
life, we get to be pretty good at looking at a number and subconsciously
working out the value of the maximum occupied box - is it 100? 10007
10000? - and then going back down the line giving scale to all the other
digits until we can state the value of the whole number. Anything up to a
million we can handle pretty quickly but once it goes beyond that number,
things start to slow down. Take this number for example -
1001236745699 - figure it out and note just how long it took you to
“decode™ it and how you arrived at the answer. You had to say, “That one
is Units, that one’s Tens™ and so on until you reached the leftmost
(highest) digit. Once you had done that, you could move back down the
line again. This dependence on calculating the highest digit in a number
has led to the convention of calling the leftmost digit the MOST
SIGNIFICANT and the rightmost the LEAST SIGNIFICANT.

3.2 Let’s look at our first number again:
¢ 100 100

winty <[] [(] OJ O O B]

The powers of 10 shown above the boxes represents the “value™ by which
the contents of the box must be multiplied to give the correct number. So,
the 1 is multiplied by 10x10 (2 tens multiplied together), the 5 is
multiplied by 10 (1 ten) and the 6 is multiplied by no tens at all. This will
give us 1x100 + 5x10 + 6 = 156. Easy! Let's try something more difficult,
say 15134. Put into our number boxes, it would look like this:

3.3 Other number bases

100 1 10 100 107

iy <—[] O O OEE

This would give us 1x10000 (4 tens multiplied together) + 5x1000 (3 tens
multiplied together) + 1x100 (2 tens multiplied together) + 1x10 (1 tenon
its own) + 4 (no tens at all) =15134. We say that 10 is the NUMBER
BASE and the digit in each box is multiplied by the base raised to the
power of n (n being the box’s position in the number line, starting from 0
and going to infinity).

OTHER NUMBER BASES
BINARY

3.3 “Silicon Man", sad 1o say, does not work in decimal. Think back to
paragraph 2.9. Do you remember how I said that the addresses and
numbers to be stored in cells are passed along the Buses as blips or no
blips of electricity? Silicon Man uses this approach because it is simple -
either there is a pulse of energy there or there isn’t - and it resists spurious
interference from other electrical sources. So, the system is “Pulse or No
Pulse” - in other words 1 or 0. This is known as BINARY. Silicon Man, in
other words, has only 1 finger on each hand. This means that the numbers
we know as 2 to 9 simply do not exist in his world. If we are counting and
have reached 9, the next number is 10 - we have put 1 in the next number
box and zeroed the Units box. Silicon Man has to do this once he has
gone beyond 1!

3.4 Binary to Decimal. Let's try an example. Suppose we wanted lo
translate the binary number 10011 into decimal - how would we do it?
The first thing is to imagine our number boxes but this time instead of 10,
the number base will be 2. Like so :

2 2 2 22 2

winy <—] (] [O 1 & [[

This will give us 1x16 (4 twos multiplied together) + 0x8 (3 twos
multiplied together) + 0x4 (2 twos multiplied together) + 1x2 (1 two) + 1
(no twos at all) = 19 (in decimal). Do you remember I said in paragraph

24

3.4 Binary to Decimal

2.10 that the maximum number you could store on 8 lines of a Data Bus
was 2557 Let’s prove it! To get the maximum number, all 8 lines must be
carrying a pulse. That would give us the binary number 11111111. Our
number boxes would look like this:

2 2 2 2 2 2 2! 2

winy <— 7] [0 [0 O & B

To turn it into decimal, we do everything as before:

1x128 (7 twos multiplied together) = 128
1x64 (6 twos multiplied together) = 64
1x32 (5 twos multiplied together) = 32
1x16 (4 twos multiplied together) = 16
1x8 (3 twos multiplied together) = 8
1x4 (2 twos multiplied together) = 4
1x2 (1 two on its own = 2
1 (1 times no twos at all) = 1

255

So you see, there are 8 lines into each cell of the memory chips. Each line
can hold a 0 or a 1. The combination of these two digits makes up the
complete number just in the same way that we can make up complex
numbers according to how we combine our decimal digits 0 to 9. I also
said in paragraph 2.9 that there was a limit to the number of cells which
the computer could address and that this limitation was due to the fact that
the system used for writing numbers on the Data Bus was the same as that
used for writing addresses on the Address Bus. In other words, there was
a maximum number possible. In most home computers these days, the
Address Bus is 16 lines wide, so here’s a liule test for you - what is the
maximum number addressable on a 16 line bus? Use the same techniques
we have discussed so far. The answer should be 65535! Surprised? It is a
large number when you consider that the Data Bus with half the number
of lines can still only manage 255 as its maximum number but remember
that each line is worth TWICE THE VALUE OF THE PREVIOUS LINE.
This can give rise lo some surprising numbers.

3.5 Decimal to Binary

3.5 Decimal to Binary. So far, I've shown you how to take a binary
number and to translate it into decimal. What if we have a decimal
number and we want to discover its binary equivalent? We use the process
of repeated division. Think back to paragraph 3.1. We used the number
156 to illustrate the number box system. Let's suppose we now want to
convert this number to its binary equivalent. Since we want binary, we
must divide by 2. Each time we divide by 2, we take note of the
remainders - like so: i

Decimal Binary

78/2=39 remainder 0
3972=19 remainder 1
19/2=9 remainderl
9/2=4 remainder 1
402=2 remainder 0
22=1 remainder 0
12=0 remainder 1
The topmost binary digit is in box zero of our number line, the next one
down in box one and so on, giving us the binary number of 10010100. So

156 in decimal is equivalent to 10010100 in binary. Convert 255 in
decimal to binary. (You should already know the answer.)

26

3.6 Binary numbers

3.6 Adding and Subtracting Binary Numbers. Addition and subtraction of
binary numbers couldn’t be easier. Let’s look at addition first by
considering the table below:

0+0=0
0+1=1
1+0=1
1+1=10

That's all there is to it! You can see in the last line of the table that 1 + 1
in binary is equal to 10 - NO, NOT TEN !!!1!!! One-zero in binary is
equal to 2 in decimal - think about it. While you're doing that, I'll give
you a little binary addition sum. Try this:

10100100
+00110011

The binary numbers 10100100 and 00110011 are 164 and 51,
respectively, in decimal. You could work this out using the method I
outlined in paragraph 3.4 but really, it is not necessary - if you want to do
the conversion, do it more as a check of the answer rather than as a means
to it. Think of the little table above and remember Lo carry one over into
the next column if you add 2 ones together. The answer is 11010111, If
you convert this back into decimal, you can see that it is equal to 215,
which is the result you would expect on adding 164 and 51.

3.7 Well, what about subtraction? The process is just the same. Look at
the table below:

]
=]

—— O O
1
1]
1
—

I
-, —

20

]
L= =]
"

Armed with this info, try the following test:

27

3.8 The Byte

10100100
-00110011

76543210

Notice that I am using the same 2 numbers - 164 and 51 (decimal). At
first, you may find binary subtraction slightly more difficult than addition,
but keep with it. To make things easier for you to understand my
explanation of the process, I've labelled the *"boxes™ underneath with their
powers of 2. Starting with box 0, we can see that we must subtract 1 from
0. Since we cannot do this, we must borrow. If this were a decimal
subtraction, we would borrow 10 from box 1. We are dealing with a
binary sum and so we borrow 2 from box 1. This means we now subtract
the 1 from 2 to give us a remainder of 1. Moving on to box 1, we see that
it contains 1 AND the carry to make 2. This is to be subtracted from 0.
Borrowing again from box 2, makes the problem 2-2 = 0. We therefore
put 0 in the space at box 1. Box 2 contains a 0 plus the carry, which makes
1. This is to be subtracted from 1, which means we put 0 into the box 2
space. Box 3 is simple - 0 minus 0, giving 0 in box 3. In box 4, we are
back to the same problem of subtracting 1 from 0. Borrowing 2 from the
next box makes it 2-1, giving 1 in box 4. Box 5 now has its own 1 plus the
carty to make 2. This is to be subtracted from 1, forcing us to borrow yet
again. The 2 we borrow plus the 1 already there makes the subtraction 3-2
= 1. Box 6 has only the carry but this is to be subtracted from 0, so we
have to borrow from the last box. This subtraction then becomes 2-1 = 1
in box 6. The final box, box 7, has 0 plus the carry to be subtracted from
1. This makes 1-1 and results in 0 in box 7. So, then, the final answer is
01110001, This is equal 1o 113 in decimal and, indeed, is the result when
you subtract 51 from 164.

3.8 You'll be glad to know, however, that there is an easier way of doing it
but first of all, let me talk about that magical word - the BYTE.
Remember the 8 lanes in the Data Bus? - well, that determines the
maximum number we can store in one memory cell. We call this a BYTE
of information and we can say that this byte is made up of 8 bits of
discrete data_ In other words, it is an 8- bit byte. Most home computers
use 8-bit bytes, although 16-bit computers are becoming increasingly

28

3.9 Two’s Complement

popular. What's the maximum number we could store in a cell if the
Organiser used 16-bit bytes? (You should already know the answer.) Back
to the 8-bit job. The leftmost bit (see paragraph 3.1) is known as “The
most significant bit” and the rightmost, “The least significant”. This is
because the most significant bit is in the 2 to the power of 7 column i.e.
128 and is the biggest single bit in the byte. The converse applies to the
least significant. So, even if you have a small binary number, it is
convention to pad it out ON THE LEFT HAND SIDE with leading zeros
to give 8 digits. For example, the binary number 101 (5 in decimal) would
normally be written as 00000101. The leading zeros do not affect the
number. Now then, switch over to decimal. If we wanted to subtract, say,
4 from 10, we would say 10-4 = 6. But we could equally have said, “Let’s
turn the 4 into a negative number and ADD it to the 10. This would give
us 10+ -4 = 6. Exactly the same result. Why bother? Well, it may seem
pointless in decimal to do that litlle piece of legerdemain, but it helps us a
lot in binary.

3.9 Two’s Complement. Whereas in decimal, we can simply stick a minus
sign in front of a number to tum it into a negative number, in binary we
have to do just a little more. Remember that the little blips of electricity
on the Data or Address Bus lanes cannot carry a sign saying minus or
positive, so we have to do something else to convey this. We use the
convention of making the most significant bit stand for the sign of the
byte. So, a 0 in bit 7 means that the whole byte is positive, while a 1
means that it is ncgative. Of course, using bit 7 to indicate the sign of the
numbers means that instead of 8 bits to slore your number, you now only
have 7. For this reason, SIGNED numbers in an 8-bit system lie in the
range -128 1o +127. The process of negating a binary number goes like
this. Let’s take the number 34 (decimal) and express it as a binary number.
This will give us 00100010. To turn it into -34 we do the following:

1. Change all the ones to zeros and all the zeros 1o ones.
2. Add 1.

In the first stage, this would change our 00100010 to 11011101.
Adding 1 to this number would result in the negative binary number
11011110 which is equal to -34. To prove that this is so, we could add
it to the binary equivalent of PLUS 34. That should give us 00000000

3.10 Hexadecimal

since 34+ -34 = 0. Let’s ry it:

00100010
+11011110

100000000

Notice that we seem to have a ninth bit. This is the carry over but since
there are only 8 bits in our byte, this is simply thrown away (although the
computer “sticks its hand up™ to let you know that a carry has been
generated - more on that later) and the result is 00000000 - in other words,
zero. The proof of the pudding. Why this works is beyond the scope of
this book. Just believe in it - it works.

HEXADECIMAL

3.10 1 can just see you now, learing your hair out at the thought of having
to type in all these little 1's and 0’s, but don’t worry - there is a way round
it. We humans, unlike our silicon cousins, are very prone lo error. So,
when confronted by a long series of binary bytes to input into a computer,
we would naturally make the odd error. This might take the form of
inputting a “0” when you meant a “1" and vice versa. While this may not
seem too drastic lo you, il can be catastrophic to the program. Try the
following little test. On the left is the correct version of a binary coded
program and on the right is one which was typed in by an amateur. It
contains a single error. Time yoursclf to see just how long it takes you to

spotiL.

CORRECT WRONG
01001010 01001010
11010010 11010010
00100101 00100101
10101101 10101101
01011111 01011111
11111000 11111000
11001100 11001100
11010100 11010110
11111100 11111100
11010100 11010100
00000001 00000001
11111110 11111110
11011111 11011111

30

3.11 Coding a Byte

How long did that take you? You can imagine, therefore, the immense
problem that would arise if an error had to be found among 65535 bytes
instead of 13. To help prevent this sort of difficulty, we use a different
number system - HEXADECIMAL - or base 16. Naturally, if we work to
base 16, we will need 16 individual digits and we humans really only
have 10. For this reason, hexadecimal (or “hex” for short) uses the digits 0
to 9 and then continues on to employ the letters A to F where we, in
decimal, would go into double figures. So then, the hex number line looks
like this:
Basel6 0123456789ABCDEF

Base10: 0123456789101112131415

3.11 Coding a Byte. Note that the maximum number which can be coded
on 4 bits is 15. This means that we can conveniently split the byte into 2
parts (called “nibbles™ - honestly!) and code them separately. So, each
byte is represented by 2 hex digits. Try it out by converting the binary
number 01101101 into base 16.

Stage 1 Split the byte into 2 nybbles 0110 1101
Stage2 Convert to decimal equivalent 6 13
Stage 3 Express as 2 hex digits 6 C
Stage4 Join them together 6C

So then, the binary number 01101101 is 6C in hexadecimal. Converting
back to binary is a simple reversal of the above procedure.

CONCLUSION

3.12 That is all we nced to know at this point about number systems. We
have seen how Silicon Man uses binary to handle numbers. However,
while we humans CAN deal with numbers to.base 2, our susceptibility to
Murphy's Law forces us to use a more compact number system. We use
hexadecimal for this reason and because it has such a nice equivalence to
the half byte range.

3.13 You should now attempt the post test below. As before, the answers
are contained in Appendix A. Note however, that to enable you to try out
your own conversions, additions and subtractions, I have written a short
program. This is listed at Appendix B and should be used only to check
the answers of problems you have set yourself

31

Post Test

POST TEST
1. What number base do we use in every day life?
2. What number base does Binary use?
3. Conven the following Decimal numbers to binary:

a.128 ©.224 c.34 d.50 e 65 f£101
g-202 h.195 i.77 j.132 k.200 1.240

4, Convert the following binary numbers to decimal:

a. 01001100 b. 11010011 c. 00101101 d. 11110001
€. 10101010 f. 01010101 g.11100011 h.01111110
i. 10000001 j. 01011110 k. 11111110 101111111
5. Complete the following binary additions:

a. 11000000 b. 11001010 c. 11111011 d. 10000011
400010111 +01100001 +00000011 +01111000

6. What is Two’s Complement?

7. Repeat Question 5, this lime subtracling the numbers.
8. Why don’t we use binary lo enler our programs?

9. What base do we use instead of binary?

10. What number base does hexadecimal use?

11. Convert the numbers in questions 3 and 4 into Hexadecimal.

32

Chapter 4

Byteing the Bullet

Byteing the Bullet

4: Byteing the Bullet

TRAINING OBJECTIVE:

At the end of this chapter, you will be able to describe the meaning of
machine code in the context of the PSION Organiser.

ENABLING OBJECTIVES:
To do this, you must be able to:

a. State two advantages of machine code over a high level
language.

b. State one major disadvantage of machine code and how, in
the context of the Organiser, it can be circumvented.

c. Describe one strategy for storing machine code.

d. State the meaning of the word operator in the context of
machine code.

e. State the meaning of the word operand in the context of
machine code.

f. State the meaning of the tcrm assembly language.
g. State the number of registers in the Organiser’s CPU, their
bit-size, names and functions.

INTRODUCTION

4.0 Now we're ready to start on machine code itself. But first, it'll be
necessary to look at the language in context - what exactly is machine

34

4.1 Machine Code

code, where can we store it, what are its KEYWORDS and how does it
affect the CPU? We need to know all of these things in order to use
machine code, unlike OPL where the inbuilt routincs do all of that for
you.

WHAT IS MACHINE CODE?

4.1 Let’s suppose you have decided to build yourself a house. You do not
actually intend to put mortar to brick yourself but are looking about for
suitable contractors. Sadly, it is the time of the World Cup. England is in
the final, to be played, funnily enough, at Wembley. Naturally you cannot
find workmen for love nor money but, what with the Common Market
and 1992 and all that, you can lay you hands on a German workforce with
no trouble at all.

4.2 So, they start work, laying the foundations of your house. But wail a
minute - you can speak not a word of German except “Guten Tag". How
on earth are you going to communicalte with them? More to the point,
what will your house end up like if you can'1? Fortunately for you, you
have a friend who can speak the language and you hire him for the
duration. Now all you have to do 1o get something done is o tell your
friend, who will translate it into German, tell the appropriate person, and
the thing will be done.

4.3 What a rigmarole! Especially if you need something done very
urgently. This sort of translation builds in a delay and causes everything 1o
be done more slowly. OPL is a bit like that. As I mentioned in Chapter 1,
OPL is a High Level Language, where the routines buill into the
Organiser translates your “English"” into machine code which the
Computer can understand. Just like your linguistic, friend, however, it has
a limited vocabulary. If you had been able to speak German, you could
more easily have expressed exactly what you wanted, and quicker, too.

4.4 So, then, the benefits of learning machine code for the Organiser are:

a. Speed. Your instructions will be executed MUCH faster,
since they do not have to be translated from another language.

b. Flexibility. You will be able to make the Organiser do
things which are impossible to achieve using OPL.

35

4.5 No safety net

4.5 But I can hear you thinking, “This sounds terrific, so where's the
catch?” The catch is that the language which you will acquire will be
usable only on the Organiser or a computer using the HD6303X chip.
Moreover, you will be working without the aid of a safety net. When you
use OPL, there are routines which detect errors, either at translation time
or at run time. These facilities will politely inform you of your gaff and
even assist by pointing out the likely error. Machine code has none of this.
When you make a mistake at run time, disaster could strike. Al the best,
you will produce garbage. Al the worst, the computer will irretrievably
freeze, leaving you the sole option of “pulling the plug™. Normally, with a
home computer, this is no great problem. You will have saved your
program to disc. When the big freeze comes, you simply press the RESET
button or BREAK and load the program back in, debug it and run it again.
The Organiser, however, may hold important data such as telephone
numbers and diary files.

4.6 For this rcason, you are STRONGLY advised to save all valuable
information on to a datapack before running a machine code routine.
YOU HAVE BEEN WARNED. MACHINE CODE CAN SERIOUSLY
DAMAGE YOUR DIARY. You will have many frustrations and setbacks
but I promise you that if you follow my instructions, these will be
minimized.

WHERE CAN WE STORE MACHINE CODE?

4.7 Unlike OPL, which does all the housckeeping for you, machine code
has to be stored at an address specified by the user. This then means that
he must be familiar with the way in which his computer uses its available
RAM and ROM. This is known as a Memory Map and the map for the
Organiser is at Annex C. The letter/number combinations preceded by the
“$" sign are the hexadecimal addresses. Note that the addresses run from
$0000 to SFFFF. The system ROM, which contains all the routines
created by PSION, starts from $8000. The address of the very top of
RAM depends on which type of Organiser you are using, but it is listed in
the first diagram. Also note that addresses $0000-$0020 are actually
INSIDE the HD6303X chip. Normally these are hidden from the OPL
user but we in the machine code world will be able to access them with
relative ease. Following the main column drawing which gives an
overview of the Organiser's memory, the data storage locations, or
Registers as they are more properly known, are listed. These addresses are

36

4.8 Mnemonics

actually inside the CPU. Don't worry 100 much about them at this time
but when you come to use them in your own programs, you will find this
Annex invaluable. In particular, look carefully at the memory location
$2065. This is the address of the language stack. We will move it down by
the amount we need. This can be done using OPL and is the strategy we
will adopt, although there are other methods.

MNEMONICS

4.8 Machine code itself is composed of a series of numbers in the range
0-255. Usually, but not always, more than one byte is required to
completely describe an instruction. For instance, if we wanted to tell the
computer to load one of its registers with a specific number, we would
input the code for the load instruction, followed by the actual number to
be stored. We call the instruction code the OPERATOR and the number to
be stored the OPERAND. Note that the operand does not have 1o be a
physical number to be stored. If we wanted to copy the contents of the
register we used in the last example into a location in memory, we would
use a byte for the copy operaltor and this time the operand would be the
address of the memory location we want to use. Moreover, if the address
of this location was more than 255, it would take 2 bytes to describe it.
Thus, the complete instruction would have taken 3 bytes.

4.9 Normally, we use hexadecimal numbers to describe the codes.
However, please note at this point that there is no fundamental difference
in a number stored in memory which is an operator and one which is an
operand. It all depends on the context. But cast your mind back to the last
chapter. Do you remember how I said that humans were not really very
good at entering long lists of binary numbers? Well, it is pretty much the
same in hexadecimal if the program is very long or intricate. For this
reason, we somelimes use mnemonics to describe the codes. Thus,
“STA A” is the mnemonic for the hex code $97. Since that particular
operator STores the Accumulator A in the memory location which follows
the operator, it is quite a good mnemonic and much better than
remembering $97.

4.10 We call these mnemonics “Assembly Language™. But do not think
that this means it is a high level language like OPL. Keywords in a high
level language cause lots of machine code to be executed in order to bring
about the result expected. Assembly language, on the other hand, is a one-

27

4.12 Addressing Mode

to-one relationship with the respective codes. The problem is, of course,
that you cannot directly enter the mnemonics unless you have a special
program to do this for you. Not surprisingly, this is called an Assembler.
At the present moment, sadly, no assembler for the Organiser itself exists,
although there is a PC version which allows the user to develop an
assembly language program on an IBM-compatible machine with its
excellent keyboard, debug it and download it to the Organiser, courtesy of
the RS232 port. This kind of assembler is known as a cross-assembler
since the code it develops is not intended for, indeed cannot be run on, the
host machine. It is destined to be transferred onto the target machine on
completion.

4.11 Although we do not have an assembler (we will use another program
which I have written, known as a Hex Loader) I will refer to the operators
by their assembly language names. This is far easier than using the code
numbers. However, an instruction like STA A can exist in no less than 3
different flavours, according to how it is actually being used in context.
This is known as the Addressing Mode. Some operators have far more
variety even than this.

THE HD6303X MCU

4.12 The HD6303X was introduced in Chapter 2 as the “Brain” of the
Organiser. It is a fact of life that to exploit the capabilities of this chip
fully, you have to use machine code and you must be completely familiar
with its internal organization.

4.3 Registers

7 o 7 0
A]_I B B-Bit Accumulators A and B
__________) Or 16-Bit Double Accumulator D
|g 0
I x] Ingdex Register (X}
15 Q9
[* 5P I Stack Pointer {SP)
15 [}
[PC _‘ Program Counter (PC)
7 0
1| 1]1] 1 [N} 2]V]|C]|Condition Code Regisler (CCRI
L Carry/Borrow from MSB
Over llow
Zero
HNegative
Diagram 1 CPU Registers L Inlerrpt
L ——— Hall Carry (From Bit 3)

30

4.13 Inside the CPU of the Organiser, there are 3 8-bit and 3 16- bit data
storage areas known as REGISTERS. These regislers have very particular
functions to perform and it is largely due to their good offices that we can
keep track of what is going on. The registers are arranged as follows:

a. Accumulators A and B (ACCA and ACCB). An
accumnulator is a dala storage area which holds the results of
arithmetic or logical opcrations. Both accurnulators are 8-bit.

b. Accumulator D (ACCD). Accumulator D is a 16-bit
regisler

made up by combining Accumulators A and B together. No
special processes are needed to reconfigure the 8-bit registers
into a 16-bit one. All that is nceded is for the user to employ a
double-byte instruction. This will be covered later but it is
important to note that the original contents of A and B are
trashed when they are combined in this fashion.

c. Index Register (IX). The 16-bit IX register stores
information which is important in identifying memory
locations. Alternatively, it can be used for general purposes.

d. Stack Pointer (SP). The 16-bit SP holds the address of a
stack. Stacks will be covered in a later chapter. As with the
IX, the SP can also be used as a general-purpose register.

e. Program Counter (PC). This 16-bit register, which you the
user cannot access by software, holds the address in memory
of the instruction which is currently being executed.

f. Condition Code Register (CCR). This 8-bit register holds 6
bits of information, or FLAGS, which are extremely
important to the programmer:

1) Carry Flag (C). Bit 0 of the CCR holds the C flag.
This will be set to 1 whenever a carry or borrow is
generated. Otherwise, it is cleared.

2) Overflow Flag (V). Bit 1 of the CCR holds the V

39

4.15 Conclusion

flag. This is set to 1 whenever the Two’s Complement
overflows. Otherwise, it is cleared.

3) Zero Flag (Z). Bit 2 of the CCR holds the Z flag,
which is set to 1 whenever the result of an operation is
zero. Otherwise, it is sel.

4) Negative Flag (N). Bit 3 of the CCR holds the N
flag. This is set to 1 when the MSB of a result equals 1.
It is cleared otherwise.

5) Interrupt Mask (I). Bit 4 of the CCR holds the
Interrupt Mask. If this is set to 1, no maskable
interrupts will be accepted. This means that any task
you have set the CPU will be carried out irrespective of
the needs of the rest of the computer. The only
exception to this is the Non-Maskable Interrupt which,
as the name implies, cannot be disabled. This is
because it is responsible for the highest priority matters
such as time keeping and cannot therefore be ignored.

6) Half-Carry Flag (H). Bit 5 of the CCR contains the H
flag which is set to 1 whenever there is a carry at bit 3
or 4 during an arithmetic operation. It is cleared
otherwise.

4.14 You must be fully conversant with the above registers and flags if
you are to use machine code since most operations will involve them to
some degree. A deeper description of the HD6303X MCU for more
advanced readers is contained in Annex D.

CONCLUSION

4.15 Just to recap, we have considered the nature of machine code and
where we can store it. In addition, I pointed out that the use of machine
code forces the programmer to be far more careful about his coding
practices because of the potentially catastrophic consequences of getting it
wrong. A good practice is to save all valuable data to datapack before
carrying out machine code programming.

40

Post Test

4.16 If you remember, we then went on Lo see how we fallible humans can
use a one-for-one mnemonic code which enables us 1o more easily
compose machine code programs. This is called Assembly Language. It
needs, however, a special program known as an Assembler to decode the
mnemonics. We will have to enter our code in the original hexadecimal.
Nevertheless, all programs will be written in both assembly language and
hexadecimal. Moreover, the instruction set is presented in both forms and
its use should present no problems.

POST TEST

1. What are the 2 advantages of machine code over a high level language?

2. Siate one major disadvantage of machine code and how, in the context
of the Organiser, it can be circumvented.

3. Describe one strategy for storing machine code.

4. State the meaning of the word gperator in the context of machine code.
5. State the meaning of the word gperand in the context of machine code,
6. State the meaning of the term assembly language.

7. State the number of registers, their bit-size, names and functions.

41

Chapter 5

Machine Code - At Last!

Machine Code - At Last!

5: Machine Code - At Last!

TRAINING OBJECTIVE:

At the end of this Chapter, you will be able to store and retrieve
numbers using machine code.

ENABLING OBJECTIVES:

To do this, you must be able to:
a. Describe the machine code equivalent of OPL variables.
b. Describe the use of the LDA A mnemonic.
c. Describe the use of the STA A mnemonic.

d. State the machinc code equivalent of the OPL statement
“INTEGER%=25".

¢. Stale the machine code equivalent of the OPL statement
“NUMBER%=INTEGER%".

e. Describe the use of the D Accumulator.

f. State the mnemonic needed to load a number into the D
Accumulator.

g- State the mnemonic needed to store the contents of the D
Accumulator in a given memory location(s).

5.0 Introduction

INTRODUCTION

5.0 At last, we can get down to actually programming the Organiser in
machine code! If all of the foregoing text has done nothing else but to
impress upon you how different machine code programming is from a
high level language, then it has been worthwhile. In this chapter, we
will look at how we deal with numeric variables and methods of
assigning values to them. This will then form the foundation for simple
arithmetic, examined in Chapter 6.

VARIABLES

5.1 In OPL, it is a simple matter to make up variables - you just declare
them at the beginning of your procedure and assign values to them as
need dictates throughout the remainder of your code. But have you
REALLY thought how the Organiser does this? OPL must store the
name of your variable and, according to the type of variable (string,
integer, real or array) reserve some space for it. The question is -
WHERE? The machine takes care of that and decides a suitable
location. Thus, whenever you want to “PRINT INTEGER%", OPL
finds the name of the variable, remembers where it stored the associated
value, locates it, retrieves it and passes it to the PRINT routine to
magically appear on the display. The point is, however, that in machine
code YOU have to do all of these things yourself!!

5.2 To set up a variable in memory, we must look around for some
suitable area in which to store its data. Remember that data and machine
code are indistinguishable from each other and that a location can only
store a number in the range 0-255. I suggest that you reserve the
topmost 50 bytes of the space you have grabbed to store your data.
Moreover, it is not possible to use meaningful names as you would in
OPL. Simply say to yourself “I am going to use location $7EF0 to store
the first number”. You, however, must keep track of where everything is
- s0 write it all down.

THE ACCUMULATORS

5.3 Everything in machine code is channeled through the Accumulators.
The 2 we are most interested in are the 8-bit A and B Accumulators
(which can be combined to give a 16-bit version called the D
Accumulator). All arithmetic is done in the Accumulators and the act of

5.4 Assigning a value

moving the contents of one memory location into another has to go via
this route, too. They are, therefore, extremely important and you must
learn how to use them straight away.

ASSIGNING A VALUE TO A “VARIABLE”

5.4 Lel’s suppose you want to write the equivalent of the OPL statement
“INTEGER%=25". We go about this in 3 stages -

a. If we haven’t already used the variable, we must decide
on a suitable, SAFE location for the data and write down
this address and the nature of the information stored there
(Use the “variable name” if it is meaningful). If we HAVE
used the variable before, we must look on our piece of paper
for the address we assigned to it.

b. Place the number 25 in one of the Accumulators (let’s say
the A Accumulator, although the B one would apply
equally).

c. Tell the CPU 1o store the contents of the Accumulator in
the memory location arrived at in sub-paragraph a.

5.5 1 suggest that you reserve 500 bytes or so for your machine code
programs - set the base address to $7DO0B. Check this using the INFO
option in the Hexloader. Let’s decide, for example, that we are going to
assign location $7EFO0 to be our machine code equivalent of
INTEGER%. Start with a sheet of paper on which you are going to
creale your program and wrilc:

LOCATION $7EF0 - INTEGER%

This will allow you to refer to the location whenever you need to code a
subsequent access to the location (not actually necessary in this
particular example).

5.6 Now we nced to ascertain the machine code instruction needed to
load Accumulator A with the number 25. Tumn to Annex E and look up
the mnemonic LDA A. This stands for LoaD Accumulator A. It comes
in 4 flavours - Addressing Modes - but don’t worry too much about that
at the moment. The one we are most interested in is the first of these -

46

5.7 Store Accumulator

the Immediate Mode. This is where we want to load an actual number,
as opposed to the contents of a2 memory location, into the Accumulator.
The mnemonic format of this instruction would then be:

LDA A #25

This is how we would have typed it in if we had been using an
assembler. Of course, we are limited strictly to machine code (which
follows a one-to-one relationship with the mnemonic codes - it’s just
easier to remember the mnemonics than the hexadecimal versions). In
the “BYTES” column, we see that the instruction takes 2 bytes - one for
the instruction code itself and one for the number you want to load into
the Accumulator. The code, as you can see under the appropriate
column, is $86. Thus, the instruction to load Accumulator A with the
number 25 seems to be:

$8625

5.7 Now we need to store the contents of the Accumulator into the
memory location we decided upon in 5.5. We do this using the Store
Accumulator A (STA A) command. Look it up in Annex E. This
command has 3 different Addressing Modes. The first (Direct) allows
you to store the Accumnulator’s contents in a memory location whose
address consists of a single byte - i.c. it is in Zero Page (See Annex C
for further details). Since we are using location &7EF0, a double-byte
address, this is obviously not appropriate. The next one - Extended -
uses a double byte address - bingo. The code for the mnemonic is $B7
and must be followed, as indicated by the format column, by an address
made up of 2 bytes. Our code now becomes:

$86 25 $B7 $7EF0

RETURNING TO OPL

5.8 But we are not quite there, yet. If we were to RUN the machine code
program in the above paragraph, the machine would cenainly load the
accumulator with the number but would then become totally lost. It
would try to execute the number in the memory location after the “25”
as if it were an instruction. Chaos would ensue in a nanosecond. So, we

47

5.9 Program layout

5.10 Using the Hexloader

have to have some way of re-directing the Organiser back into OPL
once the machine code routine has been executed. We do this with the
Return To System command or RTS. Look it up in Annex E. There is
only one version of this command and its machine code is $39. BURN
THIS CODE INTO YOUR MEMORY, for you HAVE to end your
machine code programs with this code if you want it to do anything
sensible afterwards. Thus our machine code becomes:

$86 25 $B7 $TEF0 $39

These numbers are entered individually, pressing the EXE key after
each.

PROGRAM LAYOUT

5.9 Before we actually use the Hexloader, let’s look at program layout.
It is important that you document your cfforts - far more so than in the
case of OPL, for while you could decipher an OPL after leaving it for a
few months, it would be EXTREMELY difficult to do the same for a
machine code routine. This is because OPL is in a sori of English.
Machine code is gobbledegook. You must therefore write your
programs down. The following is a suggested format for your efforts:

PROGRAM NAME: “ASSIGNMENT”

PURPOSE: Loads Accumulator A with the number 25 (decimal) and |

stores it in the memory location $7EFQ.

VARIABLES: $7EF0 “INTEGER%”

PROGRAM START:
$7DOB LDA A #25 $86 25
$7D0OD STA A $7EF0 $B7 $7EF0
$7D10 RTS $39

48

USING THE HEXLOADER

5.10 Enter the routines described at Annex F, translate and save them.
Put “MC” in the top level menu and call it. Select the “SPACE” and set
the memory base to, say $7DOB. Use the “INFO” option to check that it
has been set. The Hexloader is now in a position to accept your code.

5.11 Enter the first number -$86, remembering not to use the “$". Press
<EXE> to enter it. Now repeat the process with the other bytes until you
have finished. Press the <ON/CLEAR> key 1o exit back to the main
menu of the Hexloader.

CHECKING THE PROGRAM

5.12 You should now check your program. Examine the screen carefully
to ensurc that you have entered the correct codes, i.e. the codes you
intended to enter. This will ensure that there was no “finger trouble”
invoking Murphy’s Law and that you did things right. However it does
not tell you if you did the right things. In other words, did you correctly
identify the codes for the mnemonics?

You can now check this using the DECODE option. Again, it will ask
you for a start address. Enter this as before. This time, instead of
printing the hexadecimal numbers it will print the Assembly Language
equivalent of your program. Check this against your program. If this is
OK, you've done as much as you can to ensure that the program will
run. Note that if you have made a bad program, there is nothing the
system can do to help you. This is called EXPERIENCE!

5.13 Now you can RUN the program from the main menu. You will be
asked for a start address. Type in the base address you stored the
program at and press the EXE key. If all goes well, there will be a short
pause and the display will change to ask you if you want to RUN
another. Press “N” to this and you will retumn to the main menu where
you should select the VIEW option. Enter the INTEGER% address as
the area you want to dump and there, in all its glory, should be the
magical $19, telling you that you have just completed your first
machine code program - well done.

49

5.14 Copying a value

5.17 Bigger numbers

COPYING A VALUE FROM ONE VARIABLE TO ANOTHER

3.14 So far, then we can assign an actual number to a variable whose
address we have decided upon. At the moment, location $7EF0 holds
the value 25 decimal ($19 hexadecimal). What if we wanted to express
the OPL statement “NUMBER%=INTEGER%"" in machine code? Well,
we’re half way there, aren’t we? we already HAVE a variable
INTEGER% - it”’s at location $7EF0. All we have to do is to decide on
an address for the NUMBER% variable. Let’s use location $7EF]. So,
we will need to Load the Accumulator with the contents of location
$7EFQ and then STore the contents of the Accumulator in location
$7EF]1 - but don't rush ahead just yet. Look up the LDA A mnemonic in
Annex E. Last time we loaded an actual (called IMMEDIATE) number
into the Accumulator. THIS time, we are loading the contents of a
memory address. As with the STA A mnemonic, the DIRECT mode is
not appropriate since it uses Zero Page. The Extended Mode, on the
other hand, is just what we need. This is how your program should look:

PROGRAM NAME: “DUPLICATE”

PURPOSE: Loads Accumulator A with the contents of the memory
location $7EFO0 - the *INTEGER%" variable - and stores it
at location $7EF1 - a new variable called “NUMBER%".

VARIABLES: $7EF0 “INTEGER%"
$7EF1 “NUMBER%"
PROGRAM START:
$7D0OB LDA A $7EF0 $B6 $TEF0
$7DOE STA A $7EF1 $B7 $7EF1
$7D11 RTS $39

5.15 DO remember the RTS at the end of the program!!! Load the
program into the Hexloader (starting at the samc address as the previous
program - it will be over-written) as described carlier in the Chapter,
and VIEW the contents of $7EFO0 to assure yourself that the $19 is still
there and that the next location has something totally different in it (if

50

you like, you can alter the contents of $7EF1 to 0). Check the program
with DUMP and DECODE and, when you are 100% happy, RUN it.

5.16 You should now politely decline the chance to RUN another
program and instead select the DUMP option with $7EFO as the start
point. If everything has gone according to plan, you should se¢ not one
but two versions of $19, indicating that you have completed another
successful machine code routine.

USING BIGGER NUMBERS

5.17 The problem with all of the above is that it can only handle
numbers in the range 0-255. The chances are that you will need to go
beyond that limit. This being the case, we could express a number in 2
bytes - in fact, this is exactly what OPL docs. Integers are stored in 2
bytes. See if you can work out what the range SHOULD be yes, it
ought to be 0- 65535 but you, as an expert in OPL, are very well aware
of the fact it is in reality -32768 to +32767. The reason for this is that
the most significant bit of the 16 bits which make up the number is used
to indicate the sign. We still have the same range but, instcad of starting
at 0 it starts at -32768.

5.18 The problem is that both Accumulator A and Accumulator B are 8-
bits wide. They are therefore of little use to us - or so it seems at first
glance. There is, however, a way to combine the two Accumulators into
one 16-bit version called Accumulator D (no, I don’t know why it’s not
called “C"™). But beware!! The original contents of the two 8-bit
Accumulators is lost when they are combined. If you have anything
important in them, store it away in memory somewhere, first. Look at
the mnemonic LDD in Annecx E. This is the operation LoaD
accumulator D. As with the other Load instructions, it comes in 4
flavours. If you want to load an actual number, use the Immediate
Mode, presenting the most significant byte first and the less significant
second. If you want to Load from Zero Page, use the Direct Mode.
Here, the system will load the first byte from the location specified and
the second from the next location. Extended Mode fulfils the same
function, but beyond Zero Page. Don’t worry about Indexed Mode just
yet (although, if you are REALLY impatient, you can read a short
explanation of the different Addressing Modes at Annex D.45).

51

5.19 Double-Byte Assignment

5.19 Let’s look back at our program “INTEGER%=25". Suppose we
wanted to store the number $FFEE instead of 25 decimal - how are we
going to deal with this? The answer is “pretty much in the same way as
we did with the first one”. The differences are that we will need a 2-byte
storage location and a 2-byte Accumulator. We have already used
location $7EF0 and $7EF1 for INTEGER% and NUMBER%,
respectively. They are both currently holding the number $19. Let’s
combine them into one variable called SUM%. As before, we will need
to load the Accumulator with an immediate number and then store it in
the appropriate address, remembering to finish with an RTS. How
would that look on paper?

PROGRAM NAME: “DOUBLE-BYTE ASSIGNMENT"

PURPOSE: Loads Accumulator D with the number $FFEE and stores it
in the memory locations $7EF0-$7EF1.

VARIABLES: $7EF0/1 “SUM%"

PROGRAM START:
$7D0OB LDD #SFFEE $CC SFFEE
$7DOE STD $TEF0 $FD $7EF0
$7D11 RTS $39

5.20 If you now use the VIEW facilily to examine locations $7EF0
onwards, you’ll see that addresses $7EF0/1 hold the value $FFEE.

Success, once again! Note that I have asked you to enter your programs,
starting each time at the base address of the reserved space. However, if
you had wanted to keep each of the above programs, all you would have
had to do was to see where one finishes and enter the next one at the
next address. The thing is that you MUST use the address of the FIRST
BYTE OF THE PROGRAM YOU WANT TO CALL when you RUN
it. In this way, you can have as many programs in memory
simultaneously as you want, capacity permitting.

52

Post Test

CONCLUSION

5.21 We have looked at how you, the user, can imitate the concept of
variables in machine code by reserving areas of memory. The drawback
of this system, in that YOU must kecp track of which variable is stored
where, was highlighted and a suggested way of documenting this
outlined. The machine code equivalents of the OPL expressions
“INTEGER%=25" and “NUMBER%=INTEGER%" were discussed
and tricd out. Finally we saw that our machine code programs could
only handle numbers in the range 0-255 and examined a way in which
we could use the range 0-65535. In the next Chapter, we will look at
how we add and subtract in machine code.

POST TEST
1. How do we store integers in machine code?

2. Which Mnemonic should we use to load Accumulator A with a
number?

3. What does the Mnemonic STA A do?
4. What does Accumnulator D do that Accurnulators A and B cannot?

5. What is the hexadecimal code for loading Accumulator D with the
contents of a 2-byte memory location?

6. What is the code for storing the contents of Accumulator D in a Zero
Page location?

53

Chapter 6

Simple Arithmetic

Simple Arithmetic

6: Simple Arithmetic

TRAINING OBJECTIVE:

At the end of this Chapter, you will be able to add and subtract numbers
up to 32 bits in length using machine code routines.

ENABLING OBJECTIVES:
To do this, you must be able to:
a. Name the mnemonics used in the add operation.
b. Name the mnemonics used in the subtraction operation.

c. State the importance of the Carry Flag.

INTRODUCTION

6.0 In this Chapter, we will look at how we go about adding and
subtracting in machine code. Just as in Assignments, we have lo take
different approaches 1o handling single and double-byte numbers.

A SIMPLE ADDITION

6.1 Suppose we want to code the following operation -
“INTEGER%=NUMBER1%+30". You alrcady know how to create
variables in machine code and assign values to them, so let’s take a look
at this aspect, first. We will need to provide for 2 different variables. I
suggest we use $7TEF0 for INTEGER% and $7EF2 for NUMBER1%. So,

our declaration will look like this:

56

6.2 Simple addition

PROGRAM NAME: “SIMPLE ADDITION"

PURPOSE: This program takes the contents of the single-byte
variable NUMBER1%, adds 30 to it and stores it in
a second variable, INTEGER%.

VARIABLES:
$7EFO INTEGER%

$7EF2 NUMBERI1%

6.2 The next thing we have to do is to put a number in NUMBER% 1o
begin with. This is the sort of thing we did in the last Chapter. We LoaD
Accumulator A with whatever value we want (in the range 0-255) and
store it at location $7EF2. Use the value 90, for argument’s sake. The
code should look like this:

$86 90 $B7 $7EF2

6.3 We now have 1o load this value into an Accumulator, add 90 to it and
store in location $7EF0. It may seem that we all the trouble we went 1o in
storing the value in NUMBER% was pointless, bul remember that we are
pretending that we are taking its contents WHATEVER IT MAY BE and
using it in the addition. It is something of an artificiality forced upon us
by teaching constraints. So, forget temporarily about the first part of our
program but check that the code you created to put NUMBER% into the
Accumulator looks something like this - $B6 $7EF2. Let’s recap so far:

PROGRAM NAME: “SIMPLE ADDITION"

PURPOSE: This program takes the contents of the single-byte
variable NUMBER1%, adds 30 to it and stores it in
a second variable, INTEGER%.

VARIABLES: $7TEF0 INTEGER%
$7EFR2 NUMBER1%

PROGRAM START: LDA A#30 $8630

STA A $7EF2 $B7 $7EF2
LDA A $7EF2 $B6 $7EF2

57

6.5 Single-byte addition

6.4 To add 30 1o Accumulator A, we should use the ADD A operation in
preference to the ADC A version. This is because the former ignores the
Carry Flag while the second adds it in to the sum. Since we are using
single-byte numbers, the Carry is immaterial. We are going to add an
immediate number to the Accumulator. A swift reference to Annex E will
reveal that the code for this operation is $8B. This gives us the sequence:

$38B 30

6.5 Now we must store the result in the INTEGER% location. This is
something we already know how to do. To wrap it all up, then, our
finished product looks like this:

PROGRAM NAME: “SIMPLE ADDITION"

PURPOSE: This program takes the contents of the single-byte
variable NUMBER1%, adds 30 1o it and stores it in
a second variable, INTEGER%.

VARIABLES: $7ER0 INTEGER%
$7EF2 NUMBER1%

PROGRAM START: LDA A#)0 $8690
STA A $7EF2 $B7 $7EF2
LDA A $7EF2 $B6 $7EF2
ADD A#30 $8B30
STA A $7ER0 $B7 $7EF0
RTS $39

6.6 Enter the code into the Hexloader and check it out using the DUMP
and DECODE options. When you are happy that all is well, RUN it and
use the DUMP option to check the contents of $7EF0 which should be
$78 (120 decimal). And that’s all there is to single-byte addition.

A SIMPLE SUBTRACTION

6.7 Subtraction is carried out in the same way. In fact to SUBTRACT 30
from 90, we only have to change a single byte - ADD A becomes SUB A.
Again, there is a version which takes into account the Carry Flag but it is
not appropriate in the single-byte context. The code for the statement
“INTEGER%=NUMBER1%-30" is as follows:

58

6.7 Subtraction

PROGRAM NAME: “SIMPLE SUBTRACTION"

PURPOSE: This program takes the contents of the single-byte
variable NUMBER1 %, subtracts 30 from it and
stores it in a second variable, INTEGER%.

VARIABLES: $7TER) INTEGER%
$7TER2 NUMBER1%

PROGRAM START: LDA A#90 $8690
STAA $7EF2 $B7 $7EF2
LDA A $7EF2 $B6 $7EF2
SUB A#30 $8030
STA A $7EF0 $B7 $7EF0
1RTS $39

6.8 All you have to do in this particular case is to use the DUMP facility
and alter the relevant byte. Check the code using the DECODE facility,
RUN it if you are happy and then DUMP the contents of $7EF0. It should
be $3C (60 decimal).

SO, WHAT ABOUT NUMBERS GREATER THAN 255?

6.9 Of course, Mother Nature (and the user) frequently deals in numbers
greater than 255. We will therefore need to look at this aspect of machine
code arithmetic. Try out the following program. What do you think
INTEGER% should hold after you RUN the program? Check it out.

PROGRAM NAME: “FUNNY ADDITION™

PURPOSE: This program takes the contents of the single-byte
variable NUMBERI1 %, adds 100 to it and stores it
in a second variable, INTEGER%.

VARIABLES: $7TEF0 INTEGER%
$7TER2 NUMBER1%

PROGRAM START: LDA A#190 $86 190
STA A $7EF2 $B7 $S7EF2
LDA A $7EF2 $B6 $7EF2
ADD A #100 $8B 10
STA A $7EF0 $B7 $7EF0
RTS 39

59

6.11 The Carry Flag

6.10 You were probably expecting to find decimal 290 but of course this
number cannot fit within a byte which has a width of 256. If all went well,
you should have found hexadecimal 22 (decimal 34). What do you get
when you add this number to 2562 So, then, it is apparent that when you
get a result which exceeds the “holding limit™ of the byte, it wraps round
again and you are left with the “remainder” in the byte. It doesn’t matter if
the sum exceeds 256 many times, you will simply get what’s left after 256
is successively subtracted from it. Try this out using the program above,
substituting your own numbers. In each case, see if you can work out
what SHOULD be there and what will ACTUALLY be there.

6.11 “Surely there should be some way of indicating that the 34 we ended
up with was really 290?", I hear you saying. Quite right, there is indced. It
is called the CARRY FLAG and is essential in double byte arithmetic. If
you have another look at Diagram 4-1, you will see the Condition Code
Register. This holds a number of flags which can be toggled on or off
according 1o certain conditions within the CPU. The Carry Flag is one of
these and is set when an overflow occurs in an addition. Let’s suppose we
needed to add one double-byte number to another. We would add the first
byte of the first number to the first byte of the second. Should this number
exceed 255, we will be left with the residue in store. However, THE
CARRY FLAG WILL BE SET TO INDICATE THE OVERFLOW. If we
now add the second bytes to each other, TOGETHER WITH THE
CONTENTS OF THE CARRY FLAG, the result will be arithmetically
correct. Note that any overflow from the second addition will be thrown
away but the Carry Flag will again be set and, if we were involved in
triple byte additions, we could take it into consideration. The Organiser’s
CPU takes care of double- byte arithmelic by using the D Register. To
illustrate its use, we will try out the addition in 6.9. Note that we use the
“LDD” instruction to load the D register with the 2-byte number (which
STARTS at the address indicated) and STD to store it. Moreover “ADD
D" is used instead of the “ADD A™ version.

60

6.12 16-bit addition

PROGRAM NAME: *“16-BIT ADDITION"

PURPOSE: This program takes the contents of the double-byte
variable NUMBER1%, adds 100 to it and stores it
in a second double-byte variable, INTEGER%.

VARIABLES: $7ERU/1 INTEGER% (High/Low)
STEF2/3 NUMBER1% (High/Low)

PROGRAM START: LDD#S00BE $CC $OOBE
STDS7EF2 $FD $TEF2
LDD $7EF2 $FC STEF2
ADD D #50064 $C3 $0064
STD $7EF0 $FD $7EF0
RTS $39

6.13 RUN the program and take a look at locations $7EF0/1. You should
sce the double-byte answer $01 $22. The $22 stands for 34 decimal and
the $01 means ONE TIMES 256. Added together, they come to 290 =
190+100. Try the program our using your own sums.

6.14 Subtraction follows pretty much the same process. Let’s try out a
double-byte subtraction using the previous variables. Try taking $135E
from $3020. The answer should be $1CC2.

PROGRAM NAME: “16-BIT SUBTRACTION™

PURPOSE: This program takes the contents of the double-byte
variable NUMBER1%, subtracts $135E from it
and stores it in a second double-byte variable,
INTEGER%.

VARIABLES: $TEF0/1 INTEGER% (High/Low)
$7EF2/3 NUMBER1% (High/Low)

PROGRAM START: LDD #$3020 $CC $3020
STD $7EF2 $FD $7ER2
LDD$7EF2 FCTEF2
SUB D#$135E $83 $135E

STD $7EF0 $FD $7ER0
RTS $39

61

6.15 One stage further

GOING ONE STAGE FURTHER

6.15 So, the difference between 8-bit and 16-bit addition or subtraction
seems only o be one of selecting the correct Register (and, thereby, the
correct instruction codes) for the job.What if we want to deal in 32-bit
integers? It may intercst you to work out the maximum possible number
using a 32-bit code. The 8-bit byte gives 256, while the 16-bit version can
code 65535. The 32-bit byte, however, holds the staggering maximum
number of 4,294,967,296!! You can see, then, that any procedure to add or
subtract numbers of this order could be very powerful indeed. Moreover,
the strategy I am about to outline can be used for even higher byte
combinations. This is one of those things you can do in machine code
which arc not possible in OPL. It will also do it much faster.

6.16 As an example, we will add the numbers $11112222 and $33334444
together. We do not have a 32-bit register, so we will have to use two 16-
bit ones - the D and IX Registers (have another look at Diagram 4-1) to
hold one of our 32-bit numbers. We'll store the other number in
INTEGER1% at $7EF0/1/2/3. The routine starts by storing the SECOND
number in INTEGER%. Then, we put the upper 16-bits of the first
number into the IX Register and the lower 16-bits into the D Register. At
this point we have all the data in the system. We add the numbers in 2
stages - the lower 16-bits followed by the upper 16. Since we cannot do
arithmetic IN the IX Register, we must get its contents into the D Register
when we need to add the upper 16-bits. We can't just plonk it in there,
however, or we would lose the sum of the lower 16-bits we have just
calculated. Fortunately, there is an instruction which will simply
EXCHANGE the contents of the 2 Registers. We can then add the upper
16-bits of INTEGER% to the D Register, which now holds the upper 16-
bits of the first number.

6.17 Of course, there may be an overflow resulting from the addition of
the first 16-bits. This will be stored in the Carry Flag of the Condition
Codc Register. Sadly, however, the ADD D instruction itself does not take
the Carry Flag into account when it does an addition. This means that we
cannot use it in the second part of the 32-bit addition if we want accuracy.
Instead, we will have to do two conseculive 8-bit additions of the 16-bits
remaining. Moreover, we cannot use the ADD instruction we know and
love because this also takes no account of the Carry Flag, although like
the ADD D instruction, it can GENERATE a carry. So, we will use the

62

6.17 32-bit addition

ADd with Carry (ADC) instruction which will add the contents of the
Carry Flag into the calculation. Naturally, we will employ the A and B
Registers 1o do the 8-bit work in the second part. At the end of the routine,
the upper 16-bils of the sum will be in the D Register, while the lower 16-
bits will be in the IX Register. If we do another exchange of the 2
Registers, we will get them in the correct order. The result will then be
stored in the 32-bit variable SUM% at $7EF4/5/6/1. The code looks
something like this:

PROGRAM NAME: *32-BIT ADDITION™

PURPOSE: This program takes the contents of the 32-bit
variable INTEGER% (which holds $11112222)
and adds it to the 32-bit number held inthe D
Register (lower 16-bits) and the [X Register (upper
16- bits). On conclusion of the routine, the result is
stored in the 32-bit variable SUM%.

VARIABLES: STER)/123 INTEGER% (High 16-bits/Low 16-
bits)
$TEF4/5/6/T SUM% (High 16-bits/Low 16-bits)

PROGRAM START: LDD #81111 $CC $1111
STD $7EF0 $FD $7EF0
LDD #82222 CC2222
STD $7EF2 $FD $7EF2
LDX #83333 SCE $3333
LDD #$4444 $CC $4444
ADD D $7EF2 $F3 $7EF2
XGDX $18
ADC B $7EF1 $F9 $7EF1
ADC A $7EF0 $B9 $7EF0
XGDX $18
STX $7EF4 $FF $7EF4
STD $7EF6 $FD $7EF6
RTS $39

6.18 I'm sure you can work out what the answer will be. Note that it is
spread over 4 bytes starting at $7EF4. Try the routine out, using your own
numbers. Note that if you add wwo, large 32-bit numbers together, an

6.19 32-bit subtraction

overflow condition could result. This would mean that the program would
terminate with the Carry Flag set. If necessary, the state of this flag can be
tested or used if more than 32-bits accuracy is needed.

6.19 Again, subtraction works in pretty much the same way as addition.
The instruction “SUB D" is used instead of “ADD D" and “SBC A" or
“SBC B" instead of their addition counterparts. An underflow (indicating
a negativc result) would set the Carry Flag. Try out the following
subtraction:

PROGRAM NAME: *32-BIT SUBTRACTION"

PURPOSE: This program takes the contents of the 32-bit
variable INTEGER% (which holds $55556666)
and subtracts it from the 32-bit number held in the
D Register (lower 16-bits) and the IX Register
(upper 16-bits). On conclusion of the routine, the
result is stored in the 32-bit variable
DIFFERENCE%.

VARIABLES: $7EF0/1/2/3 INTEGER% (High 16-bits/Low 16-
bils)
$7EF4/5/6/7 DIFFERENCE% (High 16-bits/Low
16-bits)
PROGRAM START: LDD #85555 $CC $5555
STD $7EF0 $FD $7EFO
LDD #36666 $CC $6666
STD S7TEF2 $FD $7EF2
LDX #$7777 S$CE $7777
LDD #58888 S$CC $8888
SUB D $7EF2 $B3 $7EF2
XGDX 318
SBCB $7EF1 $F2 $7EF1
SBC A 37EF0 $B2 $7EF0
XGDX 518
STX $7EF4 $FF $7EF4
STD $7EF6 $FD $7EF6
RTS $39

64

6.20 Conclusion

CONCLUSION

6.20 Now you know how to add and subtract 8-, 16- and 32-bit numbers,
giving intcger ranges of 256, 65536 and 4294967296, respectively. The
last of these is considerably beyond the Organiser’s OPL abilities and
therefore indicates one of the advantages of machine code in that you can
accomplish things denied to you using a higher level language. To

reinforce material learnt in this chapter, try the post test before starting on
the next subject.

Post Test

POST TEST

1. Which mnemonic would you use to add an 8-bil number to
Accumulator A? Chapter 7

2. Which Accumulator do we use for 16-bit additions?

3. Which instruction adds numbers to this Accumulator?

4. What does the Carry Flag do in addition? DECiSiOﬂS, Decisions

5. What does it do in subtraction?

6. In carrying out the second half of a 32-bit addition, why must we
employ two 8-bit additions instead of a single 6-bit onc?

7. What is the difference between “*ADC A" and “"ADD A™?

Decisions, Decislons

7:Decisions, Decisions

TRAINING OBJECTIVE:))
At the end of this chapter you will be able to write a program which uses
loop structures and decisions.

ENABLING OBJECTIVES:
To enable you 1o do this, you must be able to:

a. State how decision-making is implemented in machine
code.

b. List the tests used to assess the state of the flags in the
Condition Code Register.

c. Describe how 1o compare two numbers.

d. Describe the use of Relative Addressing.

e. State the machine code equivalent of IF .. THEN .. GOTO.

f. Write a program employing a DO .. UNTIL loop.

g. Write a program employing a WHILE .. ENDWH loop.

h. Write a program employing a FOR .. STEP .. NEXT loop.
INTRODUCTION)
7.0 Of course, programs do not flow in nice straight lines, as you have
already discovered in OPL. We now need to examine the use of loop
structures and decision making at the machine code level. The rcadf:r
should note at this point that machine code loops run VERY FAST in

comparison with their OPL equivalents, a fact which I ht_)pe to
demonstrate to you very soon. To begin with, then, let’s start with the

Carry Flag.

7.1 Loop Structure

DO .. UNTIL LOOP %=101

7.1 In OPL, we have a loop structure known as DO .. UNTIL. This will
cause a section of code o be executed until a specific circumstance, or set
of circumstances, is satisfied. To take the simplest expression of this
structure, imagine that we had to repeat some code 100 times. We would
set up a variable to hold the count, give it an initial value (1" for
example) and enter the loop. After execuling the section of code we arc
interested in, we would increment the count and test it with the “UNTIL”
part o see if it meets the condition for exit (i.e. it is greater than 100). If it
docsn’t, we would repeat the section below the “DO™ until it does. Such a
program would look like this;

LOOP%=1
DO

LOOP%=LOOP%+1
UNTIL LOOP%=101

7.2 We can simulate this structure in machine code by using an
Accumulator to store the loop counter. We could initialise it using an
approach like this:

LDA A #1 $86 $01

We now need to somchow mark the code so that we can loop 1o it. OPL
does this by delimiting the loop code with a DO and an UNTIL. If we
had an Assembler, we could use a label, just as we can do in OPL. In
machine code, however, we need to remember the ADDRESS of the first
instruction of the code we wish to repeat. For this reason, all future
listings will be shown with associated memory locations down the left
hand side and labels inserted in the Assembly Language part. In this way,
we can code it up in machine code but use Assembly Language when a
ROM-based Assembler comes on the market. If we set it out as [have
suggested, we would produce the following listing:

69

7.4 The CCR

PROGRAM NAME: “LOOP STRUCTURE"

PURPOSE: This program loops round 100 times. No code is
exccuted in between. It therefore acts as a sort of
delay loop. The loop counter is held in the A

Accumulator.

VARIABLES: Nil.

ORG: $7D0B
7DOB LDA A#1 $86 301
7D0OD .loop

7.3 The ORG statement is an Assembler command which simply causes
the machine code to be placed at that address. Since we have no code to
actually exccute, we can go straight to incrementing the loop counter. In
OPL, we would have to say “LOOP%=L0OOP%-+1" but in machine code,
things are actually simpler (for a change!). All we have to do is to use the
INCrement instruction. This will simply add 1 to the indicated target. If
you look at this instruction in Annex E, you will see that it has a number
of Addressing Modes. Obviously, we need to use the “INC A" command.

THE CONDITION CODE REGISTER (CCR)

7.4 Now we need to compare the contents of this Accumulator with 100
to see if we need to loop back or not. Comparisons are made using the
following instructions:

a. CBA - where the contents of Accumulators A and B are
compared with each other.

b. CMP A - where the contents of Accumulator A are
compared with:

1) An immediate number or value.

2) The contents of a zero page location (ic a single-
byte address).

3) The contents of a specified double-byte address.

4) The contents of a memory address described as the
address indicated by the Index Register (X) plus the
specified offseL

70

7.5 Branch instructions

c. CMP B - as for CMP A,

d. CPX - where the contents of the double-byte Index
Register are compared with the range of values indicated in
sub-paragraphs b and ¢ above. Note that because the Index
Register holds a double byte value, the comparison value is
also assumed to be double-byte. This means that the value
stored al a memory location is taken as the high byte and the
NEXT LOCATION automatically taken as the low byte.

These comparisons will result in one or more of the flags in the CCR
being set or cleared. It is important to note, however, that the actual
numbers involved in the comparison are left unchanged. The question
then arises, “What can we do with this information?” and the answer
swiltly returns, “Branch 1o a different part of the program according to the
result of the test you have just made!”.

BRANCH INSTRUCTIONS

7.5 Just as there are a number of comparison commands, there are a few
branch instructions. They differ in the flag tested and the actions to be
taken on a result being returned but all jump to a point RELATIVE TO
THE START OF THE BRANCH INSTRUCTION. This point is
calculated by the CPU by taking the current value of the Program Counter
(PC) - which at that point would be indicating the beginning of the branch
instruction - adds the jump value indicated as the operand of the
instruction and then, for some mysterious reason, adds another 2. The
resulting figure is then placed in the PC, the CPU tums its attention to that
address and everything carries on (if you have done it right). This form of
adressing is known as Relative Addressing, since the actual jump address
is indicated by a number of bytes RELATIVE TO THE JUMP
INSTRUCTION. We will look at the jump calculation shortly but first,
here are the branch instructions available 1o you:

a. BCC - Branch if Carry Clear - will branch 1o the relative
location if the Carry Flag of the CCR is clear (ie = 0).

b. BCS - Branch if Carry Set - this is the opposite of BCC and
will branch if the value of the Carry Flag = 1 (ie if a carry has
been generated by the instruction preceding the branch
command).-

c. BEQ - Branch if EQual - this instruclion tests the Z Flag of

71

7.5 Branch if...

72

the CCR to determine whether the 2 numbers compared in the
preceding instruction were equal. Z=1 if they were equal and
Z=0 if not. Thus, the branch will be made when Z=1.

d. BGE - Branch if Greater than or Equal to zero - this
instruction lests the N and V Flags of the CCR. A branch is
made if the result of the preceding comparison was greater
than or equal to zero.

e. BGT - Branch if Greater Than zero - this instruction tests
the Z, N and V Flags of the CCR. A branch is made if the
result of the preceding instruction was greater than zero.

f. BHI - Branch if Hlgher - this instruction tests the C and Z
Flags of the CCR. A branche is made if the preceding
instruction shows the accumulator contents 1o be higher than
the other value.

g. BLE - Branch if Less than or Equal to zero - this
instruction tests the Z, N and V Flags of the CCR. A branch is
made if the result of the preceding instruction was less than or
equal 1o zero. This is used in the case of two’s complement
values.

h. BLS - Branch if Lower or Same - this instruction tests the
C and Z Flags of the CCR. A branch is made if the result of
the preceding instruction show the contents of the
accumulator to be less than or equal to the other value. This is
used where unsigned binary values are being used.

1. BLT - Branch if Less Than zero - this instruction tests the N
and V Flags of the CCR. A branch is made if the result of the
preceding instruction is less than zero.

j- BMI - Branch if MInus - this instruction tests the N Flag of
the CCR. A branch is made if the N Flag isset to 1.

k. BNE - Branch if Not Equal - this instruction tests the Z flag
of the CCR. A branch is made if the Z Flag is set to 0.

7.6 Comparing the Value

1. BPL - Branch if PLus - this instruction tests the N Flag of
the CCR. A branch is made if the N Flag is set to 0.

m. BRA - BRanch Always - this instruction tests NO flags of
the CCR and acts like an unconditional GOTO statement.

n. BRN - BRanch Never - the opposile of BRA!!!

0. BSR - Branch to SubRoutine - this instruction also tests no
flags of the CCR. It acts like BRA except that it branches to a
subroutine. A subroutine, of course, acts like a procedure in
OPL. It must therefore be terminated by some form of
RETURN statement which will return it to the point
immediately after the calling instruction. I advise you to
avoid BSR for the moment - there is a belter way of doing
this.

p- BVC - Branch if oVerflow Clear - this instruction tests the
V Flag of the CCR. A branch is made if V=0.

q. BVS - Branch if oVerflow Sct - this instruction is identical
to BVC except that the branc is made if the V=1.

You can see from the above that there are many instructions which can
cause this sort of branch. It is also interesting to note that the branch
instructions function very much like the IF .. THEN .. GOTO construcl in
that you are comparing 2 things to assess some sort of relationship and
jumping to another part of the program on the result. All comparisons
which can be wrilten in OPL can be supported in machine code - if you
just know how,

7.6 Let’s get back Lo our program. We know that we need to compare the
value held in the A Accumulator 1o see if it is equal to the immediate
number 101. This is done using the “CMP A™ instruction in Immediate
Mode. This will compare the Accumulator with any number we choose 1o
compleie the loop and set the CCR Flags accordingly. We can then test the
most appropriate Flag and jump backwards or forwards to any specific
loop point using one of the conditional branch instructions. We want to
cheek the counter against the value 101. If the counter is NOT EQUAL to
101, we want 10 loop back and execute the sequence again, otherwise, we

73

7.7 Negative numbers

proceed 1o the mext instruction which will be the RTS command. When
we ask the CPU to compare 2 values, it “notionally” subtracts the second
value from the first. | say “notionally™ because the 2 values are actually
left unchanged. The result of this subtraction affects a number of flags
such as the Carry Flag and the Z Flag. Obviously, if the 2 numbers are the
same, the result will be zero and the Z Flag will be clear. The branch
instruction we need, thercfore, is “BNE" followed by the number of bytes
to jump. However, things begin to go a little pear-shaped at this point. As
I said earlier, Hitachi, in their wisdom, have decided that the Program
Counter (PC) will calculate the address to jump to by taking its current
value, adding the jump specified in the branch instruction AND ADDING
2. To work this out, write down your program, leaving the branch values
until last and then work out the number of bytes you need to skip to get 1o
the beginning of the loop. We would need a jump of -3 (since the jump is
calculated from the BEGINNING OF THE “BNE") to get to the start of
the loop. The CPU will then take the current value of the PC and subtract
the 3 bytes. BUT, because it then adds 2 to the PC, the net jump will be -1
and, believe me, the famous “TRAP” display and the frozen keyboard is
but a millisecond away! To avoid this, you must SUBTRACT 2 from the
actual jump. Thus, we need to branch -5. This also works for forward
branches. If you need to jump forward by 15 bytes, you should actually
specify 13, since 2 will be added by the CPU. Remember to reference the
jump from the BEGINNING of the branch instruction and not the branch
value itself.

7.7 I can probably hear you saying, *“Alright, but how do I specify a
negative number?"” Think back to paragraph 3.9 where we talked about
Two's Complement. Take your branch (5 in this case) and tm it into a
binary number. The result should be 00000101 (padding it out to the left
to make 8 bits). The first stage in Two's Complement was to turn all the
ones to zeros and vice versa. This gives us 11111010. We then add 1 to
this number and the result is 11111011 in binary or 251 in decimal. This is
the value that we use as the jump value. You can probably see a shortcut
here - simply subtract the jump from 256. Note, however, that this will
only work for a certain range, since the branch instruction is limited in
how far it can go. Work this range out for yourself by looking at the
numbers generated by a single byte when the 8th bit is used to indicate the
sign of the number. (You should arrive at -126 to 0 to +129). I should
point out at this point that if you arc using the decode function in the
hexloader, be aware that it automatically takes into account the extra (wo

74

7.8 Your first loop

bytes which the CPU adds on. It will therefore show you the ACTUAL
NUMBER OF BYTES BETWEEN THE BEGINNING OF THE
INSTRUCTION AND THE LOOP. In our case it shows “BNE -3", even
although you have actually used -5 to comply with the CPU’s
requirements. Anyway, here is the complete program - have a go at typing
it in - BE CAREFUL!

PROGRAM NAME: “LOOP STRUCTURE 1™
PURPOSE: This program loops round 100 times. No code is

executed in between. It therefore acts as a sort of
delay loop. The loop counter is held in the A

Accumulator.
VARIABLES: Nil.
ORG: $7D0OB
7DOB LDAA#1 $86 301
7D0D Joop INCA $4C
TDOE CMP A #101 $81 365
D10 BNE loop $26 251
D12 RTS $39

7.8 For your first loop in machine code, the program above must have
been somewhat disappointing, in that there was no outward expression of
the act taken place (unless it was “TRAP™ !). We can get round this by
selting up a variable, clearing it using the hexloader and extending the
machine code program to place the final value of Accumulator A in this
variable. You should know how to do this already. Just be careful that
your STA A instruction takes place AFTER the BNE command. Your
answer should look something like this:

PROGRAM NAME: “LOOP STRUCTURE 2"

PURPOSE: This program loops round 100 times. The count is
held in Accumulator A and the final value is
placed in RESULT%

VARIABLES: $7D16 RESULT%

75

7.10 Basic

7.9 Do...until

ORG: $7D0B
7DOB LDA A #1 $86 501
7DOD .loop INCA M4C
TDOE CMP A #101 $81 %65
D10 BNE loop $26 251
D12 STA A RESULT%3$B7 $7D16
D15 RTS $39
D16 << RESULT% >>

If you amend your program (no need to type it all in again) and use the
VIEW facility, you will be able to place 00 in whatever location you have
chosen. Then use the RUN option. When the program has finished, call
the VIEW facility again - it should hold $65 (101 decimal). Note that the
addresses [have used are convenient for my machine and with the amount
of memory rcserved by the hexloader. You may wish to use differcent
locations - fine - just check out the memory map first.

7.9 What if you had wanted to implement the loop as “DO .. UNTIL
LOOP%>100" 7 - easy - you know that while the value in Accumulator A
is less than or equal to 100, you want to continue the loop. The branch
instruction for this is BLS. Note, however, that instcad of comparing BLS
with 101, you will want to compare it with 100. Make those 2 changes
and try the program out. What are you expecting to find in RESULT%? It
HAS to be 101 since the loop will fall through when the accumulator has
BECOME 101 and no longer fulfills the conditions for loop. You could
look upon this sort of loop as being a sort of “WHILE LOOP%<=100 ..
ENDWH" construct.

FOR LOOP% = 0 TO LIMIT% STEP 3...NEXT LOOP%

7.10 What is this strange statement? It really belongs to BASIC and I feel
it is a GREAT shame that it is not implemented in OPL for it is a very
simple and elegant way of sctting up and running a loop. If you are not
familiar with BASIC, let me show you how we would have to write this
structure in OPL:

76

OPL BASIC

LOOP%=0 FOR LOOP%=0 TO LIMIT%
STEP3

DO —

LOOP%=LOOP%+3 —

UNTIL LOOP%>=LIMIT% NEXT LOOP%

A much simpler structure, I'm sure you'll agree. For loops which operate
on simple counts, rather than complex conditions, this is the statement I
would recommend you to use. Note that the BASIC count does not have
to exactly maich the value of LIMIT%. The loop would terminate on
observing that the value of LOOP% had equalled or excecded LIMIT%.
Let’s try it out. Write a program, using the FOR .. NEXT structure which
will loop round by the number of times held in a variable called LIMIT%,
incrementing the count by 3 each time. BE VERY CAREFUL TO TEST
FOR GREATER THAN OR EQUAL TO THE LIMIT RATHER THAN
SIMPLY EQUAL TO - UNLESS YOUR ARITHMETIC IS VERY
GOOD AND YOU ARE ABSOLUTELY SURE THAT A CERTAIN
NUMBER OF ITERATIONS WILL GIVE YOU EXACTLY THE
VALUE OF LIMIT, YOU MAY END UP IN AN INFINITE LOOP. Store
the end value of the count in RESULT%.

PROGRAM NAME: "FOR..NEXT STRUCTURE 1"

PURPOSE: This program consists of a loops whose count
starts al zero and is incremented by 3 until its
value equals or exceeds the contents of the
variable LIMIT%. The final value of the count
is then stored in the variable RESULT%

VARIABLES: $7D19 RESULT%
$7DIA LIMIT%

ORG: $7D0B
7DOB LDAA#0 $86500
7D0D Joop CLC $0C

7.11 Points to note

7DOE ADCA #3 $89 $03
D10 CMP A LIMIT% $B1 $7D1A
D13 BLS loop $23 248
D15 STA A RESULT% $B7 $7D19
7D18 RTS $39

D19 << RESULT% >>

TD1A << LIMIT% >>

7.11 There are a couple of points te note here. First, ensurc that you clear
the Carry Flag before adding 3 to the count. Next, observe thal you are
not comparing the A Actumulator with an immediate number bul rather
an extended address. You must also be aware of the fact that, since you
are using an unsigned binary value for the loop, you must employ the
BLS instruction in prefercnce to the BLE one which concemns itself with
two’s complement numbers. Finally, you must ensure that you calculate
the correct branch distance (-8). Before you run the program, set the
RESULT% to zero and the LIMIT% to, say, 16 decimal. Note that this
does not mean that you will repeat the loop 16 times. It means that the
program will loop from zero to the number which equals or exceeds 16.
When you have run it, VIEW the program to discover the final value of
RESULT%. It will be 18 ($12). Why is this? Well, if you subtract 3 from
18 1o find out what the last iteration was worth, you arrive at the figure
15. This is obviously less than 16 and so the loop will repeat to give the
loop counter the value 18. At this point, the comparison discovers that the
counter exceeds the LIMIT value and the loop terminates. Try the
program out using other LIMITs, each lime trying to work out what the
terminal value will be.

FOR LOOP% = LIMIT1% TO LIMIT2% STEP INCREMENT %
7.12 This is a much more interesting problem - not only are we unsure of
the value of the start point this time, bul we also do not know the
increment. In BASIC, it matters little whether the increment is positive or
minus but it makes a great deal of difference in machine code. In one
case, we would add the increment and in the other, we would subtract.
There arc ways round this but let’s keep things simple. We will assume
that our increments arec POSITIVE. See if you can code the program in
the previous paragraph, using the variable-based system. Remember the
points arising from the last one.

78

7.13 Loop more than 256

PROGRAM NAME: “FOR .. NEXT STRUCTURE 2"

PURPOSE: This program consists of a loop which has the start
value equal to the contents of the variable
LIMIT1%. The count is increased by the posilive
value held in the variable INCREMENT% and
continues until the count equals or exceeds the
value held in the variable LIMIT2%. The final
value of the count is then stored in the variable

RESULT%.
VARIABLES: $7D1B RESULT%
$7D1C LIMIT1%
$7D1D LIMIT2%
$7D1E INCREMENT%
ORG: $7D0B
7DOB LDA ALMIT1% $B6 $7D1C
7DOE .loop CLC $oC

7DOF ADC A INCREMENT% $B9 $7D1E
7D12 CMP A LIMIT2% $BI1 $7D1D

7D15 BLS loop $23 247
7D17 STA A RESULT% $B7 $7D1B
7D1A RTS $39

7DIB << RESULT% >> —_—
7DIC << LIMIT1% >> _—

7DID << LIMIT2% >>
TDIE << INCREMENT% >>

If you try the rouline using the values LIMIT1%=$10, LIMIT2%=%20
and INCREMENT%=501 you will see that RESULT% will end up as
$21. Try it out with other values. See if you can predict the resulls.

FOR LOOP% =0 TO 1000 STEP 1

7.13 Here is the final wrinkle I want to touch upon in describing machine
code loop structures - a loop greater than 256, the maximum number
which can be held in a single byte. Although there IS a double-byte
Accumulator facility in the PSION CPU, I will describe a more flexible
approach using two single-byte numbers. The first stage in this method is
to discover the largest number less than 257 which can divide EXACTLY

79

7.13 ...more than 1000

7.15 Squaring

into the upper range of the loop. In our case, it will be 250, which goes
into 1000 four times. Thus, to exccute our loop, we use 2 counters - one 1o
repeatedly count an inner loop from 1 to 250 and one to run the inner loop
4 times. We will use the A Accumulator for the inner loop and the B
accumulator for the outer. Let's try to code this new form of nested loop -
store Accumulator A as RESULT1% and Accumulator B as RESULT2%.

PROGRAM NAME: “FOR ..NEXT STRUCTURE 3"

PURPOSE: This program consists of a loop starting at 0 and
incrementing by 1 until the count exceeds 1000.
Two Accumulators are used - A to hold the inner
count and B to hold the outer. On termination, the
A Accumulator is stored as RESULT1% and
Accumulator B is stored as RESULT2%.

VARIABLES: $7D20 RESULT1%
$7D21 RESULT2%

ORG: $§7D0OB
7DOB LDA B #01 $C6 01
7D0D .loopl LDA A #01 $86 01
7DOF .loop2 INCA $4C
7D10 CMPA#250 $81 250
7D12 BLS loop2 $23 251
7D14 INCB $5C
7D15 CMPB #04 $C1 04
7D17 BLSloopl $23 244

7D19 STA A RESULT1% $B7 $7D20
7DIC STAB RESULT2% $F7 §7D21
TDIF RTS $39

7D20 << RESULT1% >>
D21 << RESULT2% >>

7.14 When you RUN this program, you will find that RESULT1%
contains $FB (251 decimal). This is the value which terminates the inner
loop on each round and is therefore the value remaining when the inner
loop tcrminates for the last time. Similarly, $05 will be the value which
terminates the outer loop and, sure enough, you’ll find it at RESULT2%.
So, there you have it - a means of looping more than 256 times. There is a

&0

problem, however, in that you might want to loop by a number of times
which is prime - you can't divide it by ANYTHING!! What do you do
there? The answer is to use 2 loops but this time keep them separate. First,
you find out how often 256 goes into the loop number and what the
remainder is. You will then perform a nested loop like the one we have
just done, where the inner loop goes from 0 to 256 and the outer loop goes
from 0 to the dividend. Think, now - how can we detect 256 in a single
byte? The answer is that it will wrap round to zero again. So, if the inner
count is zero, it is either starting a loop or it is registering 256 - one and
the same thing. When the nested loop system terminates, it must then
enter the second of your two loops. This is a simple loop which goes from
0 to the remainder. And that is all there is to it. Of course, if you are
actually DOING somcthing inside the loop, that picce of code will have to
be duplicated in the remainder loop, too.

APPLICATIONS

7.15 So far, we have concentrated on describing the loop structures and
have avoided code 1o be executed within them. This was simply to keep
things simple. Now that you are an expert in going round in circles, we
should push the pace up a bit. Let's wrile a program to calculate the
square of a number. First, think just how we calculate the square of a
given number - we multiply it by itself, right? The problem is, of course,
that we cannot multiply yet in machine code. Yet, what is multiplication
but repeated addition? You know how to add in machine code, so all we
have to do is to sct up some sort of store and a loop and repeatedly add the
number 1o it the requisite number of times. Using a FOR .. NEXT loop,
this would be FOR LOOP% = 1 TO NUMBER% STEP 1. Use
Accumulator A to hold the loop counter, NUMBER% 1o hold the value to
be squarcd and SQUARE% to hold the final result. See if you can come
up with this code yourself. Do not run it until you have checked it with
the suggested solution below.

81

7.17 Conclusion

Post Test

PROGRAM NAME: “SQUARE"

PURPOSE: This program takes the value stored in
NUMBER% and squares it by repeated addition.
The result is stored in SQUARE%

VARIABLES: $7D20 NUMBER%
$7D21 SQUARE%

ORG: $7D0B
7DOB LDA ANUMBER% $B6 $7D20
7DOE LDAB#00 $C6 $00
7D10 STA B SQUARE% $F7 $7D21
7D13 Joop CLC $0C
7D14 ADCBNUMBER% $F9 $7D20
7D17 DECA $MA
7D18 CMP A #0 $81 $00
TDI1A BNE loop $26 247
1C STAB SQUARE% SF7 $7D21
TD1F RTS $39

7D20 << NUMBER% >>
7D21 << SQUARE% >>

7.16 To begin with, try 5 as the number. You should find $19 in .

SQUARE%. Use other numbers and note the results you get when the
SQUARE% is greater than 255. You can see from the above program that
I have used a different approach from previous examples (although there
arc MANY ways to code up this problem). I have elected to
DECREMENT the counter instead of incrementing it and have decided
not to use the ADC for the STEP since we MUST go in steps of 1.

CONCLUSION

7.17 We have looked at the problem of coding loop structures in machine
code and have examined a number of options such as DO .. UNTIL,
WHILE .. ENDWH and the “foreign” FOR .. STEP .. NEXT loop. We
have scen how to use the CCR as a means of keeping tabs on what is
going on inside the CPU and how we can take a number of aclions
depending on the results of those checks. Before we carry on 1o look at
how we can implement arrays in machine code, try out the following Post
Test.

82

POST TEST

1. Which register do we use in the decision making process at machine
code level?

2. Without reference to the text, list the instructions which allow values 1o
be compared and state which areas are compared.

3. 1 wish lo compare an immediate value with the contents of
Accumulator A. What is the Asscmbly code for this?

4. What is Relative Addressing and how is it used in branching
instructions?

5. Without reference to the text, list the branch instructions provided by
the Hitachi CPU and describe their functions.

6. Describe the method by which the CPU arrives at the actual address 1o
jump to after receiving a relative branch instruction.

7.1 wish to jump backwards by 23 bytes using the BNE instruction. What
is the complete instruction for this?

83

Chapter 8

Give me Arrays!!

Give me Arrays!!

8: Give me Arrays!!
TRAINING OBJECTIVE:

At the end of this chapter, you will be able to write programs using
indexed addressing and array structures.

ENABLING OBJECTIVES:
To enable you o do this, you must be able to:

a. State how Indexed Addressing is implemented in machine
code.

b. State how an individual “cell” in a machine code array can
be indicated.

¢. Describe the meaning and use of a “stack”.

d. Describe how to put the conlents of a register onto the
stack.

e. Describe how to retrieve the contents of a register from the
stack.

INTRODUCTION

8.0 The PSION Organiser has its own way of crealing arrays using its
Operating System. This is a very easy 1o use method but it is slow and can
be memory-hungry in certain applications. We will now turn our attention
lo the problem of creating machine code arrays and, thereby, handling
large areas of the Organiser's memory map.

INDEXED ADDRESSING

8.1 To begin with, let's look at the problem of addressing. Let's suppose
you wanted to hold a list of integers. Easy - except that in our scenario
arrays have not yet been invented!! You would have 1o use an individual

86

8.3 Fibonaccl

variable for each and every number. This may not be too much of a
problem if you have a lot of memory 1o spare but what happens when you
want to indicate one of them? Which variable do you choose? How do
you run down them and list them?

8.2 At this point in our gentle trot through the Black Art of Machine Code
Programming, we are in just this position. We can creale as many
“variables™ as we have memory available but, as yet, we cannot skim
through them in the same way as we can in OPL. To deal with this sort of
problem, the concept of Indexed Addressing was invented. Here we store
the address of the first element of our array in the X (Index) Register. An
indexed instruction then takes the form of:

OPERATOR DISPLACEMENT,X

For example, if we want 1o store the contents of Accumulator A in the 5th
element of the array (assuming that each element takes up a single byte),
we would enter:

STAAS5X

A load instruction would look just the same - easy - but do note that the
offset is a positive, unsigned integer i.e. you can’t refer backwards as you
do in Relative Addressing. If I were to use the instruction “LDA A 0,X", 1
would obviously mean to load the value at the base address itself. To scan
through the entire array, all I would do is to use the load instruction with
an offset of zero, incrementing the X Register on each pass.

8.3 Time for an example, I think. Ever heard of the FIBONACCI series?
For those of you who haven't, let me briefly describe il. It consists of an
infinite serics of numbers which has the property that each clement is the
sum of the preceding two elements (starting with 0 and 1) i.e.
0.1,1,2,3,5,8,13,21 The reasons for and uses of this series are
somewhat outside the scope of this book, so let’s just look upon it as an
interesting little programming problem and lcave it at that. So where does
the indexed addressing come in? So far, it looks just like a simple looping
problem. Well, I want you to write this program so that it will place the
first 10 items in the scries in an array which you must scl up somewhere
in memory. To give you a clue, here is how it could look in OPL.:

87

8.4 Commenting

FIBON:

REM Nil Giobal variables - set up Local variables
LOCAL one%,two%,point%,array %(10)

REM Initialise variables
one%=0

two%=1
amray%(1)=one%

amay %(2)=two%
point%=3

DO
array %(point%)=one%-+Hwo%
one%=two%
two%=array Jo(point%)
point%=point%e+1

UNTIL point%=11

REM View the array

point%=1

CLS

DO
PRINT point%;" “;array%(point%)
point%=point%-+1

UNTIL point%-=11

GET

RETURN

Of course, there arc more elegant ways to do this, but the approach I have
adopted above lends itself reasonably easily to implementation in machine
code. Note that you should start your machine code array at ZERO and
not ONE, as I have done in the OPL example - OPL does not allow arrays
to have a ZERO subscript.

8.4 Remembering the points I made about skipping through a machine
f:odc. array, have a look at my suggested solution. If yours is not identical,
it doesn’t matter. What is important is that it runs and gives the correct

8.4 First ten elements

output. Note also that now we are in the realms of more difficult
problems, I have introduced the concept of commenting the suggested
solutions. This is done much in the same way as the REM statement of
OPL. In machine code, however, we use the backslash or “\". An
assembler would ignore all text on the same line after this mark. I
STRONGLY advise the use of commenting as programs can become
totally unintelligible after a very short time, particularly in machine code
where the meaning of the program is not always immediately apparent.

PROGRAM NAME: “FIBONACCI”

PURPOSE: This program is designed to calculate the first 10
clements of the Fibonacci serics. The first of the
two numbers 10 be added together is held in the
variable ONE% and the second in TWO%. The
count controlling the loop is held in Accumulator

B.
VARIABLES: $7D3A ONE%
$7D3B TWO%
$7D3C ARRAY% \ Base address of the
array
ORG: $7DO0B
7D0B LDX #ARRAY % SCE $7D3C \ Base address of
\array into X Reg
TDOE LDA A #00 386500
D10 STA A ONE% $B7S7D3A \Zero into ONE%
D13 STAAOX $AT 300 \and into the
\ first element of
\the array
D15 INX 308 \ Point 1o the next
\element
1DI16 INC A s4C
D17 STA ATWO% SB757D3B \ One into TWO%
TDI1A STAAODX SAT 500 \ and into the next
\ element of array
DIC INX 508 \ Increment pointer
TDID LDA B #02 $C6502 \ Set counterto 2
TDIF .loop LDA A ONE% SB6S7TD3A \ Get the first
\ number
D22 CLC soc \ Clear Carry Flag

89

8.5 The Stack

7D23 ADC ATWO% 3B9 $7D3B \ Add the second -
7D26 STAAO0X SAT 300 \and store it in
\ the current cell
\of the array
TD28 _swap LDA ATWO% $B637D3B \ Put TWO% into
TD2BSTA A ONE% $B7S7D3A \ONE% and then
TD2ELDA A 0,X3A6 300 \ put current cell
7D30 STA TWO% $B737D3B \into TWO%
7D33 .inc INX 308 \Increment pointer
D34 INCB $5C \ Increment counter
7D35 CMP B #10 3C150A \Counter=107
7D37 BNE -24 $26 230 \ Yes - goto loop
7D39 RTS $39 \No - all done.
TD3A << ONE% >>
7D3B << TWO% >>
D3C <<ARRAY%>>

If you managed to come up with a program similar to the above, you are
doing well - keep it up!

THE STACK

8.5 So, what's a stack? It sounds like some sort of enormous cooling
tower but actually it's much more like the sort of thing you would find in
a restaurant or cafeteria. You must have seen the sont of plate warmers in
such places where they put plates into a stainless steel cabinet in a vertical
pile with a spring at the bottom. As each plate is taken off the top, the
column of plate rises up to reveal the next one. This is precisely how a
stack works in a computer except that instead of a column of plates, we
have a column of data.

8.6 One of the very useful features of a stack is that you don't have to
remember exactly WHERE you stored your data. You simply put it on the
stack with a single command and take it off again with another. The only
thing you must be careful of is 1o take the data off in the reverse order
from that in which you put it on. For example, going back 1o our catering
example, let’s suppose that Tom, Dick and Harry each have their own
monogrammed plates which they wish to place in the warmer until they
heat up (the plates, that is, not Tom, Dick or Harry). Tom Puts his on first,
followed by Dick and then Harry. Naturally, when they come back to
retrieve them, HARRY goes up first to take his off the stack, since his is
on top. Then Dick’s plate springs up and lastly Tom’s. To put this into
compuler context, Tom, Dick and Harry are 3 memory locations whose
contents you want o stack while you use them to store other things. When

a0

8.8 Two commands

you go back to restore the data o the locations you must restore them in
the reverse order (o avoid putting Tom’s data into Harmry, for example.

8.7 The Organiser has its own stack of plates, set up as an area of
memory. A special register called the Stack Pointer (SP) keeps track of
the current free location on the stack. You, the user, can alter the contents
of the SP. In fact, many otherwise impossible tricks can be done using this
method. However, I must stress that this is an extremely ill-advised thing
to do until you are ABSOLUTELY sure of what you are doing. The
Organiser uses the stack to hold all sorts of information. Indeed, we could
refer to the Organiser as a “Stack-Orientated Machine”, since it relies
heavily on stack operations to carry out its work. This means that you
have to be very careful not to overwrite the stack by ill-conceived
machine code programs. There is nothing to stop you actually USING the
stack by means of the legitimate instructions but do it with your eyes open
and don't allow the effects of your STORE instructions to deliver the
dreaded TRAP. As more things are put on the stack, it grows upwards
until it meets the ROM area. The operaling system constantly checks that
there is enough room to meet cach operation it is called to camry out in
OPL. You may, in fact, have alrcady met the “STACK OVERFLOW” and
“STACK UNDERFLOW" errors.

8.8 Let’s see how we can put all this into practice. There are 2 commands
we need 1o know. Firstly, the instruction o place the contents of the A
Register on the stack is:

PSHA (PuSH the A register onto the stack)
Secondly, we can retrieve the data from the stack by using the instruction:
PULA (PULI the A register from the stack)

The same is, of course, true for the B Register. We can illustrate the use of
these instructions by means of a short program. There is a classic litile
problem in programming involving the need to swap the contents of 2
variables. This would normally require a third variable to hold the
contents of one of the variables, temporarily, while the other is moved
over into it. The temporary variable is then copied into the first and the
process is complete. It is, however, possible to do the job WITHOUT the

91

8.10 Swap

use of a temporary variable. Since we have been talking about the stack
for a little while, now, it will come as no great shock to you to discover
that it is involved in the task.

8.9 In OPL, the program might look something like this:

SWAP:

REM Nil global variables - all LOCAL
LOCAL first%, second%, temp%

CLS

PRINT"FIRST : “;

INPUT firsi%

PRINT"SECOND : *;

INPUT second%

TEMP%=SECOND%
SECOND%=FIRST%
FIRST%=TEMP%

CLS
PRINT"FIRST : “;FIRST%
PRINT"SECOND: “;SECOND%

GET
RETURN

8.10 The machine code version is very simple indeed, if we assume that
the 2 numbers to be swapped are already stored in memory. Try to work
out the code for yourself and check it against the following suggested
solution:

PROGRAM NAME: “SWAP"

PURPOSE: This program is designed to take the contents of 2
single-byte variables, called FIRST% and
SECOND% and to swap their contents.

VARIABLES: $7D20 FIRST%
$7D21 SECOND%

92

8.11 Sorting numbers

ORG: $7DOB

7DOB LDA AFIRST% $B6 $7D20 \ Load the contents
\of FIRST% into
\Acc A.

7DOE LDA B SECOND% SF6 $7D21 \ Load the contents
\ of SECOND% into
\ Acc B.

D11 PSH A 536 \ Stack the contents
\of Acc A.

7D12 TBA 1 \ Copy Acc B into
\Acc A.

D13 PULB $33 \ Retrieve the data
\ from the stack,
\ placing it into
\ Acc B.

D14 STA A FIRST% 3$B7$7D20 \ Store Acc A inlo
\FIRST%.

D17 STA B SECOND% $F7 $7D21 \ Stwore Acc B into
\ SECOND%..

TD1A RTS 339 \ All Done.

D20 FIRST%
D21 SECOND%

If you use the “View™ facility of the Hexloader, you will see that they
have in fact been swapped. All this is very interesting but where does it
lead ? It leads, in fact, to a very useful facility to be able to implemeént in
machine code - a sorting routine.

USING AN ARRAY TO SORT NUMBERS

8.11 We now know how to set up an array, o fill it with numbers and to
swap them about. In the case of the Fibonnaci series, these are already in
order. Nevertheless, there arc many occasions when we want to sort
numbers into either ascending or descending format. So, let’s now tum
our attention to this sort of problem.

8.12 There are many algorithms designed to sort numbers or strings into
some form of order but perhaps the casiest to understand is the Bubble
Sort (if you are an old hand at this - bear with me for a little while).
Essentially, this form of sort consists of 2 loops - one inside the other. The
ouler loop is designed to go down the array from the first element to the

93

8.13 “Sont”

penultimate one. At each increment of this loop, the inner one makes a
complete pass starting at the next element up from the one being indicated
by the outer loop and going to the very end of the array. At each step of
the inner loop, the element indicated by the inner is compared to that
pointed to by the outer. If the inner element is numerically or
alphabetically LOWER than the outer, the two are swapped (which, of
course, requires a temporary variable) and the inner loop incremented.
The procedure continues until the outer loop completes.

8.13 As before, look at how this is implemented in OPL. Here, we set up
an array and you are prompted to enter 10 numbers - make sure they are
positive and less than 256 (the program could handle numbers outside this
range but remember - we are going to implement this in machine code
where each number will occupy a single byte). The routine will then sort
the set and print them out.

SORT:
LOCAL array%(10),lemp%,outer% inner%

CLS

outer%=1

DO
PRINT “ELEMENT™ ;outer%;" “;
INPUT array%(outer%)
outer%=outer%+1

UNTIL outer%>10

CLsS

PRINT “PRESS ANY KEY"

GET

PRINT “SORTING .. WAIT"

outer%=1
DO
innerfo=outer%+1
DO
IF array(inner%)<array%(outer%)
temp%=array %(outer%)
array%(cuterf)=array%(inner%)

8.14 Use VIEW

array(inner%)=temp%
ENDIF
inner%=inner%-+1
UNTIL inner%>10
outerfo=outerfo+1
UNTIL outer%>9

CLS

outere=1

DO
PRINT “ELEMENT *“;outer%;" = “;array%(outcr%)
outerfo=outerfo+1

UNTIL outer%>10

PRINT “PRESS ANY KEY"

GET

RETURN

8.14 Of course, we will not need the section of the program where we
inscrt values into the array - we can do this using the VIEW facility of the
Hexloader. Similarly, we can display the sorted contents of the array using
the same facility. Note that since you will perhaps need to stack
ADDRESSES instecad of bytes of information, you may need to look up
the instruction to stack the IX Register. I'll leave this up to you as an extra
test of your developing abilities in machine code. Right then, all we are
interested in is the actual sorting part - see if you can implement it in
machine code. The suggested solution is sct out below.

PROGRAM NAME: “SORT™

PURPOSE: This program is designed to take the contents of an
array, composed of 10 single-byte integers, and
sort them into ascending order. Two variables are
used - OUTER% and INNER% to hold the sort
pointers and the stack to assist in the swapping of
array contents.

VARIABLES: $7ID3A OUTER%
$7D3C INNER%
$7D3E ARRAY% \Base address of the array
$7D40 ARRAY ELEMENTS

95

8.14 Ascending order

ORG: $7TD0B
TDOB
TDOE

7D11 POINTI:
D14

D15

TD17 POINT2:
D18

TDIA
mIC

TDIE
D20

7D21 POINT3:

D24

D26

D27

D29
TD2A

2D
D30

D32
TD3A

D3C
TD3E
D40
TD=xx

LDX ARRAY%
LDAA OUTER%

STAA INNER%

LDAA OX

INX
CMPA 0.X

BCS POINT3

LDAB 0X

STAAOX

TBA

DEC INNER%
BNE POINT2
PULX

STAA 0X

INX
DEC OUTER%

LDAA OUTER%
BNE POINTI

RTS

OUTER%

INNER%

ARRAY%

ARRAY ELEMENTS
END OF ARRAY

SFE $TD3E
$B6 STD3A

$B7$7D3C
$ic

$A6300

SA13500

$25 305
$E6 300

SAT $00

517

S$7A$7D3C
326 5F1
538

SAT7 00

508
STASTD3A

SB6STD3A
326 SDF
539

\ Load IX with array
\ address.

\ Load Acc A with
\ size of ammay.

\ Store inner loop.
\ Push the IX onto
\the stack.

\Load Acc A with
\ the contents of
\cell indicated by
\IX.

\Increment IX.

\ Compare the next
\item in the armay

\ with the greatest

\ value so far.

\If it’s greater,
\branch to POINT3.
\ Otherwise, load
\Acc B with array
\clement.

\Store Acc A in the
\ array position.

\ Transfer Acc B to
\ Acc A, making it
\the new greatest.
\ Decrement inner
\ loop.

\If it's not zero,

\ branch to POINT2.
\ Get the IX value

\ from the stack.

\ Storc Acc A in the
\ array.

\ Increment the IX.
\ Decrement the

\ outer

\ Load l:gl;\ with
\ the outer loop.

\If it's not zero,
\branch to POINTZ.
\ Otherwise, end.

8.15 Conclusion

CONCLUSION

8.15 In this chapter, we have examined the ways in which we can simulate
arrays in machine code by means of indexed addressing. We have also
come up against the concept of a stack and how o manipulate its contents
using the Push and Pull commands. In keeping with the general approach
of this book, we have illustrated the new material with examples. So then,
before we go on to look at subroutines, try the following Post Test.

97

Post Test

POST TEST
1. Which register is used to step through a list of memory locations ?
2. What is a stack ?
3. What is the term for putting an item of data on the stack ?
4. What is the term for taking an item of data off the stack ?

5. What is the machine code instruction for taking data off the stack and
putting it :

a. In Accumulator B.
b. In the Index Register.

6. Repeat 5. for taking putting data on the stack from
a. Accumulator B.

b. Index Register.

Chapter 9

There and Back

There and Back

9: There and Back

TRAINING OBJECTIVE:

Al the end of this chapter, you will be able to write programs using
subroutines.

ENABLING OBJECTIVES:
To enable you to do this, you must be able to:
a. State how a machine code program calls a subroutine.

b. State the machine code equivalent of the OPL “return™
statement.

c. Describe how the user can pass parameters to a subroutine.

d. Describe how the Organiser knows where Lo return 1o after
completing a subroutine.

. Describe how subroutines aid the programmer.

INTRODUCTION

9.0 As you know, the Organiser has the facility to enable the user to code
his OPL program as a series of subroutines, called by a main program
(which itself is really rcgarded as a subroutine except that the RETURN is
optional). Dividing and conquering like this is good practice and is called
MODULAR PROGRAMMING. It enables the user to split up an
otherwise complex problems into a series of easier ones. This means that
when you return to the program some time later, you would find it easier
to understand and, just as important, modify it in the light of changing
requirements.

9.1 As I have shown, ALL machine code programs, even the main
program, MUST have its equivalent of the RETURN command - RTS - at

100

9.2 Understanding subroutines

the end of the code. This is because the machine code simply would not
know where to go at the end of the code if there was no RTS. However,
what you have not met up until now is how to use the RTS as the end of a
true subroutine called from a main one.

CALLING A SUBROUTINE

9.2 The secret of understanding machine code subroutines is to treat them
exactly like OPL ones! However, whereas in OPL we would call a
subroutine simply by using its name, the machine code programmier has to
specify the address of the subroutine instead. To call it, we use the
following instruction:

JSR xxxx (Jump to SubRoutine at xxxx)

Notice that the jump address is NOT like that for the branch or jump
instructions where the offsct is specified as a signed byte i.e. it can be
positive or negative. In the case of the JSR instruction the address is just
that - an actual hexadecimal address of the start of the subroutine. It can
also be expressed in Indexed and Direct addressing modes.

9.3 When the JSR is called, the Organiser automatically stacks the current
address where the JSR is located before jumping to the specified
subroutine and continuing execution from that point. When the RTS is
encountered, the Organiser retrieves the return address, jumps 1o that
point and continues execution until the RTS of the main program is
reached. All just like OPL! We can test this out using one of our previous
machine code programs as a subroutine and writing a new one to act as its
controller. We will use the “LOOP STRUCTURE 2" program in
paragraph 7.8. We will place our controlling program at address $7D20.
This illustrates an important point - the controller does NOT have to occur
before the subroutine. However, it aids readability if the main program
does come first. Nevertheless, we will fly in the face of convention -
mainly because we can simply enter it as laid out in chapter 7 and add the
new bits at the end!

101

9.4 Passing parameters

PROGRAM NAME: “LOOP STRUCTURE 2"

PURPOSE: This program loops round 100 times. The count is
held in Accumulator A and the final value is
placed in RESULT%

VARIABLES: $7D16 RESULT%

ORG: $7D0B
7DOB LDA A #1 $86 501
7DOD .loop INC A $4C
TDOE CMP A #101 $81 %65
D10 BNE loop $26 251
D12 STA A RESULT% $B7 $7D16
D15 RTS $39
D16 << RESULT% >>

PROGRAM NAME: “LOOP STRUCTURE 2 CONTROLLER"

PURPOSE: This program controls the LOOP 2 program
outlined above.
VARIABLES: Nil.
ORG: $7D20
TD20ISR $7D0OB $BD $7DOB \ Jump to the
\ subroutine.
7D23 RTS$39 \ All done.

9.4 Do remember to specify $7D20 as the location you want to RUN
from. Hopefully, then, you can see that the actual use of the JSR and RTS
instructions are very easy to use in your own programs. But what about
passing paramelers to a subroutine ? Well, one way favoured by the able
and confident is to stack any values required by the subroutine prior to
executing the JSR instruction. Can you see any problems with that for the
inexperienced ? Just before the CPU makes its jump to the subroutine, it
STACKS THE CURRENT (RETURN) ADDRESS. This means that the
data for the subrouline is undemeath the return address on the stack. To
some programmers, this is not a problem but I advise you strongly against
this practice, however attractive it may seem. We will use a simpler
method.

102

9.5 Hidden location

9.5 Those of you who have been weaned on a diet of John Le Carré will
recognize the term “Dead Letter Box™. This is a hidden location, such as
under a tree root, where a documents can be left by one spy for collection
at a later date by another. This is precisely what we do in the case of
parameter passing. Before we call the subroutine, we place any necessary
data in a memory location for reading at the appropriate time. Let's see if
we can use another of our previous programs in this way.

9.6 A good example would be the program lo square a number. You'll
find it at paragraph 7.15. We could allow the controlling program to store
the number to be squared at the required location. Look at the definition
of program “SQUARE™:

PROGRAM NAME: “SQUARE"
PURPOSE: This program takes the value stored in

NUMBER% and squares it by repeated addition.
The result is stored in SQUARE%

VARIABLES: $7D20 NUMBER%
$7D21 SQUARE%
ORG: $7D0B
7DOB LDA A NUMBER% $B6 $7D20
TDOE LDAB#00 $C6 $00
7D10 STA B SQUARE% $F7 $7D21
7D13 .loop CLC $ocC
D14 ADC B NUMBER% $F9 $7D20
D17 DECA 34A
D18 CMP A #0 $81 $00
TD1A BNE loop $26 247
DIC STAB SQUARE% $F7 $7D21
TDI1F RTS 339
7D20 << NUMBER% >>
7D21 << SQUARE% >>

Our controlling program simply places the number into location
NUMBER%, calls the subroutine and terminales.

103

9.6 Conclusion Post Test

PROGRAM NAME: “SQUARE CONTROLLER" POST TEST
PURPOSE: This program places the number to be squared in 1. State the machine code instruction to call a subroutine.
location NUMBER% before calling the SQUARE
subroutine. This, in tumn, squares the number and 2. State the machine code instruction to return from a subroutine.
places it in location SQUARE% before returning
to the main program which itself then terminates. 3. Why should the programmer use subroutines ?
VARIABLES: Nil. 4. How does the programmer pass paramelers 1o a machine code
subroutine ?
ORG: $7D30
7D30 LDA A #03 $86 $03 \ Any number.
7D32 STA ANUMBER% $B6S$7D20 \Storeit
7D35 JSR $7D0B SBD$7DOB \Jump o the
\ subroutine.
7D38 RTS $39 \ All done.
CONCLUSION

9.6 In this short chapter, we have looked at how we can implement
subroutines in machine code and how we can call them, with or without
parameters. We have seen that programming in modules is good practice
since it aids readability and modifiability. Try out the following Post Test
before going on to the last chapter.

104 105

Chapter 10

Organiser Operating System

Organiser Operating System

10: Organiser Operating System

TRAINING OBJECTIVE:
At the end of this chapler you will be able to write programs which make
use of the PSION Organiser’s operaling system.

ENABLING OBJECTIVES:
To enable you to do this, you must be able to:

a. Describe the functions of an Operating System (OS).
b. State the meaning of an OS call.
c. Describe the means by which an OS call can be invoked.

INTRODUCTION

10.0 Finally, in this the last chapter, we look at the PSION Organiser OS,
PSION have packed a very great deal into their firmware and there are
many facilities which can be called by the informed user to add flexibility
and speed to his programs. These facilities are in fact subroutines stored
in ROM. However, instead of accessing them as we would do normal
subroutines, we call them by means of OS calls. This is not to say that the
unscrupulous could not discover their actual locations and use them
directly (indeed there are advantages in speed to this method) but I would
advise against any approach of this kind. Firstly, the actual internal
workings of the Organiser can and does change from version to version
and a program written to PEEK and POKE where it shouldn't is going to
come a cropper sooner or later. Using the accepted OS calls means that
PSION do all the work in ensuring that the call is routed to the correct
location, irrespective of any changes which have been made deeper down.
Secondly, PSION have gone 10 a great deal of trouble to produce a superb
OS for the size of the machine. It is flexible and easy to use. It is good
programming practice to make use of these facilities.

108

10.1 Development of Systems

10.1 Operating systems have grown up due to the increasing complexity
of modemn computer systems. In the bad old days, all the housckeeping
chores were dome by the programmer and the program took complete
control of the CPU when it was running. This meant that, unless
specifically coded, other things like polling the keyboard, were
deactivated on some systems. Operaling systems evolved to counter this
problem and provide a means by which the system can periodically stop
what it is doing and “have a look around” to see if it should be updating a
clock or reading a keyboard. In addition, most of them, including the
Organiser, provide the user with a suite of pre-wrilten routines which he
can call from his own programs.

10.2 Annex G holds details of the PSION Organiser’s OS calls and you
should use this to code your programs. Calling an OS routine is simplicity
itself. The CPU will jump to an OS routine when it encounters the
Software Interrupt (SWI) instruction - $3F. It interprets the byte
immediately following the SWI as the number of the OS call you wish to
enter. The Operating System then takes the CPU to the relevant area in
ROM where the routing is located and execution continues from that
point. When the routine has completed, the CPU returns to the byte
following the OS call number in your main program. Annex G explains
this, and how to pass parameters, in more depth.

10.3 I don't intend to work my way through all of these, or even a
proportion of them. Most of them are way beyond the stage of the average
reader of this book and are included for completeness and the more
advanced user using the publication for refercnce. However, 1 will give
examples of how to use the more common ones. To start off, have a look
at G-6 and Vector (or Call) number 13. The funclion of this routine is to
sound the alarm. Notice that its entry requirements are shown as NIL.
This means that no parameters necd 1o be passed to it using our “Dead
Letter Boxes™ of Chapter 9. The functional description tells us what it
does and the fact that it disables interrupts. This could have ramifications
if we were particularly intcrested in timing and we would have to take the
length of time the alarm was sounding into consideration. For our
purposes, though, it is not a problem. So let’s try it out by coding a small
program to call it.

109

10.4 Make a sound

PROGRAM NAME: “SOUND ALARM"

PURPOSE: This program calls a software interrupt and passes
the Vector number to the OS for exccution of the
routine.

VARIABLES: Nil

ORG: $7D0B

TDOB SWI1#$0D $3FS0D \Call the Software Interrupt 13.
7D0OD RTS $39 \All done.

10.4 Quite impressive, yes? For a modicum of code, you have been able
to produce a sound which CANNOT be made using OPL. This is the sort
of thing which machine code can do. It taps directly into the heart of the
machine to make it perform in a way not attainable in a higher level
language. The pitfall, of course, is that the code had better be correct! Did
you notice that the call only gave a single blast of the alarm? How could
we make it give, say, 3 or 4?7 A loop, of course. Have a look back at 7.7.
Here we have a perfect vehicle to hold our OS call. See if you can use this
loop to sound the alarm 5 times. HINT: save the loop counter in a suitable
variable and load it into Accumulator A each time for testing. This is
because the OS call trashes the contents of the Accumulator. The code is
shown below but try it yourself, first.

PROGRAM NAME: “ALARM LOOP”

PURPOSE: This program loops around 5 times, calling Vector
13 (Sound the Alarm) each time, before
terminating. The loop counter is held in the
variable COUNTER% since the OS routine makes
its own use of the Accumulator during its

operation.
VARIABLES: $7D30 COUNTER%
ORG: $7D0B
7DOB LDA A#0 $86500 NInitialise counter
7DOD STA A$7D30 $B7$7D30 \Storeit.
7D10.loop INC$7D30 $7C$7D30 NIncrement it.
110

10.6 Screen display
D13 SWI#$0D $3F30D \Sound alarm.
D15 LDA AS$TD30 $B6S7D30 Retrieveil.
D18 CMP A #05 £81 %05 \ALS5?
TD1A BNE loop $26 244 \No - go round.
7D1C RTS $39 \All done.

10.5 So now you are able to call the Organiser’s alarm sound using your
very own controlling routine. This itself could be useful in that you can
now call your machine code program from an OPL program to produce
the sound on request. The same approach goes for Vector 14 - the Beep
note but since this is as in OPL, [won’t dwell on iL.

10.6 Let’s move on to a call which requires some sort of parameter. Up
until now, we have been unable to display anything on the screen from
machine code - now, we can. Look at Vector 16 - OQutput a Character. This
requires you lo put the character you want printed into Accumulator A
prior to calling the SWI. This will display the characlcr at the cursor
position. All characters can be used, so this means that you could clear the
screen as well as print a message. A good test would be to see if we could

clear the screen and print the word “PSION™ - try it.
PROGRAM NAME: “PRINT PSION"

PURPOSE: This program clears the screen and prints the word

“PSION" by repeatedly loading Accumulator A
with the requisite values and calling SWI 16.

VARIABLES: Nil

ORG: $7D0B
7DOB LDA A#12 $8630C
7DOD SWI#16 $3IF510 \clear screen
TDOF LDA A#80 $86 $50
7D11 SWI #16 $3F$10 \Print “P".
D13 LDA A#83 $86 $53
D15 SWI#16 $3F510 \Print “S™.
D17 LDA A#73 $86%49
D19 SWi#16 $3FS10 \Print “I".
7D1B LDA A#79 $863%4F
7D1D SWI#16 $3Fs10 \Print “0O".
TDI1F LDA A#78 $86%4E
7D21 SWI#16 $3F810 \Print"N™.
7D23 RTS 339 \All done.

111

10.7 How to ENTER

10.7 You should be greeted with the word “PSION™ at the top left of the
screen. After a short pause, this will be replaced by the “ROUTINE
DONE" message and the opportunity o run the routine again. All this is
very well and good, but it does not help you actually talk to the Organiser.
Suppose we wanted to ENTER the word PSION and to have it printed out
as a complete string - how would we approach it? Well, the first thing to
do is to identify the OS calls which are relevant to the problem. First, we
need some way to enter the keypresses into the memory of the Organiser.
We can do this by repeated calls to Vector 72 - GET KEY. This will place
the ASCII value of the keypress into Accumulator B which we can then
store in memory. When we have all five letters (sounds like a count of
some sort lo me), we must then print it as a string. This requires Vector 17
- PRINT A STRING. Here, we place the number of characters to be
printed in Accumulator B and the start address of the siring in the IX
Register. Remember that you will have to place the number 5 in CHAR%
and a suitable address (say, $7D34) in STORE% prior to running the
program. The code looks like this:

PROGRAM NAME: “GET PSION"

PURPOSE: This program clears the screen and prints the word
“PSION™ by getting the word, letter by letter, from
the keyboard. The address of the string storage
space is held in STORE% and the number of
characters to be printed in CHAR%.

VARIABLES: $7D30 CHAR%
$7D31 STORE%
ORG: $7D0B
7DOB LDA A#12 $86%0C
7DOD SWI#16 $3F$10 \clear screen.
TDOF LDA A #126 $863%7E
7D11 SWI#16 $3F$10 \Print arrow.
D13 LDA A CHAR% $B63%7D30 \Load number
‘of characters.
D16 LDX STORE® $FE $7D31 \Load address
‘of store.
7D19 loop.SWI#72 $3F548 \Call Vector number 72.
7DIB STABO0X $E7 $00 \Store char.
7D1D INX $08 \Inc store.
112

10.9 Conclusion
TDI1E DECA A \Dec counl.
7D1F CMP A#0 $81 500 =07
7D21 BNE loop $26 SF6 \No - loop.
7D23 LDA A#12 $8630C
TD25 SWI#16 $3F 510 \Clear screen.

D27 LDABCHAR% $F6$7D30 \Get count.

7D2A LDX STORE% $FE $7D31 \Gelt store.

7D2D SWI #17 $3F811 \all Vector number 17.
TD2F RTS $39 \All done.

10.8 What you should have seen was the screen clearing and the right
arrow appearing at the top left of the screen to indicate that you should
start typing. Notice that your key presses do NOT appear on the screen. If
you want this, you will have to code it in at each iteration of the loop. chu
already know how to do this (remember Vector 16?). In addition, notice
how you did not have to press EXE to enter the string. The word appearef:l
as soon as the fifth character was entered. You could, of course, make it
continue to accept characters UNTIL the EXE key was pressed. This
would mean that you would have to test for the EXE key being p{m&@d
and to keep a count of the number of characters already stored in the
STORE% buffer. This number would then be passed to the B Register
when it came to printing the string. So you can see that you already know
quite a bit and should be able to code some reasonably complex programs
of your own,

CONCLUSION _
10.9 In this chapter, we have looked at the Organiser OS and described
how calls to the various facilities can be made. This chapter also brings to
a close this entire book. [hope that it has brought you some way on the
rocky road to machine code programming. The secret is to ca:cfull¥ check
out your programming ON PAPER before entering it into the n'.lachmc and
running it. Even then, you should check it out first using the disassembler
function of the Hexloader. Certainly you should save all your important
information to disc or Datapack in case battery removal becomes
necessary. If you have followed my instructions faithfully, such disasters
will have been minimised but now you are on your own. Have fun, for
that’s what programming is all about.

113

Post Test

POST TEST
1. What is the function of an Operating System?
2. How do we call a specific OS routine?

3. What is the Hexadecimal code for this instruction?

114

Annex A

Answers to Post Tests l

Answers to Post Tests

A: Answers to Post Tests

Chapter 1

1. He developed a mechanical gear wheel calculator in the 17th century.

1.2)

2. Leibnitz improved upon the design to enable it to do multiplication and
division. (1.2)

3. Clockwork toys and ornaments in vogue particularly in the 18th
century.(1.3)

4. He developed a loom whose patterns were determined by punched
holes in a series of cards - the first program, in cffect.(1.3)

3. Charles Babbage.(1.4)
6. The military requirements of World War I1.(1.5)

7. Colossus was a computer used to decrypt signals and ENIAC was
employed in calculating ballistic trajectories.(1.5)

8. The invention of the transistor.(1.8)
9. Languages which are more like a subset of English than codes.(1.9)
10. FORTRAN..(1.9)

11. COBOL..(1.9)

116

Chapter 2
1. A computer on a single chip..(1.10)
2. Central Processing UniL (2.17)

3. Doing simple arithmetic and controlling the other chips on the
board.(2.1)

4. Read-Only Memory.(2.2)
5. IRMWARE. (2.3)
6. Random Access Memory.(2.4)

7. They convert computer signals into a format which is of use in the
outside world and vice versa.(2.7)

8. The Address Bus wakes up the chip required by the CPU and the Data
Bus passes data to or takes data from the chip. (2.9,2.10)

9.255.(2.10)

10. The Oscillator acts as a sort of metronome, kecping time so that all
operations within the computer take place in a synchronized manner.

11. The Hitachi HD6303X_(2.13)

12. 192 bytes. (2.20)

13. Standby, Reset, Active, Halt and Sleep.(2.17)

14. Standby, Active and Sleep. In Standby, the machine is under power
but switched off. In Active, everything is up and running. In Slecp, the
processor ticks over but everything else is dozing to reduce power

consumption. (2.17)

15. It acts as a central clearing house and as a time keeper. (2.19)

117

Chapter 3
1. Decimal, or Base 10. (3.0)
2.Base 2. (3.3)
3. a 10000000 b. 11100000 c. 00100010 d. 0011001
e. 01000001 f. 01100101 g- 11001010 h. 11000011
1. 01001101 j. 10000100 k. 11001000 1.11110000
4, a.76 b.211 c.45 d.241
e. 170 [.85 g-227 h.126
i.129 j.9%4 k.254 1.127
5. a 11010111 b.00101011 ¢. 11111110 d. 11111011
6. A method by which 2 binary numbers can be subtracted. All the ones
and naughts of the number to be subtracted are reversed and the number
one is then added to this. The resulting Two's Complement number is
added to the number to be subtracted FROM and the result is a
subtraction.(3.9)
7. a. 10101001 b. 01101001 c. 11111000 d. 00001011
8. We are only human - mistakes would be made. (3.10)

9. Base 16. (3.10)

10. 280 b.E0 cl18 d.32
e41 f4 gCA hC3
i4dD .84 kC8 LK
adC b.D3 c2D dFl
eAA £55 g E3 h7E
81 jSE LkFE L7F

118

Chapter 4
1. Speed and Flexibility. (4.4)

2. Bad machine code routines can cause the Organiser to freeze, forcing
the user to remove the battery. This would lose all the diary records elc.
This can be circumvented by saving all valuable data to Datapack or disc
before using any machine code programs. (4.5)

3. Moving the base of the Language Stack to make room for the machine
code.(4.7)

4, The Operator is the actual coded instruction in machine code. (4.8)
5. The Operand is the data on which an operator will work.(4.8)

6. Assembly language is a one-lo-one correspondence of mnemonics to
machine code instructions. These mnemonics make the machine code
easier to lean e.g. RTS instead of $39. (4.10)

7. Two eight-bit Registers A and B for arithmetic, 16- bit Register D
produced by combining A and B for double-precision arithmetic, 16-bit
register IX for addresses, a 16-bit stack pointer (SP), a 16-bit program
counter (PC) 1o hold the address of the current instruction and an 8-bit
condition code register (CCR) which holds various status flags. (4.13)

119

Chapter 5

1. We sclect an appropriate memory location and use this to hold the data,
(5.2)

2.LDA A.(5.6)
3. Stores the contents of Accumulator A in a specified location. (5.7)

4. It can handle 16-bit numbers. Accumulators A and B can only deal with
8-bit numbers. (5.18)

5. $FC. (Annex E)

6. $DD. (Annex E)

120

Chapter 6

1.ADCA. (6.4)

2. Accumulator D. (6.11)
3. ADDD. (6.11)

4. Signifies if there is an arithmetic carry from a previous calculation to
be added in. (6.11)

5. Signifies if a carry from a previous calculation should be subtracted.

6. The ADD D operation does not lake any carry from a previous
operation into consideration. (6.17)

7. ADC A includes any carry, whereas ADD A ignores it. (6.4)

121

Chapter 7

1. The Condition Code Register (CCR). (7.4)

2.Asper74a-d.(74)

3. If, say, 13 was to be compared, the code would be CMP A #13.(7.6)

4. Relative Addressing involves specifying the size and direction of a
jump from the current location in the program on the result of a
comparison. (7.5)

5. Asper7.5a-q. (7.5)
6. The CPU takes the relative jump specified and adds 2 to this number. It
then works out where in memory this point is located and carries on

execution from that peint. (7.6)

7.BNE -25. (1.6)

122

Chapter 8
1. The IX Register. (8.2)

2. The stack is a data structure where all the items are added to and
removed from one end like the plates on a spring loaded warmer. (8.5)

3. Pushing an item onto the stack. (8.8)
4. Popping an item off the stack. (8.8)
5.a. PUL B. b. PULX. (Annex E)

6.2.PSHB b. PSHX. (Annex E)

123

Chapter 9

1.JSR.(92)

2.RTS. (9.3)

3. To encourage modularity of design. This makes the program easier to
understand and subsequently modify. It also makes for economical code,
where a single sub- routine can be used by many other programs. (9.0)

4. Parameters can either be stacked prior to calling the routine (not
recommended) or by placing the data items in memory locations. (9.5)

124

Chapter 10

1. The Operating System is responsible for maintaining the smooth
running of all functions, maintaining time and providing a kernel of

faciiitics and routines which the programmer can use. (10.1)

2. By executing a Software Interrupt to a specified Vector Number. (10.2)

3. $3F(10.2)

125

Annex B

Number Bases Test Program l

Number Bases Test Program

B: Number Bases Test Program

B.1 This suite of programs allows the user to test out his arithmetic in four
different number bases - BINARY, OCTAL, DECIMAL and
HEXADECIMAL. It will allow addition, subtraction and the facility to
change number base.

B.2 The suite consists of 3 programs:

a. TEST:

b. INTOBASE:

c. FROMBASE:
Enter each and translate them one at a time.
B.3 To use the program, enter the PROG menu and RUN TEST.
Alternatively, put TEST in the high-level Organiser menu. This will allow
you to select it immediately, without typing. The user is presented with
the menu:

add subitract

convert new-base

quit

The default base is hexadecimal. To change the base sclect the new-base
option. This will give a second menu:

binary octal
decimal hex

Simply select the base required using either the arrow keys or pressing the
first letter of the base.

128

B.4 To make an addition or subtraction, select the appropriate option from
the first menu. The user will be asked for the first and then the second
number. The user must enter these and, after a short pause, the answer
will appear in the sclected base. To convert a number from one base to
another, select Convert from the top menu. This will ask the user to enter
the number to be converted. This is followed by a request to enter the
current base of the number and then the base the user wants the number to
be displayed in. After a short pause the number in its new base is
displayed on the screen. Pressing any key will return the user to the top
menu. Pressing any key will return the user to the first menu. this
continues until QUIT is selected.

TEST:

GLOBAL
number$(16),convert$(16),number,m1%,m2%,basel base2,width%,numl,
num?2,num 1 $(8),num23%(8),answer

number$="0123456789ABCDEF"
basel=16.0
width%=4

DO
CLS
m1%=MENU(*ADD,SUBTRACT,CONVERT,NEW-BASE,QUIT")

IF m1%=1 OR m1%=2

CLS

PRINT"1st : *;

INPUT num1$

PRINT2nd : *;

INPUT num?2$
FROMBASE:(num1$ basel)
numl=number
FROMBASE:(num23$,basel)
num2=number

IF m1%=1

number=num1-+num?2
ELSEIF m1%=2

129

number=num1-num2
ENDIF

CLS

INTOBASE:(basel ,width%*2)

PRINT"ANSWER:"

PRINT convert$;

GET

ELSEIF m1%=3

CLS

PRINT "Number:

INPUT num1$

CLS

PRINT"PRESS KEY TO"

PRINT"SELECT BASE1L"

GET

CLS
m2%=MENU(BINARY,OCTAL ,DECIMAL HEX")
IF m2%-=1

basel=2.0

width%=8

ELSEIF m2%=2

basel1=8.0

width%=3

ELSEIF m2%=3

basel=10.0

width%=3

ELSEIF m2%=4

basel=16.0

width%=4

ENDIF

FROMBASE:(num1$,basel)

CLS

PRINT"PRESS KEY TO”

PRINT"SELECT BASE2"

GET

CLS .
m2%=MENU(“BINARY,OCTAL,DECIMAL HEX") i
TF m2%-=1 1

130)

base2=2.0
width%=8

ELSEIF m2%=2
base2=8.0
width%=3

ELSEIF m2%=3
base2=10.0
width%=3

ELSEIF m2%=4
base2=16.0
width%=4

ENDIF
INTOBASE:(base2,width%)
CLS
PRINT"ANSWER:"
PRINT convert$;
GET

ELSEIF m1%=4
CLS
m2%=MENU(“BINARY,OCTAL ,DECIMAL HEX")
IF m2%-=1
basel=2.0
width%=8
ELSEIF m2%=2
basel=8.0
width%=3
ELSEIF m2%=3
basel=10.0
width%=3
ELSEIF m2%=4
basel=16.0
width%=4
ENDIF

ENDIF

UNTIL m1%=5
RETURN

131

INTOBASE:(b,w%)

LOCAL temp

convent$=""

DO

temp=number

number=INTF(number/b)
temp=temp-number*b
convert$=MID$(number$,temp+1,1)+convert$
UNTIL number<1
convent$=REPT$("0",w%-LEN(convert$))+convert$
RETURN

FROMBASE:(convert$,base)
LOCAL power%

power%=0 :number=0

DO

number=number+(LOC(number$,MID$(convert$ LEN(convert$)-

power%,1))-1)*(base**(power%))
powerdbo=powerfo+1

UNTIL power%=LEN(convert$)
number=INTF(number+).5)
RETURN

132

Annex C

Memory Map

Memory Map

THE CPURAM

C.1 The following memory locations are shown with their corresponding

descriptions and their Read/Write attribute. Note that OPL forbids the use

of PEEKs or POKE:s affecting locations $00-3F.
C: Memory Map g

INTERNAL CPU RAM ADDRESSES

$01 Port 2 data direction register w
502 Port 1 R/W
503 Port 2 R/W
304 Port 3 data direction register w
$05 Not used
7 Port 4
$8000 Not Used (except LA/OS) $08 Timer Control/Status w
$8000 $6000 $4000 Processor Stack $09 Free running counter - high R/W
LA/OS XP/OS CM/OS 30A Free running counter - low R/W
STFO0 $5F00 $3F00 Language Stack $0B Output compare register - high ~ R/W
30C Output compare register -low R/W
(grows down) $0D Input capture register - high R
$0E Input capture register - low R
(grows up) $0F Timer control/Status register2 R/W
$10 Rate, mode control register R/W
Allocated Cells $11 Tx/Rx control status register R/W
$12 Receive datavegister R
$20001 System Variables $13 Transmit data register w
$14 RAM/Port 5 control register R/W
$04001 Not Used (except LA/OS) $15 Port 5 R
$0100-I Hardwire Addresses $16 Port 6 data direction register w
317 Port 6 R/W
$00EQ0 Transient Application Arca $18 Port 7 R/W
$00401 $19 Output compare register - high R/W
$0020 System Variables I 1A Output compare register - low R/W
S1B Timer control/Status register2 R/W
s1C Timer constant register w
$1D Timer 2 Up counter R/W
$0000-I Internal Registers $1E Not used i
$IF Test register (do not use) -
$20-$3F Not used -

134

135

ZERO PAGE LOCATIONS OUTSIDE THE CPU

C.2 Zero Page RAM cxtends from $00 to $FE. Using Zero Page locations
speeds up program operation since the addresses consist of a single byte.
Users should note, however, that the Operating System uses $40-8DF and
the Transient Application goes from $EOQ to $FF. These locations are
unsafe for the User unless he knows exactly what he is doing!!!

MAIN MEMORY ZERO PAGE LOCATIONS

$40 JMP instruction for vector in UTW_S0
$41 General Word Variable (GWV) 0
$43 GWV1
$45 GWYV 2 [These scraich registers can be used
$47 GWV 3 but their contents could be trashed
$49 GWV4 byOScalls.]
$4B GWV 35
$4D General Word/Byte Variable (GWBV) 0
$4F GWBV 1
$51 GWBV 2 [The contents of these variables must
$53 GWBV 3 be maintained. To use them for other
$55 GWBV 4 purposes, first PUSH the old values
$57 GWBV 5 and restore them afterwards.]
$59 GWBY 6
$5B NMI flag, cleared when NMI executes
$5C Time (in seconds) before auto switch off
$5E Address of RAMTOP
$60 Run time low battery flag
$61 Reserved
$62 Cursor position (0-31 for Organiser. II or LZ in 2-linc mode and
0-79 for 4-line mode LZ)
$63 Cursor status byte
$64 Scrolling line position
%65 Number of characters to scroll
366 Scroll direction
$67 Save cursor position, used in DP_SAVE
$68 Save cursor status, used in DP_SAVE
$69 Declay when scrolling in ticks (default 4)
$6B Delay before scrolling in ticks (default 10)
$6D *Ready to display’ timer in ticks
[Decremented by one on each keyboard interrupt until its value
= 0. Vector 108 uses this variable to time delays]

136

$6F
1

373
$74
$75
$76

$78

$79
$7A
$7B

$1C
$7D
$7F
$80
$81
$82
$83
$84
$85
$87
$89
$8B
$8C
$8D
$8F
$91
$92
$94
$96
$97

Address of scrolling string

Keyboard polling time

[Controls the frequency of keyboard interrupts. Default is
$B3DD =0.05 secs. If this variable is cleared, lock-up will
occur]

Offset in KBT_BUFF to oldest key in buffer

Number of keys in buffer

Previous key pressed

Unget key, zero if no key else the key

Delay before auto-repeating in ticks

[Delay before keybeard auto-repeat. Default is 14 = 0.7 scc]
Delay on auto-repeat in ticks

[Delay between keys during auto-repeat. Default is 0 which is
fastest. A value of 1 gives half normal speed, 2 gives onc third
and soon]

Keyboard counter

Offset into keyboard table

CAPS, NUM and SHIFT lock status

[Bit 7 set if SHIFT key pressed, bit 6 for NUM LOCK, 1 for
CAP or NUM key and 0 for LOWER CASE LOCK]
Auto-switch off flag, set for auto-switch off

Time left in seconds before auto-switch off

Maximum input length

Prompt length

First editable line

First editable characler in first line

Current line edit

Editor cursor status

Current position within line

Offset to current line

Total buffer length

Pack being looked at

Actual current pack

Length of RAM file

Offsct into RAM file

High order byte of pack address

Pack address

Pointer to current pack identifier

Current record type

Current pack

137

$98
$99
$9B
$9D
$9F
$A1
$A2
$A3
$A4
$AS
$A7
$A9
SAB
$AD
3AF
$BO
$B2
$B4
$B6
$B8
$BA
$BC
$BE
$BF
$C1
$C3
$C5
$CC
3CD
$CE
$D5
D6
D7
D9
$DB
$DD
$DE

$EO - $F7
SF8 - $FF

138

Device being DIR-ed
Next directory record number
Current record number
Address of file name
Number of records
Current record type
Current default pack (0-2)
Which option: FIND, SAVE or ERASE
Non-zero to mute buzzer
Run time stack pointer
Run time frame pointer
Run time program counter
Current line being edited
Current character pointer
Previous token

Array index

Maximum string size
Pointer Lo variable
Temporary constants
Global O code size
Current free O code bytes
Total O code size
Structure next level

Next new label number
General language word
General language word
Accumulator : mantissa
Accumulator : exponent
Accumulator : sign
Operand : mantissa
Operand : exponent
Operand : sign

Table program counter
Table base

Table stack pointer

Table flag

General pointer

Transienl application arca

Transicnt application area, trashed on WARM BOOT

OVERLAYS

C.3 The usage of the locations shown in the above table represents their
main function. However, to make the most use of available memory, the
Organiser doubles up some of the functions of specific locations by
allowing other routines lo employ them.

This is known as “overlaying against™. The following addresses, then, are
also used by the indicated facilities.

DIARY VARIABLES
$C5 Year
$Co Month
b o Day
$C8 Hour
$C9 Mins

ALARM VARIABLES
$C5-$CB Alarm temporary area

RUN TIME YARIABLES
$BO Escape flag
$B1 Current logical name
$B2 Trap flag
$B3 Current error condition
$B4 Carriage return flag
$B5 Device of top procedure
$B6 General word variables
$B8
$BA
$BC
$BE
$C0
$C2

139

THE SEMI-CUSTOM CHIP

C.4 The Semi-Custom Chip addresses run from $180 to $3FF and, like
addresses $00-$3F, OPL will not allow PEEKing or POKEing in this area.
This is because the mere act of PEEKing into a location in this area could
have unforeseen consequences for the unwary User.

SEMI-CUSTOM CHIP ADDRESSES
$0180 Liquid Crystal Display (LCD) control register
$0181 LCD dataregister
$01C0 Switch off
$0200 Pulse enable
$0240 Pulse disable
$0280 Buzzeron
$02C0 Buzzer off
30300 keyboard + clock counter reset

[used to set all counter lines to zero]
30340 keyboard+ clock counter - clock once
[increments counter address by one]
$0380 Enable NMI to processor
$03C0 Enable NMI to counter
$360 Reset ROM/RAM to bank 0 (LZ)
$3E0 Select next ROM bank (LZ)
$3A0 Select next RAM bank (L7)

SYSTEM VARIABLES

C.5 The systcm variables which appear below are guaranteed by PSION
to remain correct on all versions above 2.4,

SYSTEM VARIABLES

$2000 Permanent cell

$2002 Top level menu cell
$2004 Diary cell

$2006 Language text cell

$2008 Symbol table cell

$200A Global record cell

$200C QCODE output cell
$200E Ficld name symbol table 1
140

$2010
$2012
$2014
$2016
$2018
$201A
$201C
$201E
$2020 - $203E
$2040
$2042
$2044
$2046
$2048
$204A
$204C
$204E
$2050
$2052
$2054
$2056
$2058
$205A

$205C

$205E

$2060
$2062
$2063
$2064
$2065

Field name symbol table 2

Field name symbol table 3

Ficld name symbol table 4

File buffer 1

File buffer 2

File buffer 3

File buffer 4

Database cell

16 free cells for use by applications

Top of allocator area

IRQ2 re-vector address

CMI re-vector address

TRAP re-vector address

SIO re-vector address

TOI re-vector address

OCT re-vector address

ICI re-vector address

IRQ1 re-vector address

SWI re-vector address

NMI re-vector address

WRM re-vector address

SWOF re-vector address

Kcyboard poll routine

[Points to routine which polls the keyboard and retums
the key pressed in the A Register]

Keyboard translate routine

[Points to routine which translates the key number held
in the A Register into an ASCII character by using the
lookup table.]

Address of keyboard lookup table

[Points o a table of 72 characters representing the
ASCII versions of the key number. The user can
change this 1o point to his own table. Such a table must
contain 72 items unless SHIFT has been disabled.]
Frame pointer for ENTER/LEAVE

Flag 1o ignore an NMI

Save interrupt mask while off

Save TCSR1 while off

Language stack base

141

$2067
$2069
$206B
$206D
$206F
$2070
$2080
$2090
$2092
$2093
$2095
$2096
$2099
$209C
$20A6

$20A7
$20A9-$20AB

' $20AC
$20B0
$20C0

$20C1

$20C2

$20C3

142

Save stack pointer while off

Used in SWI's only

Used in SWI's only

Used in SWI's only

Used in SWI's only

Top line screen buffer

Bottom line screen buffer

Temporary area to save screen

Number of screen lines (LZ)

Width of screen (LZ)

Position of clock on screen (LZ)

“Clock ready™ flag (LZ)

Border character (LZ) ;

“Capitalise menu"” flag (LZ)

“Daylight saving time” flag (BIT 7) and “24/12 hour
flag™ (BIT 0) (LZ)

Flags to indicate which days of the week are workdays
(LZ)

Addrcsses of 3 bytes separating the “WEEK VIEW"
slots (LZ)

“Alarm Prompt” flag (LZ)

Type ahead buffer

Length of keyboard click

[This is the length, in milliseconds, of the keyboard
click. The default is 1 but to disable the click entirely,
zero should be entered into this variable]

Set for pack switch off

[This controls whether the packs should be switched off
when the keyboard is tested and the buffer is empty.]
Caps key

[This contains the number of the key which the user
wishes to be employed as the CAPS LOCK key. By
default it is the UP ARROW key but it can be any of the

36 keys available. To disable CAPS LOCK

completely, this variable should b set to any number
over 36]

Nums key

[This works in the same way as the CAPS KEY
variable.]

$20C4

$20C5
$20C6
$20C7
$20C8
$20C9
$20CA
$20CB

$20CD
$20CF
$20D6
$20D7
$20FF
3214F
$2184
$2185
$2186
52187
$2188
32288
$22C8
$22C9
$22E9
$22F9
$2329
$232B
$232E

$232D
$2335
32336
$233C
32342
52348
$234A
$234B
$236D

Shift key, clear to enable shift key

[If this byte is set, the SHIFT key will be disabled and
the key will return the *?* symbol.]

Current year 0-99

Current month 0-11

Current day 0-31

Current hour 0-23

Current minute 0-59

Current seconds 0-59

Frame counter

[This variable is incremented by one on each keyboard
interrupt. Maximum value=$FFFF and wraps back 10 0.]
The auto-swilch off time out in scconds
Temporary buffer, used in UT_DISP

Save interrupt mask while blowing

4 pack ID headers, 10 bytes each

10 memory slots for calculator (each 8 long)
$38 byte reserved for I/O drivers

Mode flag (2-line/4-line)

“Special keys” flag (LZ)

“Language in use™ flag (LZ)

Run time buffer length

Run time buffer ($100 long)

General purpose buffer for maths + overfllow
FIND buffer length

FIND buffer

4 file control blocks (each $04 long)

Alarm table, 6 bytes per alarm

LA/OS only :lowest addr used in low RAM
LA/OS only : highest addr

Flag 1o cnable/disable language selection and second
boot (BITS 7 and 0 respectively)

$2324 rescrved to PSION

If set then alarm checking is enabled
Temporary variable used checking for alarms
Temporary variable uscd checking for alarms
Temporary variable used checking for alarms
Temporary variable used checking for alarms
If set then does alarm check on next interrupt
Table user vector

Table stack

143

3$23AD
$23AE
$23B5
$23B7
$23B9
$23BD
$23C1
$23C9
$23CD
$23CF
$23D1
$23D2
$23D3
$23D4
$23D5
$23D6
$23E0
$23E1
$23E2
$23E4
$23E6
$23E7
$25DC
$25DD
$7FEA
$7FEB
$7FEC
$7FFD
$7FFF
$FFE7

SFFE8

144

Saved sign

Random number seed

Q code offset to stop at

External O code size

Global & local data sizes

Declared variables count

Current branch label number

Symbol table data pointer

End of text pointer

Start of current token

Saved token for un-lex

Saved class for un-lex

Function type

Decimal places in calculator display

Last procedure name length

Last procedure name

Language type

Sct to ignore TRAN option after editing
Extension O code operator code

Return address used in UT_DDSP

Overblow factor

Vector to veclor table

Length of paste buffer (LZ)

Paste Buffer (LZ)

Editor flags (LZ)

Notepad *Password/No Password" flag (LZ)
Password (LZ)

Number of lines in current notepad (LZ)

Cursor position in current notepad (LZ)
Language byte:

$00=English; $01=French; $02=Gcerman;
$80=11 languages English default

$81= English, French, German

If BIT 7 is set, indicates multi-lingual machine. This
byte shows which languages are included in the
machine. For indication of which one is running, sce
$2186

Model Byte 1:

Bottom 3 BITS = Base model type. This identifies
ROM/RAM cenfiguration and Operating System.

Top 5 BITS = Special model type, i.e.:

Value Model RAM size PROM size
0 cM 8K 32K
1 XP(16) 16K 32K
2 XP 32K 32K
5 LP 64K 64K
6 LZ 32K 64K
7 -JUMP TO MODEL BYE 2—-

If Base model type is “7", base model type is given by
bottom 3 BITS of Model byte 2. If BIT 3 of Special
model type is set, Special model type will be indicated
by the top 5 BITS of Model byte 2.

SFFC9 Model byte 2.
Split in the same way as Model byte 1. If BIT 7 is set it
indicates a “Lizzie™. BIT 6 sel indicates a “foreign
character” LCD. BITS 3-5 are for extra-special types
and the bottom 3 BITS are rescrved for future basc
model types.

$FFE9 Version number.

OVERLAYED AGAINST MATHS AND OVERFLOW BUFFER

$2288 Copy of current time when checking alarms
$228E Time one week from now.
ALLOCATOR CELLS

C.6 An Allocator Cell is a dynamic area of memory reserved for a
particular purpose. There are 32 permitted cells the first 16 of which are
already used by the Operating System (See $2000-$201E).

C.7 Each cell is identified by a single word which is pointed to by a tag. If
the cell has been allocated, this word will point to the cell. Otherwise, it is
zero. The size of the cell can be set by using the appropriatc OS vector
(See Vectors 000-006). Note that the cell can be “grown” or “shrunk™ at
any time throughout its life. When this occurs, all cells above it move up
or down in memory, altering their base addresses. Not only docs this mean
that the user must recalculate the location of his data in any particular cell
if he feels something might have moved it, but frequent expansion and
contraction can slow down an application program drastically.

145

Annex D

The Hitachi HD6303X
Microcomputer Unit (MCU)

The Hitachi HD6303X Microcomputer Unit (MCU)

i - .::_ w
— HIHT itachi
. ™ D: The Hitachi HD6303X
Poa(Tin) | -:- ; rz!:!lxrf: ¥ .
S — - 2 Microcomputer Unit (MCU)
P2a(SCLK) — FEE;'? o
Falfr) = Yy T S
:”g:il 21: I 2 . th I | T-\ - LIR
Y -3 l: - BA
(i) < y — INTRODUCTION
s M
N CH e D.1 The HD6303X microcomputer from Hitachi is exactly what the
—1 5 K N E [0. manufacturers claim - a complete computer on a single chip. In common
= Y| = [¢»0, with its sister chips the 6301 and 63701, it contains not only a powerful 8-
L b bit CPU but also 192 bytes of intenal RAM, 2 timers, a Scrial Comms
— [+ D, Interface (SCI) and 53 parallel lincs. Moreover, the 6301 and 63701 have
2 < 2 — 4K of internal ROM, user- programmable in the latter case.
2 s Ay Vee
- s ="
-~ = @ e Ay
= = = A
5 (1‘_ “_' - ': 1 MPo £
= R —HES I
e L] l—— | =
PyllRO;) —— ; L s = f:_v Vee 3
Py (iAGy) —— s — = A 0 ?
Aty g 2 a5 i P
) P:' —> % _"'": sx;opl;:: < = ¢:>ng MPy £
Py —— = n-: —=a,, Tiemver ;,;'f | B Data Bus MP, T
Py ———™ 4 Lot Fout 7 L
Pyp i \ ‘; —.v'“:ls gh%;ﬁ;“é B8 Address Bus o :‘:‘:Mlm
— - P IRQ:. Porid
v> T —=A MR_’E:T; C:) :Dsfmnmaus s
Pyo b~ s Rl e 8 10 Lines Yo N Wl i :‘::'_o:'lm
Py i a |Y L) I_ 5 mpt::’
Py . 2 U Timer 1, 2 SCI :.l\v:oﬂl
e B Ve 8 1nput s e
in g - o O, 0,
&y] o
RAM Porl 6 Port 4
= |_f(f e =D
i | 192 Byles 2 x:' s 2o Ves Vag Lines
TF o
- T
[ey L W i
=a
| — —=— /W
e =
Sy —™ .
Diagram 1 r':quz-ﬂ frech H—— BA Diagram 2 MCU Modes 1,28& 3
4 Pl 3
l'nw.s P?L*S‘E? ® E;au Bus
B8 |nnulpl.l.')’n{¢g Port 1
TG, TG, mA, FACT B Address Bus
Port
SVO:.?:&E Ve W :l> ﬂuiﬂ:*m: Bus
3 55
T

148 149

D.2 The MPU is designed to work in 3 different configurations. However,
only one of these is pertinent to the Organiser application - MODE 1 - and
so I will disregard the others. Nevertheless, readers who wish a deeper
description than the one offered here should consult the HITACHI 630173
FAMILY USER’S MANUAL and the REFERENCE MANUAL. Diagram
1 (courtesy of HITACHI) shows a schematic representation of the internal
architecture of the 6303X in MODE 1. The inserts which feature
alongside the following functional descriptions relate to the relevant pins
in the physical packaging of the chip.

D.3 POWER

Although Diagram 1 shows only 2 types of power connections, shown by
the “V", there are in fact 3 points. Vec receives +5V, plus or minus 10%,
Vss is connected to earth, and Vpp collects 21V plus or minus half a voll.
This last point is used to program the intemal ROM when fitted. Since
this is missing in the version used by the Organiser, I will not discuss it
further.

D.4 THE CRYSTAL OSCILLATOR

The parallel resonant crystal is connected at 2 points to the MCU - XTAL
and EXTAL. Crystals are used by computers as metronomes because of
their habit of vibrating accurately at specific, known frequencics. In the
case of the Organisecr, its crystal runs at 3.684 MHz (i.e. 3.864 x
1,000,000 times per second). However, the internal circuitry divides this
by 4 lo give an operating speed of 0.9216 MHz. The EXTAL pin is
provided to allow designers to connect the MCU to an external timing
source. In such a case, EXTAL would be left unconnected. In the
Organiser, it is used as shown in Diagram 1. The CPU also provides a
TTL-compatible system clock output at Pin E. This also runs at 0.25 of
the crystal frequency.

D.5 OPERATING MODE

As mentioned earlicr, the 6301/3 family is designed lo operate in 3
different MODES. The MCU is instructed as to which of these MODES
to adopt by the inputs supplied to pins MPO and MP1. Essentially, the
MODES control the usage of internal ROM, the configuration of the
parallel lines and the types of interrupt handled. Only MODE 1 is
available in the Organiser version. To do this, 0" is put to MP1 and “1™
to MPO. The MCU is then configurcd to give the structurc shown at
Diagram 1.

150

D.6 RESETTING THE MCU

The RES pin is used to reset the internal circuitry of the MCU. Note that
when a function is activated on a “0” being supplied to the appropriate
pin, it is referred to as being “Active Low™. If this is so, the pin mnemonic
(RES in this instance) is written with an overscore. Functions which are
active high are written without any distinguishing marks.

D.7 STANDBY MODE

Standby Mode is activated by the STNBY pin. All clocks are stopped but
power to internal RAM is sustained to allow memory retention. Power
consumption in this state is greatly reduced due to the fact that nearly all
lines are electronically detached from the CPU. Note that if this pin is
active when MPO and MP1 are both low, the MCU enters its PROM
Mode. This allows users of the 63701 to program its internal ROM.

D.8 INTERRUPTS

There arc a number of ways in which to interrupt the normal operation of
the MCU. These can be hardware or software originated but in cither
case, the MCU completes the instruction it is currently exccuting before
saving the contents of the Program Counter (PC), Index Register (IR),
Accumulators and Condition Code Register (CCR) onto the stack.
According 1o the type of interrupt, the MCU will then branch to a specific
location (more properly referred to as a “Vector”), JUMP 1o the address
held at the vector location and begin executing the code found at that
location. However, if the Interrupt Mask Bit (IMB) of the CCR is sct to
“1”, no interrupts - with the single exception of the Non-Maskable
Interrupt (NMI), which by its name shows that it cannot be ignored - will
be serviced. Moreover, if an interrupt IS accepted, the MCU will set the
IMB to prevent further interruption. On completion of an interrupt
routine, the IMB is cleared.

D.9 The external pins IRQ1 and IRQ2 also double up as lincs of PORT 5.
Which identity they adopt at any specific instance is determined by the
data held in the PORT 5 Control Register, which I will explain soon. In
addition, there is a third IRQ. This is activaled when an interrupt
INTERNAL 1o the MCU is generated (ICI, OCI, TOI, CMI or SOI). It
functions in exactly the same way as IRQs 1 and 2 except that the vector
is different.

151

D.10 Table 1 shows the vectors used by the various interrupts and the
priorities accorded to them by the MCU:

VECTOR LOCATION

PRIORITY MSB LSB TYPE

1. SFFFE SFFFF RES

2 SFFEE SFFEF TRAP

3. SFFFC SEFFD NMI

4 SFFFA SFFFB SOFTWARE INTERRUPT (SWT)

5. SFFFE SFFF9 IRQ1

6. SFFF6 SFFF7 TIMER 1 INPUT CAPTURE (ICD

7. SFFF4 SFFFS TIMER 1 OUTPUT COMPARE (OCI)
8. SFFF2 SFFF3 TIMER 1 OVERFLOW (TOI)

9. SFFEC SFFED TIMER 2 COUNTER MATCH (CMI)
10. SFFEA SFFEB IRQ2

1. SFFFO SFFFI SERIAL INTERFACE (SIO)

D.11 READING AND WRITING

The RD and WR outputs are powered to TTL levels and are used to
enable the MCU to converse with peripherals using such inputs. The R/W,
on the other hand, informs peripherals whether the MCU is in its READ
or WRITE state. Normally, this output is set to high i.e. in the READ
slate.

D.12 INSTRUCTIONS
The Load Instruction Register, or LIR output, informs the Organiser
circuit that an instruction opcode is on the data bus.

D.13 BUS AVAILABLE (BA)

The BA output, normally low, is set to high when the MCU releases the
busses on accepting a HALT command.

152

D.14 DATA BUS

Lines D0-D7 in Diagram 1 represent the MCU's 8-bit, bi- dircctional Data
Bus. The direction in force at any particular instant is controlled by the
Data Direction Register (DDR), located at $0004. If Bit 0 of the DDR is
clear, the bus is configured for output, whereas a **1™ will cause the bus to
become input.Note that the DDRs are write-only and that instructions
such as AIM, OIM and EIM (ANDing, ORing or Exclusive-ORing their
contents) cannol be applied to them. DDRs are cleared during RESET.

D.15 ADDRESS BUS

Lines A0-A1S in Diagram 1 make up the Organiser's Address Bus. Bits
AQ0-A7 (the LSB of any address held on the Bus) are regarded by the
MCU as PORT 1 and it will place any data for the PORT into the output
register at $0002. Bits A8-A15 (the MSB) exit from PORT 4. The
appropriate data register is located at $0007 and its operation is as for
PORT 1. Note that the MCU, in the MODE used by the Organiscr, regards
the 2 PORTS as a 16-bit output buffer and that the MCU can intemally
read both data registers for bit- manipulation purposes.

D.16 INTERNAL RAM

The HD6303X contains 32 bytes of internal RAM from $0000-S001F and
a further 192 bytes from $0040-300FF. Intemnal registers are held in the
first block and the second is used by the Organiser for zcro-page
processing. The latter has the advantage of speed and efficiency. Readers
should consult Annex C for a more detailed examination of the Organiser
Memory Map.

D.17 PORT 6

The PORT 6 I/O buffer is made up from lines P60-P67 in Diagram 1. The
data register for the PORT is located at $0017 and its DDR (since it is bi-
dircctional) at $0016 Note that cach bit in the DDR byte corresponds to
the data direction of the respective lines in the PORT (0=output and
1=input).

153

D.18 PORT 5

7 [5 4 3 2] 1]
STBY
I:-wn rRame| — | - [HuTE|MRE 'Hé-'f, '“é’ 20014

Diagram 3 RAM/Port 5 Control Register

The input-only PORT 5 is supplied by lines P50-P57. In addition, lines
P50-P53 double as IRQs 1 and 2, Memory Ready (MR) and HALT. The
MR input affects the MCU’s speed of operation to allow it to access low-
speed peripherals. HALT forces the MCU to complete its current
instruction, stop and release the buses, whereupon it sets BA to high and
completes a number of other operations. Should an interrupt occur at this
time, the MCU will cancel the HALT and service the interrupt. IRQs have
already been covered.

D.19 The PORT 5 Control Register, which also affects intenal RAM, is
located at $0014. It is uscd as follows:

a. IRQ Enable. Lines P50 and P51 become IRQ 1 and IRQ 2,
respectively, when bits 0 and 1 of the Control Register are set.
If these bits are cleared, the MCU will disregard external
interrupts.

b. MEMORY READ ENABLE (MRE). Line P52 becomes
MRE when bit 2 of the Register is set. RESET causes MRE to
be initialised to 1.

c. HALT ENABLE (HLTE). When set to 1, bit 3 forces P53
to become the HALT input. HLTE is also initialised to 1 after
RESET.

d. RAM ENABLE (RAME). Intcmal RAM is disabled when
bit 6 is cleared. This allows the MCU to access cxternal
memory in the range $0040-$00FF. After RESET, RAME is
sct to allow internal RAM 1o be used. To protect the contents
of internal RAM if the user intends to call Standby MODE,
RAME should first be cleared.

c. STANDBY POWER. When power is not supplicd in
Standby MODE, bit 7 is cleared. If, after setting 1t prior to
calling Standby, it remains 1 on return - power has been
maintained to intemal RAM and the user can be confident of
the integrity of on-chip data.

154

D.20 TIMER 2
< Inlernal Cats Bus >
! l @ J__ﬂm-l FRC
Tine Timer 2 Pl m Pt
g"‘::::e"“ Upconsnier cE Bt 7
Compare o
1]
2 H
Ovipul i
Level Pon
Conirol Ba s
CMF | ecmi | — | T2€ | ToS1 | ToS0| CcKS1| Ccxso ;g::‘;
na, —~—{ 1 e Diagram4 Timer 2 Block Diagram

Timer 2 is an 8-bit, reloadable counter. It has 3 associated registers:

a. The Timer 2 Upcounter is held at $001D. It is made of 8
bits and can be read or written to at any time without
affecting its accuracy.

b. The Time Constant Register. This 8-bit, write-only register
is located at $001C. It is the value held in this location which
the timer consults. When it matches with the upcounter, it
has, in effect, timed out. The up counter would then be zcroed
and counting recommenced after P26 despatched the value
determined by the condition of bits 2 and 3 of the
Timer/Control Status Register.

c. The Control/Status Register. This register is located at
$001B and is composed of 7 bits of information as follows:

Bits 0-1 select the type and rate of counter clock. If both bits
are set, the clock input arrives via P27. Any other scttings
make use of the “E" input.

155

T L] 5 4 3 2 1 0

ICMFIECM1| - |TQE IQISIITOSO[CKSiICKSDISMIG

Diagram 5 Timer ControlStatus Register 3

Bits 2-3 hold the action to be taken when the upcounter times-
out against the timer constant. When both bils are clear, P26
will be configured as an 1O Port. Bit 2=1 and Bit 3=0 will
cause the output at P26 to reverse each time the counter times
out giving a2 50% duty squarewave wilhout any software
effort. Bit 2=0 and Bit 3=1 will cause “0" to be output and
both bits set to 1 will cause *1” to appear at P26 on the
timeout event.

Bit 4 holds the Timer 2 Enable. Clearing this bit will prevent
the selected clock input from updating the counter. Setting the
bit to “1™ will give the clock access to the counter.

Bit 5 is unused.

Bit 6, when set, allows Timer 2 to trigger IRQ3 when a
timeout is detected.

Bit 7 holds the Counter Match Flag. This is set to *“1™ when
the current value of the upcounter matches the timer constant.
It is cleared by the simple expediency of writing a zero to it.

D.21 SERIAL COMMUNICATIONS INTERFACE (SCI)

The SCI can be operated in asynchronous or clock- synchronous.

Asynchronous mode comes in 3 flavours:

156

a. 1 start bit + 8 data bits + 1 stop bit.
b. 1 start bit + 9 data bits + 1 stop bit.
c. 1 start bit + 8 data bits + 2 stop bils.

Diagram & SCI Block Diagram

r
|]
[]
Ba? Bad Ba? “l::t:‘h.:;m 1]
s [TTTTTT] | [=r]l=l=l=]==]=]
#vr
< el Daca Bus.
a7 "5_‘?"‘.\.,.. _~~ (TR Bad 847 Lol
LT ERELLLLE
(TRCSA)
| Trarsmut Duta Sk Regrem (TDSR) r..,r"émL
: u.:.'.-

D.22 The SCI has 6 associated registers:
a. Transmit/Receive Control/Status Register (TRCSR).
b. Rate/Mode Control Register (RMCR).
c. Receive Data Register (RDR).
d. Receive Data Shift Register (RDSR).
e. Transmit Data Register (TDR).

f. Transmit Data Shift Register (TDSR).

157

D.23 TRCSR.

158

RDRF |ORFE| TDRE | RIE RE TIE TE wu | 0011

Diagram 7 TransmivReceive Control Status register

The TRCSR is located at $0011. Note that while bits 0-7 can
be read, only bits 0-4 can be written. During a RESET, this
register is set to $20. The bits of the TRCSR are allocated as
follows:

a. Bit O contains the Wake Up (WU) flag. This is used in
applications where more than one MCU are configured
together. When set for a specific period of time, it allows
MCUs which are not interested in the message being passed
to ignore further data. It is not really applicable to the
Organiser application.

b. Bit 1 spccifics the Transmit Enablc (TE) status. When it is
sel, data will emerge from P24. If the SCI is operating in
synchronous mode, data will appear immediately. If,
however, asynchronous mode is in force, data will appear
after a 1-frame preamble of 10 bits (for an 8-bit format) or 11
bits (for a 9-bit format). P24 is the serial output, regardless of
the PORT 2 DDR. P24 remains unaffected by serial /O when
TE is cleared.

¢. Bit 2 holds the Transmit Interrupt Enable (TIE). When sel,
the TIE enables bit 5 1o sct off an IRQ3. The reverse holds
true.

d. Bit 3 is the Reccive Enable (RE). When set, RE allows dala
from P23 to be accepted, regardless of the state of the PORT
2 DDR. Clearing the flag exempts P23 from further

serial I/O activity.

e. Bit 4 is the Receive Interrupt Enable (RIE). If this is set,
bits 6 or 7 can generate an IRQ3. The reverse holds true.

f. Bit 5, which is read-only, holds the Transmit Data Register
Empty (TDRE) flag. Asynchronous mode will cause this flag
to be set when data is passed from the TDR to the TDSR. In
synchronous mode, however, this will happen when the
TDSR is itself cleared. Since this bit is read-only, it is clcared
by reading the TRCSR and writing data to the TDR. After
RESET, the TDRE is set.

g. Bit 6, which is affected only in asynchronous modc and
cleared after RESET, is the Overrun/Framing Error (ORFE)
flag. Like bit 5, this flag is read-only. It is sct to 1 when
incoming data is ready to be transmitted to the RDR while the
RDREF is still set. The ORFE can be cleared when the RDR is
read after reading the TRCSR.

h. Bit 7 holds the Reccive Data Register Full (RDRF) flag. It
is read-only and is set when the contents of the RDSR are
moved to the RDR. The RDRF can be cleared by reading the
RDR after the TRCSR or by a RESET.

D.24 RMCR.

RD8 | TD8| 552 | CC2 | CC1 | CCo | 5S1 | S50 | $0010

D¥agram 8 Tranfer Rate/Mode Control Register

The RMCR is held at $0010. All bits can be rcad and, with the single
exception of bit 7, all bits can be written to. It controls the following

aspects of serial I/O:
a. Baud rate.
b. Clock source.
c. Data format.
d. The configuration of P22.
€. Storage of the ninth bit in 9-bit asynchronous I/0.

159

D.25 The 8 bits of the RMCR are configured like so:
When Bit 5 is set, Timer 2 becomes the SCI clock giving a bit

a. Bits 0,1 and 5 control the Baud Rate (BR). For readers rate determined by:

unfamiliar with the term, the BR is the rate at which data is '

received and transmitted serially. The BR is determined as per Bit rate (micro-seconds/bit) = 4(Timer 2 Constant+1)/f

the table 1.
where f = Timer 2 clock frequency.

TABLE 1 b. Bits 2,3 and 4 (cleared during RESET) control the clock
source and data format as follows:
ASYNCHRONOUS MODE

Bit

Bit Frequency 234 Format Mode Clock Source P22

0 1 5 000 8bit Sync External Clock Input
001 8-bit Async Internal Unused

00 0 E/18 010 8-bit Async Internal Clock Output
011 8-bit Async External Clock Input

128

w e d B 100 8-bit Sync Internal Clock Qutput

0 1 0 E/1024 101 9-bit Async Internal Unused
110 9-bit Async Internal Clock Output

0 1 1 E/4006 111 9-bit Async External Clock Input

Note that when Bit 5 is set, the Timer 2 Upcounter acts as the BR c. Bit 6 stores the ninth bit of asynchronous 9-bit

generator dependent on the Timer 2 constant. The BR can then be

alculated by the use of the formula: transmissions. This bit should be written PRIOR to writing the
calcula z

remainder of the byte into the TDR.

= f/(32 r 2 Constant + 1
BR =fo2(Tme » d. Bit 7 is the Receive equivalent of Bit 6. This bit should be

where f is the Timer 2 input clock frequency. read before reading the rest of the byte in the RDR.
SYNCHRONOUS MODE
Bit Frequency D.26 RDR. The RDR is located at $0012.
0 1 5 D.27 RDSR. The RDSR is an intemnal SCI register.
D.28 TDR. The TDR is located at $0013.
0 0 0 ER D.29 TDSR. The TDSR is an internal SCT register.
0 0 1 E/16
0 1 0 E/N28
0 1 1 E/512

INITIALIZATION

D.30 The SCI is initialized by software. This takes the form of writing the
required mode to the RMCR and the TRCSR. Note thal you can only set
the TE and RE bits when P23 and P24 are configured in the serial I/O
mode. In addition, TE and RE must be clear when the BR and operating
mode are to be set. To set or reset the TE and RE must take more than one
BR cycle or a receive/transmit failure may occur.

ASYNCHRONOUS OPERATION

TRANSMISSION

D.31 Simultancous reception and transmission of data is possible since it
has a fully independent transmitter and receiver. The SCI is configured in
asynchronous transmission mode when the transmit enable bit of the
TRCSR is set. This then switches P24 1o become a serial output line: The
contents of the PORT 2 DDR have no effect on this situation. The TRCSR
and RMCR should then be set to achieve the desired operating conditions
as described above, When enabled a 10- or 11-bit preamble will be sent,
during which time synchronization will settle down. Data is then sent
from the TDR to the TDSR for onward transmission unless the TDR is
emply, in which case 1's will be sent to indicate the idling state.

D.32 Depending on the format chosen, data is sent as a leading 0 followed
by 8 or 9 bits of data with a stop bit of 1 bringing up the rear. Note that
the SCI will set the TDRE bit if the TDR empties. Should the CPU fail to
tespond in time for the next transmission, a series of 1’s will be sent until
a suitable response is made. In fact, the transmitter will not send a 0 while
the TDRE flag is sel.

RECEPTION

D.33 P23 becomes the serial input port, regardless of the state of its DDR
bit when the RE bit of the TRCSR is enabled.the reception configuration
is selected as for transmission. The first O sets everything in motion and
the receiver will assume a framing error if the stop bit isnota 1. Insuch a
case, the ORFE flag will be set and the offending data transferred 1o the
RDR. In this way, the CPU can examine the data which caused the error.

162

D.34 If, however, the information is good the RDRF flag is sct to cnable
an interrupt. Should this flag still be set when the next stop bit arrives, the
SCI will assume an over-run. Note that when the CPU examines the RDR
in response 1o cither an ORFE or a RDRF, the causal flag is cleared.

SYNCHRONOUS OPERATION

TRANSMISSION

D.35 In synchronous mode, data movement is synchronized by pulses of
the system clock. Unlike asynchronous operation, the SCI is unable to
handle simultaneous reception and transmission since only one clock I/0
pin is provided - P22. The synchronous output port is P24 when the TE of
the TRCSR is set. Once again, the PORT 2 DDR has no say in the matter.
Set the required operating parameters using the RMCR and TRCSR. Data
is transmitted from bit zero and the TDRE flag is sct when the TDSR is
emplied. -

RECEPTION

D.36 The RE flag is set 1o 1 to allow reception to take place via P23. The
PORT 2 DDR is irrelevant. The operaling conditions are sct as above.
Eight external clock pulses enter by P22, while the data bits come in
through P23. At each clock pulse, the SCI moves the newly-arrived bit
into the RDSR and sets the RDRF flag when it is full. Further pulses are
ignored. The RDREF is clcared when the CPU reads the data. Note that the
RDRF should be cleared when P22 is high.

163

D.37 TIMER 1 Diagram9 Timer 1 Block Diagram

D.38 TCSRI.

& :

@smsu @mm 309, $0A 300, $0E
e | [asice=] F%:TI o e
1 |1 4T
g

| Output Compare 2 I I Outnul Compare 1 —I Owerliow Delect l Edge Deltect]
l [9
Ili!f‘_ I?:,;F-! T0F l EICIECI!I E'loll Eoﬂ}r‘:c.;li — C‘.: L |

" [
WF rI:N.‘-FI OUZI o FOCI)}JW\?] 0E2 I oE Excsnz CL:
o, _, I | _soF

7 L 5 4

[lCF IGCFIl TDFI E?CllEUC!I|EIO!Il‘E_DG IDLVLI 30008

Timer 1 is a 16-bit programmable timer which can accept an input
waveform and generate 2 independent waveforms using the original as a
base. It has 6 major components:

a. An 8-bit Timer Control/Status Register (TCSR1).
b. A 7-bit TCSR2.

c. A 16-bit Free-Running Counter (FRC).

d. A 16-Bit Output Compare Register (OCR).

e. A second, 16-bit OCR.

f. A 16-bit Input Capture Register (ICR).

164

Diagram 10 Timer Control/Status Register 1

This 8-bit register is located at $0018 and is composed of the following
components:

a. Bit 0 - The contents of bit 0, known as OLVLI, is output at

bit 1 of PORT 2 when a maich is made between the OCR1

and the FRC while bit 0 of TCSR2 is set.

b. Bit 1 - The Input Edge (IEDG) is used to determine
whether the rising edge or falling edge of P20 will determine
the point at which data will be transferred from the FRC 1o
the ICR. A “0" specifies a falling edge and vice versa. Note
that bit 0 of PORT 2 must be cleared before IEDG will have
any effect.

c. Bit 2 - The Enable Timer Overflow Interrupt (ETOI), when
set, allows an IRQ3 to be gencrated by the Timer Overflow
Interrupt (TOI). Clearing this flag inhibits the usc of IRQ3.

d. Bit 3 - The Enable Qutput Compare Interrupt 1 (EQCI1)
enables the Output Compare Interrupt 1 (OCI1) to sct off an
IRQ3. Clearing the flag inhibits this function.

e. Bit 4 - The Enable Input Capture Interrupt (EICI) allows
the Input Capture Interrupt to generate an IRQ3. Clearing the
flag Inhibits this function.

f. Bit 5 - The Timer Overflow Flag (TOF), which is read-
only, is set when the counter moves from $FFF 1o $0000.
When the CPU reads the TCSRI1, the TOF and the FRC's
high byte are clcared.

g- Bit 6 - The Output Compare Flag 1 (OCF1), which is rcad-
only, is set when the FCR and OCRI1 agree. It is clcared by
wriling to the OCR1 after reading either of the TCSRs.

h. Bit 7 - The Input Capture Flag (ICF), which is read-only, is
set when the FRC transfers its data to the ICR. It can be
cleared by reading the ICR high byle after reading cither of
the TCSRs.

165

D.39 TCSR2.

7 6 5 4 3 2 1 0
FCF |OCF IIOC-F!I - lEDC12|CIL\|"I:2I OE2 I OE1 | $O00F

Diagram 11 Timer Control /Status Register 2

This is a 7-bit register held at $000F and is composed of the following
items:

a. Bit 0 - Output Enable 1 (OE1), when set, allows bit 0 of
TCSR1 to be output at P21 under the conditions already
stated. If this flag is cleared, P21 becomes an I/O port.

b. Bit 1 - Setting OE2 allows OVLV2 to be output at P25
when the FRC and OCR2 agree. On the other hand, clearing
this bit configures P25 as an I/O port.

c. Bit 2 - OVLV2. This is ransferred to P25 under the above
conditions.

d. Bit 3 - This contains the EOCI2 and controls OCI2 as per
above.

e. Bit 6 - The OCF2, a read-only flag, signals a match
between the FRC and the OCR2. It is cleared in a similar
manner lo OCF1.

f. Bit 7 - By virtue of partial decoding, the CPU can place
OCF1 and ICF into bits 6 and 7 after reading the TCSRs.

166

FRC

D.40 The FRC is a 16-bit free-running counter held at $0009 and SO00A.
It is cleared on RESET and is incremented by the system clock. The CPU
writes the constant SFFF8 1o both bytes of the counter when il wriles 1o
the high byte first. If the low byte is written to before the high byte, the
data is entered. The second method is employed by double byte store
instructions.

OCRs

D.41 The OCRs, which are set to SFFFF on RESET, control the nature of
the output waveforms. OCrl is located at $000B-$000C and OCR2 at
$0019-$001A. They are constantly being compared 1o the FRC to find a
maltch. When this occurs, the OCF is set and, if it is cnabled, the
respective OVLV will appear at its designated point of PORT 2.

D.42 PORT 2

7] 5 4 3 2 1 0
= = e = . _ | DOR| DDA
1~ 0

$0001

Diagram 12 Port 2 Dala Direction Regisler

PORT 2 is an 8-bit I/O port controlled by its DDR, which is clearcd at
RESET, at location $0001. Bit 0 of the DDR specifics the direction of
P20, while bit 1 configures the direction of P1-P7. The remaining bits of
the DDR are unused. As previously mentioned, PORT 2 lines also
function as I/O pins for the Timers and SCI. Nole that in such a case, with
the exception of P20, the state of the DDR has no cffect on PORT 2 data
direction.

167

INTERNAL CPU OPERATION

D.43 The HD6303X has three 8-bit registers, three 16-bit registers and 7
distinct modes of addressing. The 8-bit registers are made up of two 8-bit
accumulators, ACCA and ACCB, which handle arithmetic and/or logical
work. The third is the Condition Code Register, or CCR. The lower 6 bils
of this register are relevant :

a. Bit 0 - This holds the Half Carry Flag (H) which is set if a
carry at bit 3 or 4 happens during an ADD,ABA or ADA
operation. It is cleared otherwise.

b. Bit 1 - The Interrupt Mask (T) is stored here. When set, it
disables all interrupts with the exception of the NMI.

¢. Bit 2 - The Negative (N) flag is set is the MSB of any
operation is 1 and is cleared otherwise.

d. Bit 3 - Should the result of an operation be zero, the Zero
(Z) fag will be set. It is clearcd other wise.

e. Bit 4 - If a Two’s Complement Overflow occurs, the
Overflow (V) flag is sct. It is cleared otherwise.

£. Bit 5 - The Carry (C) Mag is set if a carry or a borrow is
generated from the MSB. It is otherwise cleared.

D.44 The first 16-bit register is the Index Register or IX. This register can
be used for any purpose but its main function is for indexed addressing.
Secondly, the Stack Pointer (SP) holds the 16-bit address of a stack. As
with the IX, it can also be used for more mundane purposes. Finally, a 16-
bit Program Counter (PC) indicates the address of the instruction
currently being exccuted. Note that the uscr cannot access this register by
software. In addition, a fourth 16-bit register can be made up by
combining ACCA and ACCB. It is then, for some inexplicable reason,
referred to as ACCD. Note that when ACCA and ACCB arc used as a
single 16-bit register, the original contents of the 8- bit versions are
trashed.

168

ADDRESSING

D.45 The CPU makes usc of 7 types of addressing:

a. Accumulator Addressing. ACCA or ACCB arc involved.

This type of operation takes a single byte.

MFPU MPU
ACCA

<7 =] <97

RAM RAM
[—] 1
Program memory Program memory
'-._‘_‘-""‘-__..— p—'—'—l—.._-‘-_-_-‘

PC] Instruclion PC=5002 LDA A

Dala - 25 Mgt
—

]

Diagram 14 Data Activily in the Immediate Addressing Mode

!a. Immediate Addressing. The data for the operation is given
in the second byte of the instruction. However, in the case of
LDS or LDX, the second and third bytes are used.

169

MPY MPU

ACCA
RAM RAM
]

Address Dala < Address=100 as e
b — e ——
Program memory Program memory

e ————
PC Inslruction PC= 5004 LDA A
X ——
Address 100
e o —
Address = 0255 Example
Outiine figwcharl

Diagram 15 Data Activity in the Direct Addressing Mode

170

c. Direct Addressing. The address of the data for the
instruction is given in the second byte. This, however, means
that only the first 256 bytes of RAM can be addressed by this
type of instruction. Nevertheless, the low byte count in the
instruction gives a decided speed advantage.

MPU

Address Data

Program memory
' el

PC| Instruction

Address

PC-=5006

MPU

ACCB

RAM

a5

Program memaory

LoA B

,-__'_—-___‘
Example

Diagram 16 Data Activity in the Extended Addressing Mode

d. Extended Addressing. This is as for Direct Addressing
except that the address is given in the following 2 bytes, MSB

first and LSB last.

171

MPU MPU
ACCB
<] =
Index registar
RAM
A Index il
register b Data [Address= 405 s9
Displacement
e
Program memory Program memory
S
PC| Inslruclion PC=
C=5006 LDAB
Displacemenl 5
e —
Displacemeant < 258 Example
Oulfine flowchart

172

Diagram 17 Data Activity in the Indexed Addressing Mode

¢. Indexed Addressing. The address of the data to be operated
on is arrived at by adding the number in the second byte of
the instruction to the IX. The 16-bit address derived is the
required location. Note that the contents of the IX are left
unchanged by this operation.

f. Implied Addressing. In this type of instruction, the nature of
the task specifies the address. Taking a single byte, they are
extremely fast.

MPU MPU
HINZVC 'w—l‘_“
RAM HAM
o —) e
L T e
~ N
Program memovy Program memoty
PC| instruction e — | PC=5008 BEQ |
Displacement i5
| HNest et Hexl
PCe 2| L orichon PC=S010| | icnon |1=0
e —
—
HNesl - Neal
PCI 2 heiructon PC=5025] apucton J121=0
Deplacement 1 |
e —

Diagram 18 Dala Activily in the Relative Addressing Mode

2. Relative Addressing. In this form of addressing the second
byte of the instruction, which is interpreted as lying in the
range -126 to +129, is added to the PC to give the address
required. This acts in the manner of a GOTO or GOSUB in

BASIC.

173

FINALLY

D.46 This concludes the examination of the Organiser's HD6303X MCU.
Readers who wish a more in-depth explanation are recommended to read
the following manuals from Hitachi:

CMOS 8-BIT SINGLE CHIP MICROCOMPUTER
HD6301X0, HD6303X, HD63701X0
USER'S MANUAL

HITACHI HD6301/3 FAMILY
MICROPROCESSOR DESIGNER'S
REFERENCE MANUAL

174

Annex E

HD6303 X Instruction Set

HD6303X Instruction Set

ADCA-ADCB

E: HD6303X Instruction Set
Arranged Alphabetically

ABA

MNEMONIC FUNCTION: Adds the contents of Acc B to Acc A, storing
the result in Acc A.

CCR H: H=1 when bit 3 carry. Cleared otherwise.

CCR I: I is unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.

CCR C: Set if carry from MSB. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied ABA 1 1B
ABXIX

MNEMONIC FUNCTION: Adds the contents of Acc B to the IX, taking
account of any carry from the LSB. The result
is stored in the IX.

CCR H: Unaffected.
CCR I: UnafTected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied ABX 1 3A

176

ADCA

MNEMONIC FUNCTION: Adds the contents of a memory location or
immediate data, taking into account any carry,
to the specified Acc. The result is then stored
in the Acc.

CCR H: H=1 if bit 3 carries. Cleared otherwise.
CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.
CCR C: Sct if MSB carries. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate ADC A #Imm 2 89

2) Direct ADC AM 2 99

3) Extended ADC AMM 3 B9

4) Indexed ADC A Disp.X 2 A9
ADCB

MNEMONIC FUNCTION: Adds the contents of a memory location or
immediate data, taking into account any carry,
to the specified Acc. The result is then stored
in the Acc.

CCR H: H=1 if bit 3 carries. Cleared otherwise.
CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.
CCR Z: Set if resuli=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.
CCR C: Sct if MSB carries. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate ADC B #Imm 2 c9
2) Direct ADCBM 2 D9
3) Extended ADCB MM 3 F9
4) Indexed ADC B Disp.X 2 E9
177

ADDA-ADDB

ADDD - AIM

ADD A

MNEMONIC FUNCTION: Adds the contents of a memory location or
immediate data, ignoring any carry, to the
specified Acc. The result is then stored in the
Acc.

CCR H: H=1 if bit 3 carries. Cleared otherwise.
CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.
CCR C: Set if MSB carries. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate ADD A #lmm 2 8B

2) Direct ADDAM 2 9B

3) Extended ADD A MM 3 BB
4) Indexed ADD A Disp,X 2 AB
ADDB

MNEMONIC FUNCTION: Adds the contents of a memory location or
immediate data, ignoring any carry, to the
specified Acc. The result is then stored in the
Acc.

CCR H: H=1 if bit 3 carries. Cleared otherwise.
CCR I: Unalffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows, Cleared otherwise.
CCR C: Sct if MSB carries. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate ADD B #Imm 2 CB
2) Direct ADDBM 2 DB
3) Extended ADD B MM 3 FB
4) Indexed ADD B Disp,X 2 EB

178

ADDD

MNEMONIC FUNCTION: Adds the double-byte contents of a memory
location or immediate data to the contents of
Acc D, storing the result in the Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.
CCR C: Set if MSB carries. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate ADDD#Ih 1 3 C3

2) Direct ADDDM 2 D3

3) Extended ADD D MM 3 F3

4) Indexed ADD D Disp,X 2 E3
AIM

MNEMONIC FUNCTION: ANDs the contents of a specified location with
an immediate value and stores the result at
the memory location.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Clcared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct AIM #Imm .M 3 1
2) Indexed AIM #Imm,Disp,X 3 61
178

AND A-AND B

AND A

MNEMONIC FUNCTION: ANDs the contents of a memory location or
immediate data with a specified Acc and
stores the result in the Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate AND A #Imm 2 84

2) Direct AND AM 2 94

3) Extended AND A MM 3 B4

4) Indexed AND A Disp,X 2 Ad
ANDB

MNEMONIC FUNCTION: ANDs the contents of a memory location or

immediate data with a specified Acc and

stores the result in the Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate AND B #Imm 2 C4

2) Direct ANDBM 2 D4

3) Extended ANDB MM 3 F4

4) Indexed AND B Disp.X 2 E4
180

ASL - ASLD

ASL

MNEMONIC FUNCTION: Shifts all the bits of a specified Acc or memory
contents one place to the left. The MSB is
displaced into the carry and a 0 is inseried into
bit 0.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: sct if result=0. Cleared otherwise.

CCR V: If (N=1 and C=0) or (N=0 and C=1) after shift then V=1. Cleared
otherwise.

CCR C: Sct if MSB of byte=1 BEFORE the shift. Cleared otherwise.

ASLD

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator ASL A 1 48

2) Accumulator ASLB 1 58

3) Extended ASL MM 3 78

4) Indexed ASL Disp,X 2 68
ASLD

MNEMONIC FUNCTION: Shifts double-byte Acc one place to the left.
The MSB goes into the Carry and bit 0
receives a zero.

CCR H: Unalfected.

CCR I: Unaffected.

CCR N: Set if MSB=1. Cleared otherwise.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if (N=1 and C=0) or (N=1 and C=1). Cleared otherwise
CCR C: Sct if MSB of AB=1 before shifi. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied ASLD 1 05

181

ASR -BCC

ASR

MNEMONIC FUNCTION: Shifts the contents of a specified Acc or
memory location by one place to the right.
The Carry receives bit 0 and bit 7 is

unaffected.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if (N=1 and C=0) or (N=0 and C=1) after shift. Cleared
otherwise.

CCR C: Set if LSB is 1 BEFORE shift. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE

1) Accumulator ASRA 1 47

2) Accumulator ASRB 1 57

3) Extended ASRMM 3 77

4) Indexed ASR Disp,X pA 67

BCC

MNEMONIC FUNCTION: Tests the Carry flag of the CCR. If it is clear, a
branch will be made.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Relative BBC rel 2 24

182

BCLR- BCS

BCLR

MNEMONIC FUNCTION: Clears the specified bit of the contents of a
named location. Users should note that the
machine code for this instruction is identical
to that for AIM.

CCR H: UnafTected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR YV: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct BCLR O.M 3 71 FE
1) Direct BCLR 1.M 3 71 FD
1) Direct BCLR 2.M 3 71 FB
1) Direct BCLR3M 3 MnF?
1) Direct BCLR4M 3 71 EF
1) Direct BCLR 5M 3 71 DF
1) Direct BCLR 6 M 3 71 BF
1) Direct BCLR7TM 3 1 7F
2) Indexed BCLR 0,Disp, X 3 61 FE
2) Indexed BCLR 1,Disp,X 3 61 FD
2) Indexed BCLR 2,Disp,X 3 61 FB
2) Indexed BCLR 3,Disp,X 3 61 F7
2) Indexed BCLR 4,Disp,X 3 61 EF
2) Indexed : BCLR 5,Disp.X 3 61 DF
2) Indexed BCLR 6.Disp.X 3 61 BF
2) Indexed BCLR 7,Disp,X 3 617F
BCS

MNEMONIC FUNCTION: Examincs the state of the Carry flag and causes
a branch if it is set. CCR H: Unalfected.

CCR I: Unaffected.

CCR N: Unaffected.

CCR Z: Unaffected.

CCR V: Unaffected.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BCS Rel 2 25

183

BEQ - BGE

BEQ
MNEMONIC FUNCTION: Examines the state of the Zero flag and causes a
branch if it is set.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BEQRel 2 27
BGE

MNEMONIC FUNCTION: If employed immediately after an instruction
such as SUB, SBA, CMP or CBA, the BGE
instruction will cause a branch if the minuend
is greater than or equal to the subtractor as a
Two’s Complement number. That is, if (N=1
and V=1) or (N=0 and V=0).

CCR H: Unalffected.
CCR I: Unaffected.

CCR N: UnafTected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BGE Rel 2 2C
184

BGT - BHI

BGT

MNEMONIC FUNCTION: If employed immediately after an instruction
such as SUB, SBA, CMP or CBA, the BGT
instruction will cause a branch if the minuend
is greater than the subtractor as a Two's
Complement number. That is, if (Z=0 and N
AND V=1) or (Z=0 and N AND V=0)

CCR H: Unaffected.
CCR I: UnafTected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BGT Rel 2 2E
BHI

MNEMONIC FUNCTION: If employed immediately after an instruction
such as SUB, SBA, CMP or CBA, the BHI
instruction will cause a branch if the minuend
is greater than the subtractor as an unsigned
binary number. That is, if C=0 and Z=0.

CCR H: Unalffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.

CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Relative BHI Rel 2 22

185

BITA-BITB

BIT A

MNEMONIC FUNCTION: Carries out a logical ANDing of the contents of
the specified Acc and that of a memory
location or immediate data. Note that only the
CCR is affected, The actual contents of the
Acc and the memory location remain
unchanged.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if all bits of result=0. Cleared otherwise.
CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate BIT A #Imm 2 85

2) Direct BITAM 2 95

3) Extended BIT AMM 3 B5
4) Indexed BIT A Disp.X 2 AS
BIT B

MNEMONIC FUNCTION: Carries out a logical ANDing of the contents of

the specified Acc and that of a memory
location or immediate data. Note that only the
CCR is affected, The actual contents of the
Acc and the memory location remain
unchanged.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z-: Set if all bits of result=0. Cleared otherwise.
CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immecdiate BIT B #Imm 2 C5
2) Direct BITBM 2 D5
3; Extended BIT B MM 3 F5
4) Indexed BIT B Disp,X 2 ES

186

BLE - BLS

BLE

MNEMONIC FUNCTION: If employed immediately after an instruction
such as SUB, SBA, CMP or CBA, the BLE
instruction will cause a branch if the minuend
is smaller than or equal to the subtractor as a
Two’s Complement number. That is, if Z=1 or
(N=1 and V=0) or (N=0 and V=1).

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected,
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BLE Rel 2 2F
BLS

MNEMONIC FUNCTION: If employed immediately after an instruction
such as SUB, SBA, CMP or CBA, the BLS
instruction will cause a branch if the minuend
is smaller than or equal to the subtractor as an

unsigned binary number. That is, if Z=1 or
C=1.

CCR H: Unaffected.
CCR [: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Relative BLS Rel 2 23

187

BLT - BMI

BLT

MNEMONIC FUNCTION: If employed immediately after an instruction
such as SUB, SBA, CMP or CBA, the BLT
instruction will cause a branch if the minuend
is smaller than the subtractor as a Two's
Complement number. That is, if (N=1 and
V=0) or (N=0 and V=1). _

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BLT Rel 2 2D
BMI

MNEMONIC FUNCTION: Tests the N flag and branches if it is sct.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BMI Rel 2 2B
188

BNE - BPL

BNE
MNEMONIC FUNCTION: Tests the Z flag and branches if it is clear.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: UnafTected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BNE Rel 2 26
BPL

MNEMONIC FUNCTION: Tests the N flag and branches if it is clear.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Relative BPL Rel 2 2A

189

BRA - BRN

BRA

MNEMONIC FUNCTION: Always branches, irrespective of prevailing
conditions. Jump address is calculated as the
contents of the PC+2+the Relative jump
which is given by the user as a Two's
Complement number in the second byte of the
branch instruction.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unalfected.
CCR Z: Unaffected.
CCR V: Unaffected.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Relative BRA Rel 2 20

BRN ,

MNEMONIC FUNCTION: Equivalent to the NOP instruction and the
opposite of BRA.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Unaffected.

CCR Z: Unaffected.

CCR V: Unaffected.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Relative BRN Rel 2 21

190

BSET -

BSET

MNEMONIC FUNCTION: Sets the specified bit of the contents of a named
location, Users should note that the machine
code for this instruction is identical to that for
OIM.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1, Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct BSET OM 3 7201
1) Direct BSET 1.M 3 7202
1) Direct BSET 2.M 3 7204
1) Direct BSET3 M 3 7208
1) Direct BSET 4 M 3 7110
1) Direct BSET 5M 3 7220
1) Direct BSET 6,M K 72 40
1) Direct BSET 7.M 3 72 40
2) Indexed BSET 0,Disp,X 3 6201
2) Indexed BSET 1,Disp,X 3 62 02
2) Indexed BSET 2,Disp, X 3 62 04
2) Indexed BSET 3,Disp,X 3 62 08
2) Indexed BSET 4,Disp,X 3 6210
2) Indexed BSET 5,Disp,X 3 6220
2) Indexed BSET 6,Disp,X 3 6240
2) Indexed BSET 7.Disp, X 3 62 80
191

BSR - BTGL

BSR

MNEMONIC FUNCTION:

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

This instruction provides the same sort of
function as a procedure call in OPL. Before
jumping to the required point, the CPU
increments the PC by 2 and stacks it,
incrementing the SP appropriately. It then
branches (o the address indicated.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BSR Rel 2 8D
BTGL

MNEMONIC FUNCTION:

CCR H: Unaffected.
CCR I: UnafTected.

Inverts the specified bit of the contents of a
named location. Users should note that the
machine codc for this instruction is identical
1o that for EIM.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Sct if resuli=0. Cleared otherwise.

CCR V: Cleared.
CCR C: Unalfected.

ADDRESSING MODES

1) Dirccet
1) Direct
1) Direct
1) Direct
1) Direct
1) Direct
]; Direct
1) Direct
2) Indexed
2) Indexed

192

FORMAT BYTES CODE
BTGLOM 3 7501
BTGL 1.M 3 7502
BTGL 2.M 3 7504
BTGL3M 3 75 08
BTGL 4M 3 75 10
BTGL 5M 3 7520
BTGL 6,M 3 75 40
BTGL 7M 3 75 80
BTGLODispX 3 65 01
BTGL1DispX 3 65 02

BTST
(BTGL cont.)
ADDRESSING MODES FORMAT BYTES CODE
2) Indexed BTGL 2,Disp,X 3 6504
2) Indexed BTGL 3,Disp,X 3 65 08
2) Indexed BTGL 4,Disp,X 3 6510
2) Indexed BTGL 5,Disp,X 3 6520
2) Indexed BTGL 6,Disp,X 3 6540
2) Indexed BTGL 7,Disp,X 3 65 80
BTST

MNEMONIC FUNCTION: ANDs the specificd bit of the contents of a

CCR H: Unaffected.
CCR I: Unaffected.

named location with 1 and changes the CCR
appropriately. Users should note that the
machine code for this instruction is identical
to that for TIM.

CCR N: Set if MSB of resuli=1. Cleared otherwise.
CCR Z: Set if resuli=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES

1) Direct
1) Direct
1) Direct
1) Direct
1) Direct
1) Direct
1) Direct
1) Direct
2) Indexed
2) Indexed
2) Indexed
2) Indexed
2) Indexed
2) Indexed
2) Indexed
2) Indexed

FORMAT BYTES CODE

BTST O.M 3 7B 01
BTST 1.M 3 7B 02
BTST 2M 3 7B 04
BTST3M 3 7B 08
BTST 4M 3 7B 10
BTST5.M 3 7B 20
BTST 6 M 3 7B 40
BTST 7M 3 7B 80
BTST 0,Disp,X 3 6B 01
BTST 1,Disp,X 3 6B 02
BTST 2,Disp,X 3 6B 04
BTST 3,Disp,X 3 6B 08
BTST 4,Disp,X 3 6B 10
BTST 5,Disp, X 3 6B 20
BTST 6,Disp,X 3 6B 40
BTST 7,Disp, X 3 6B 80

193

BVC - CBA

BVC
MNEMONIC FUNCTION: Tests the V flag and branches if it is clear.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BVC Rel 2 28
BVS

MNEMONIC FUNCTION: Tests the V flag and branches if it is set.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Relative BVS Rel 2 29
CBA

MNEMONIC FUNCTION: Compares the contents of Acc A and Acc B,
setting the CCR appropriately. This operation
is used as the basis for branching operations,
Note that neither Acc is affected by this
instruction.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared othcrwise.
CCR Z: Set if the result=0. Clearcd otherwise.

CCR V: Set if the result overflows. Cleared otherwise.
CCR C: Set if borrow occurs. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied CBA 1 11
194

CLC-CLR

CLC
MNEMONIC FUNCTION: Clears the Carry flag in the CCR.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: UnafTected.
CCR V: Unaffected.
CCR C: Clecared.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied CLC 1 oC

CLI
MNEMONIC FUNCTION: Clears the interrupt mask flag of the CCR.

CCR H: Unaffected.
CCR I: Cleared.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Implicd CLI 1 OE
CLR

MNEMONIC FUNCTION: Clears The contents of a specified Acc or

memory location.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Cleared.

CCR Z: Sel.

CCR V: Cleared.

CCR C: Cleared.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator CLR A 1 4F

2) Accumulator CLRB 1 5F

3) Exicnded CLR MM 3 7F

4) Indexed CLR Disp.X 2 6F

195

CLV-CMP A

CLY
MNEMONIC FUNCTION: Clears the V flag of the CCR.

CCR H;: Unaffected.
CCR I: Unaffected.
CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Cleared.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implicd CLvV 1 0A

PA

!(\:dhh:EMONIC FUNCTION: Compares the contents of the specified Acc
with immediate data or the contents of a
memory location and alters the CCR
appropriately. This type of instruction is
usually the precursor of a branch-type
manocuvre. Note that the data being
compared is not changed in any way.

CCR H: Unalfected.

CCR I: Unaffected.

CCR N: Set if the MSB of the resuli=1. Cleared otherwise.
CCR Z: Cleared if the result=0. Cleared otherwise.

CCR V: Set if the result overflows. Cleared otherwise.
CCR C: Set if data is greater than that of the specified Acc.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate CMP A #Imm 2 81
2) Direct CMPAM 2 91
3) Extended CMP AMM 3 B1
4) Indexed CMP A Disp,X 2 Al

196

CMPB-COM

CMPB

MNEMONIC FUNCTION: Compares the contents of the specified Acc
with immediate data or the contents of a
memory location and alters the CCR
appropriately. This type of instruction is
usually the precursor of a branch-type
manoeuvre. Note that the data being
compared is not changed in any way.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if the MSB of the resuli=1. Cleared otherwise.
CCR Z: Cleared if the resuli=0. Cleared otherwise.

CCR V: Set if the result overflows. Cleared otherwise.
CCR C: Sctif data is greater than that of the specified Acc.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate CMP B #Imm 2 Cl

2) Direct CMPBM 2 D1

3) Extended CMPB MM 3 Fl

4) Indexcd CMP B Disp,X 2 El
COM

MNEMONIC FUNCTION: Replaces the contents of the specified Acc or a
memory location with its One's Complement.

CCR H: Unaffected.

CCR I: UnafTected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Sct if resuli=0. Cleared otherwise.

CCR V: Cleared.
CCRC: Sct.
ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator COM A 1 43
2) Accumulator COMB 1 53
3) Extended COM MM 3 73
4) Indexed COM Disp,X 2 63
197

CPX - DAA

CPX])

MNEMONIC FUNCTION: Compares the contents of the IX to immediate
data or 1o the word-contents of a memory
location and sets the CCR appropriately.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.

CCR C: Set if data greater than contents of IX. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate CPX #Ih 11 3 8C

2) Direct CPX M 2 9C
3) Extended CPX MM 3 BC
4) Indexed CPX Disp.X 2 AC
DAA

MNEMONIC FUNCTION: Decimal adjusts the contents of Acc A.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Sct if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Sct if result overflows. Cleared otherwise.
CCR C: Sct following BCD addition.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied DAA 1 19
198

DEC - DES

DEC
MNEMONIC FUNCTION: Subtracts 1 from the contents of the specified
Acc or memory location.

CCR H: Not affected.

CCR I: Not affected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Set if resuli=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwisc. Note that if the data was
80 prior to the instruction, an overflow will occur.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator DEC A 1 4A
2) Accumulator DECB 1 5A

3) Extended DEC MM 3 71A

4) Indexed DEC Disp, X 2 6A
DES

MNEMONIC FUNCTION: Subtracts 1 from the SP.

CCR H: Unaffccted.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied DES 1 14

199

DEX-EORA

DEX

MNEMONIC FUNCTION: Subtracts 1 from the IX.
CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Unaffected.

CCR Z: Set if result=0, Cleared otherwise.

CCR V: Unaffected.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied DEX 1 09
EIM

MNEMONIC FUNCTION: ORs the immediate value with the memory
contents and stores the result in memory.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N-: Set if MSB of the memory location=1. Cleared otherw ise.
CCR Z: Set if contents of memory location=0. Cleared otherwise.
CCR V: Cleared.,

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct EIM #HImmM 3 75
2)Indexed EIM #lmm.Disp. X 3 65
EORA

MNEMONIC FUNCTION: EORs the contents of the specified Acc with the
immediate data or a memory location and
stores the result in the Acc.

CCR H: Unaffected.

CCR I: Unafiected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if resuli=1. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate EOR A #Imm 2 88

2) Direct EOR AM 2 98

3) Extended EOR AMM 3 B8
4) Indexed EOR A Disp,X 2 A8

200

EORB-INC

EORB

MNEMONIC FUNCTION: EORs the contents of the specified Acc with the

immediate data or a memory location and
stores the result in the Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.
CCR Z: Set if result=1. Cleared otherwise.

CCR V: Cleared.

CCR C: UnafTected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate EOR B #Imm 2 C8

2) Direct EORBM 2 D8

3) Extended EOR B MM 3 F8

4) Indexed EOR B Disp,X 2 E8
INC

MNEMONIC FUNCTION: Increments the contents of the specified Acc or
memory location by 1.

CCR H: Unaffected.

CCR I: UnafTected.

CCR N: Sct if MSB of result=1. Cleared otherwise.

CCR Z: Set if resuli=0. Cleared otherwise.

CCR V: Sct if result overflows. Cleared otherwise. Note that if the data was
7F BEFORE the operation, then an overflow will occur.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator. INC A 1 4C
2) Accumulator INCB 1 5C
3) Extended INC MM 3 7C
4) Indexed INC Disp,X 2 6C
201

INS - JMP JSR-LDAA

INS JSR
MNEMONIC FUNCTION: Increments the SP by 1. MNEMONIC FUNCTION: Increments the SP appropriatcly and branches

to the address specified.
CCR H: Unaffected.

CCR I: Unaffected. CCR H: Unaffected.
CCR N: Unaffected. CCR I: Unaffected.
CCR Z: Unaffected. CCR N: Unaffected.
£C8.C: Unalicaad. CCR V: Unaffected.

CCR C: Unaffected
ADDRESSING MODES FORMAT BYTES CODE

ADDRESSING MODES FORMAT BYTES CODE
1) Implied INS 1 31

1) Extended JSR MM 3 BD
T 2) Indexed JSR Disp.X 2 AD
MNEMONIC FUNCTION: Increments the IX by 1. 3) Direct ISR M 2 9D
CCR H: Unaffected. LDA A _
ggg ;‘Umt::i MNEMONIC FUNCTION: Loads the immediate data or contents of

: Unaffected. SIS :
CCR Z: Set if all 16 bits=0. Cleared otherwise. Speary lokause S0 TheIpsCiod At
ggg g E:gzcc:cc: CCR H: Unaffected.
)) . CCR I Unaffected.

ADDRESSING MODES FORMAT ~ BYTES CODE it :rfr":siﬁ_"; 'gijifu‘;“; g herise:
i i F i, COR C: Unaifocied
JMP
MNEMONIC FUNCTION: Branches to the double-byte address given. ADDRESSING MODES FORMAT BYTES CODE
CCR H: Unaffected. 1) Immediate LDA A #Imm 2 86
CCR [I: Unaffected. 2) Direct LDA AM 2 96
CCR N: UnalfTected. 3) Extended LDA A MM 3 B6
CCR Z: Unaffected. 4) Indexed LDA A Disp.X 2 A6

CCR V: Unaffected.
CCR C: Unalffected.

ADDRESSING MODES FORMAT BYTES CODE
l} Extended JMP MM 3 TE
2) Indexed JMP Disp,X 2 6E

202 203

LDAB-LDD

LDS -LDX

LDAB
MNEMONIC FUNCTION: Loads the immediate data or contents of
memory location into the specified Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.
CCR Z: Set if resuli=0. Clecared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate LDA B #Imm 2 Cé

2) Direct LDABM 2 Dé

3) Extended LDA B MM 3 F6

4) Indexed LDA B Disp,X 2 E6
LDD

MNEMONIC FUNCTION: Load the double-byte contents of a memory
location or immediate data into Acc D.

CCR H: Unaffected..

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate LDD #Ih 1l 3 ccC
2) Direct LDD M 2 DC
3) Extended LDD MM 3 FC
4) Indexed LDD Disp, X 2 EC

204

LDS

MNEMONIC FUNCTION: Loads immediate data or the double-byte
contents of a memory location into the SP.
The first byte goes to the MSB and the second
to the LSB of the SP.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if all SP bits=0. Cleared otherwise.
CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate LDS #Ih Il 3 8E
2) Direct LDS M 2 9E
3) Extended LDS MM 3 BE
4) Extended LDS Disp.X 2 AE
LDX

MNEMONIC FUNCTION: Loads immediate data or the double-byte
contents of a memory location into the IX.
The first byte goes to the MSB and the second
to the LSB of the IX.

CCR H: Unaffeccted.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if all IX bits=0. Cleared otherwise.
CCR V: Cleared.

CCR C: Unalffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate LDX #Ih Il 3 CE
2) Direct LDXM 2 DE
3) Extended LDX MM 3 FE
4) Extended LDX Disp, X 2 EE
205

LSR-LSRD

MUL - NEG

LSR

MNEMONIC FUNCTION: Shifts the specified Acc or the contents of the
memory location one bit to the right. Bit 0 is transferred into the Carry flag
of the CCR and 0 is placed into bit 7.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Cleared.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if (N=1 and C=0) or (N=0 and C=1). Cleared otherwise.
CCR C: Set if bit 0 of the byte=1 BEFORE the shift. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator LSR A 1 44

2) Accumulator LSRB 1 54

3) Extended LSR MM 3 74

4) Indexed LSR Disp.X 2 64
LSRD

MNEMONIC FUNCTION: Shifts the contents of Acc D one bit to the right.
Bit 0 is ransferred into the Carry flag of the
CCR and bit 15 receives a 0.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Cleared.

CCR Z: Set if resuli=0. Cleared otherwise.

CCR V: Sct if (N=1 and C=0) or (N=0 and C=1). Cleared otherwise.
CCR C: Sct if bit 0 of Acc D is 1 BEFORE the shift. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied LSRD 1 04

206

MUL

MNEMONIC ‘FUNCTION: Multiplics the contents of Acc A and Acc B
together and deposits the 16-bit unsigned
result into Acc D, the MSB going to Acc A.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Unaffected.

CCR Z: Unaffected.

CCR V: Unaffected.

CCR C: Set if bit 7 of result=1. Cleared

otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Implicd MUL 1 3D
NEG

MNEMONIC FUNCTION: Takes the contents of the specified Ace or
memory location, calculates the Two's
Complement and restores il 1o its origin. Note
that if the original number was -128, no action
will be taken.

CCR H: Unaffected.

CCR I: Unalflected.

CCR N: Set if MSB of result=1. Cleared otherwisc.

CCR Z: Set if result=0. Clearcd otherwise.

CCR V: Sct if result overflows. Cleared otherwise. Note that the bit is set
when the data is equal to -128.

CCR C: Set if borrow occurs. Cleared otherwise. Bit is st when data is not

equal to 0.
ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator NEG A 1 40
2) Accumulator NEGB 1 50
3) Extended NEG MM 3 70
4) Indexed NEG Disp, X 2 60

207

NOP - OIM

ORAA-ORAB

NOP
MNEMONIC FUNCTION: This instruction simply increments the PC and

has no other function. It does not affect the
CCR.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied NOP 1 01

oM

MNEMONIC FUNCTION: Takes the immediate data, the contents of a
specificd memory location and ORs them,
storing the result in the memory location.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Sct if result=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unalfected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct OIM #Imm,M 3 72

2) Indexed OIM #Imm,Disp,X3 62
208

ORAA

MNEMONIC FUNCTION: Takes the contents of the specified Acc, the
contents of a memory location (or immediate
data) and ORs them, placing the result in the
Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB or result=1. Cleared otherwise.
CCR Z: Set if all bits=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate ORA A #lmm 2 8A
2) Direct ORAAM 2 9A
3) Extended ORA AMM 3 BA
4) Indexed ORA A DispX 2 AA
ORAB

MNEMONIC FUNCTION: Takes the contents of the specified Acc, the
contents of a memory location (or immediate
data) and ORs them, placing the result in the
Acc.

CCR H: UnalfTected.

CCR I: Unaffected.

CCR N: Set if MSB or result=1. Cleared otherwise.
CCR Z: Set if all bits=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaflected.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate ORA B #Ilmm 2 CA
2) Direct ORABM 2 DA
3) Extended ORA B MM 3 FA
4) Indexed ORA B Disp.X 2 EA

209

PSH - PSHX

PUL - PULX

PSH

MNEMONIC FUNCTION: Takes the contents of the specified Acc and
stores it on the stack as indicated by the SP.
The SP is then decremented by 1.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator PSH A 1 36

2) Accumulator PSHB 1 37
PSHX

MNEMONIC FUNCTION: Takes the contents of the [X and stores it on the
stack as indicaled by the SP. Because the IX
is a 16-bit Acc, the SP is then decremented by
2.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Unaffected.

CCR Z: Unaffected.

CCR V: Unaffected.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implicd PSHX 1 ic

210

PUL

MNEMONIC FUNCTION: The contents of the stack, as indicated by the
SP, is removed and placed in the specified
Acc. The SP is then incremented by 1.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator PULA 1 32

2) Accumulator PULB 1 33
PULX

MNEMONIC FUNCTION: Loads the IX with the double-byle contents of
the stack, as indicated by the SP. The SP is
then incremented by 2.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected,
CCR V: Unaffected.
CCR C: Unaffccted.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied PULX 1 38

211

ROL - ROR

RTI- RTS

ROL

MNEMONIC FUNCTION: Shifts the contents of the specified Acc or
memory location one place to the left. The
Carry flag is inserted into bit 0 and bit 7 is
then placed in the Carry bit of the CCR.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Set if all bits of result=0. Cleared otherwise.

CCR V: Set if (N=1 and C=0) or (N=0 and C=1) after the shift. Cleared
otherwise.

CCR C: Set if MSB of data=1 before the shift. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator ROL A 1 49

2) Accumulator ROLB 1 59
3) Extended ROL MM 3 79

4) Indexed ROL Disp,X 2 69
ROR

MNEMONIC FUNCTION: Shifts the contents of the specified Acc or
memory location one place to the right. The
Carry flag is inserted into bit 7 and bit 0 is
then placed in the Carry bit of the CCR.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Set if all bits of result=0. Cleared otherwise.

CCR V: Sectif (N=1 and C=0) or (N=0 and C=1) after the shift. Cleared
otherwise.

CCR C: Set if LSB of data=1 before the shift. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator ROR A 1 46
2) Accumulator RORB 1 56
3) Extended ROR MM 3 76
4) Indexed ROR Disp,X 2 66

212

RTI

MNEMONIC FUNCTION: The contents of the stack arc restored to the
various registers as they were before
servicing the interrupt. Data is removed in the
following order, incrementing the SP at each
operation:

a. The CCR.

b. Accumulator A.

c. Accumulator B.

d. The high byte of the IX.
e. The low byte of the IX.
f. The high byte of the PC.
g The low byte of the PC.

CCR H: As retumed.
CCR I: As retumned.

CCR N: As returned.
CCR Z: As returned.
CCR V: As returned.
CCR C: As returned.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied RTI 1 B
RTS

MNEMONIC FUNCTION: After incrementing the SP by 1, the new return
address is pulled off the stack, high order

byte first, and returned to the PC.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implicd RTS 1 39

213

SBA-SBCA

SBA

MNEMONIC FUNCTION: Subtracts the contents of Acc B from those of
Acc B, storing the result in Acc A and
leaving Acc B unaltered.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if overflow occurs. Cleared otherwise.

CCR C: Set if the absolute value of Acc B is greater than that of Acc A.

Cleared otherwise.
ADDRESSING MODES FORMAT BYTES CODE
1) Implied SBA 1 10
SBC A

MNEMONIC FUNCTION: Subtracts the immediate value (or the contents
of a memory location), including the Carry
flag, from the specified Acc and stores the
result in the Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Sct if resuli=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.

CCR C: Set if absolute valuc of data plus Carry is greater than the contents
of the Acc. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate SBC A #Imm 2 82

2) Direct SBCAM 2 92

3) Extended SBC AMM 3 B2

4) Indexed SBC A DispX 2 A2
214

SBCB-SEC

SBCB

MNEMONIC FUNCTION: Subtracts the immediate value (or the conlents
of a memory location), including the Camry
flag, from the specified Acc and stores the
result in the Acc.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of resuli=1. Cleared otherwise.

CCR Z: Set if resuli=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.

CCR C: Set if absolute value of data plus Carry is greater than the contents
of the Acc. Cleared otherwise.

ADDRESSING MODES FORMAT BYTES CODE
1) Immediate SBC B #Imm 2 C2
2) Direct SBCBM 2 D2
3) Extended SBCB MM 3 F2
4) Indexed SBC B Disp,X 2 E2
SEC

MNEMONIC FUNCTION: Sets the Carry flag of the CCR 1o 1.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.

CCR C: Set.
ADDRESSING MODES FORMAT BYTES CODE
1) Implicd SEC 1 0D

215

SEl - SEV

SLP-STAA

SEI

MNEMONIC FUNCTION:

CCR H: Unaffected.

CCRI: Sct

CCR N: Unaffected.

CCR Z: Unaffected.

CCR V: Unaffected.

Sets the Interrupt Mask flag of the CCR. In this
state, all interrupts, with the single exception
of the NMI, are disabled.

CCR C: unaffected,

ADDRESSING MODES FORMAT BYTES CODE-
1) Implied SEI 1 OF
SEV

MNEMONIC FUNCTION: Sets the Two's Complement flag in the CCR.

CCR H: Unaffected.

CCR I Unaffected.

CCR N: Unaffected.

CCR Z: Unaffected.
CCR V: Set.

CCR C: Unaffected.

ADDRESSING MODES

1) Implied

216

FORMAT BYTES CODE

SEV 1 0B

SLP

MNEMONIC FUNCTION: The SLP instruction stops the CPU but

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Unaffecied.

CCR Z: Unaffected.

CCR V: Unaffected.
CCR C: Unaffected.

maintains the internal registers. All timers run
as normal. An IRQ can cancel the instruction.
Once released from Sleep, the system will
continue working as before if the Interrupt
Mask is set. If it is clear, the CPU will set it
and load the interrupt vector address into the
PC. Program execution will then re-
commence at that address.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied SLP 1 1A
STA A

MNEMONIC FUNCTION: Stores the contents of the specified Acc into the

CCR H: Unaffected.

CCR I: Unaffected.

required memory location, leaving the original
contents of the Acc intact.

CCR N: Sct if MSB of Acc=1. Cleared otherwise.
CCR Z: Set if contents of Acc=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES

1) Direct
2) Extended
3) Indexed

FORMAT BYTES CODE

STAAM 2 97
STA A MM 3 B7
STA A Disp, X 2 A7

217

STA -STD

STAB

MNEMONIC FUNCTION: Stores the contents of the specified Acc into the
required memory location, leaving theoriginal
contents of the Acc intact.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of Acc=1. Cleared otherwise.
CCR Z: Set if contents of Acc=0. Cleared otherwise.
CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct STABM 2 D7
2) Extended STAB MM 3 F7

3) Indexed STA B Disp, X 2 E7
STD

MNEMONIC FUNCTION: Stores the double-byte contents of Acc D into a
double-byte memory location, leaving the
original contents of Acc D unchanged.

CCR H: Unalfected.

CCR I: Unaffected.

CCR N: Sct if MSB of Acc D=1. Cleared otherwise.
CCR Z: Set if contents of Acc D=0. Cleared otherwise.
CCR V: Cleared.

CCR C: Unalffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct STDM 2 DD
2) Extended STD MM 3 FD
3) Indexed STD Disp,X 2 ED
218

STS - STX
STS
MNEMONIC FUNCTION: Stores the SP into a specified memory location,
high order byte first.
CCR H: Unaffected.
CCR I: Unaffected.
CCR N: Set if MSB of SP=1. Cleared otherwise.
CCR Z: Set if SP=0. Cleared otherwise.
CCR V: Cleared.
CCR C: Unaffected.
ADDRESSING MODES FORMAT BYTES CODE
1) Direct STSM 2 9F
2) Extended STSMM 3 BF
3) Indexed STS Disp,X 2 AF
STX
MNEMONIC FUNCTION: Stores the IX into a specified memory location,
high order byte first.
CCR H: Unaffected.
CCR I: Unaffected.
CCR N: Set if MSB of IX=1. Cleared otherwise.
CCR Z: Set if IX=0. Cleared otherwise.
CCR V: Cleared.
CCR C: Unaffected.
ADDRESSING MODES FORMAT BYTES CODE
1) Direct STXM 2 DF
2) Extended STX MM 3 FF
3) Indexed STX Disp,X 2 EF

219

SUBA-SUBB

SUB A

MNEMONIC FUNCTION: Subtracts the immediate data or the contents of
a memory location from the specified Acc and
deposits the result in the Acc.

CCR H: Unaffected.

CCR I: unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Set if resuli=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.

CCR C: Set if absolute value of data is greater than that of the Acc. Cleared

otherwise.
ADDRESSING MODES FORMAT BYTES CODE
1) Immediate SUB A #Imm 2 80
2) Direct SUBAM 2 90
3) Extended SUB AMM 3 BO
4) Indexed SUB A Disp,X 2 A0
SUBB

MNEMONIC FUNCTION: Subtracts the immediate data or the contents of
a memory location from the specified Acc and
deposits the result in the Acc.

CCR H: Unaffected.

CCR I: unaffected.

CCR N: Sctif MSB of result=1. Cleared otherwise.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.

CCR C: Set if absolute value of data is greater than that of the Acc. Cleared

otherwise.
ADDRESSING MODES FORMAT BYTES CODE
1) Immediate SUB B #Imm 2 C0
2) Direct SUBBM 2 DO
3) Extended SUBB MM 3 FO
4) Indexed SUB B Disp,X 2 EO

220

SUB D - SWI

SUBD

MNEMONIC FUNCTION: Subtracts the double-byte immediate data or
memory contents from Acc D and deposits the
result in Acc D.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.

CCR Z: Set if result=0. Cleared otherwise.

CCR V: Set if result overflows. Cleared otherwise.

CCR C: Set if absolute value of data is greater than that of Acc D. Cleared

otherwise.
ADDRESSING MODES FORMAT BYTES CODE
1) Immediate SUBD #IhIl 3 83
2) Direct SUBDM 2 93
3) Extended SUBD MM 3 B3
4) Indexed SUBD Disp,X 2 A3

SWI

MNEMONIC FUNCTION: The PC is incremented by 1. Internal registers
are stacked in the order PC, IX, AccA, AccB
and CCR, decrementing the SP after each
byte. Note that double-byte registers are saved
low-byle first and that the instruction scts bits
6 and 7 of the CCR before stacking. The
interrupt mask is then set and the double-byte
contents of $FFFA is loaded into the PC.

CCR H: Unaffected.
CCRI: Set

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unalfected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied SWI 1 3F

221

TAB - TBA

TAB

MNEMONIC FUNCTION: Transfers the contents of Acc A into Acc B,
leaving the original contents of Acc A
untouched.

CCR H: UnafTected.

CCR I: Unaffected.

CCR N: Set if MSB of Acc A=1. Cleared otherwise.

CCR Z: Set if Acc A=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied TAB 1 16
TAP

MNEMONIC FUNCTION: Transfers bits 0-5 of Acc A into the
corresponding positions in the CCR, leaving
the contents of Acc A unchanged.

CCR H: Bit 5 of Acc A.
CCR I: Bit 4 of Acc A.

CCRN: Bit3 of Acc A.
CCR Z: Bit 2 of Acc A.
CCR V: Bit 1 of Acc A.
CCR C: Bit 0 of Acc A.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied TAP 1 06
TBA

MNEMONIC FUNCTION: Transfers the contents of Acc B into Acc A,
leaving the original contents of Acc B
unchanged.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Sctif MSB of Acc B=1. Cleared otherwise.
CCR Z: Set if Acc B=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaflected.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied TBA 1 17
222

TIM-TPA

TIM

MNEMONIC FUNCTION: Takes immediate data and the contents of a
specified memory location and ANDs them
together with the object of changing the CCR.
Note that both operands remain unaffected by
this operation.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of result=1. Cleared otherwise.
CCR Z: Set if result=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Direct TIM #ImmM 3 B

2) Indexed TIM #Imm,Disp, X 3 6B
TPA

MNEMONIC FUNCTION: Transfers bits 0-5 of the CCR into Acc A,
leaving the original contents of the CCR
unchanged.

CCR H: Unaffected.
CCR I: UnalfTected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied TPA 1 07

223

TST-TSX

TXS - WAI

TST

MNEMONIC FUNCTION: Examines the contents of the specified Acc or
memory location and sets the N or Z flag of
the CCR accordingly.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Set if MSB of data=1. Cleared otherwise.
CCR Z: Set if data=0. Cleared otherwise.

CCR V: Cleared.

CCR C: Cleared.

ADDRESSING MODES FORMAT BYTES CODE
1) Accumulator TSTA 1 4D
2) Accumulator TSTB 1 5D

3) Extended TST MM 3 7D
4) Indexed TST Disp.X 2 6D
TSX

MNEMONIC FUNCTION: Increments the SP by 1 and transfers it into the
IX, leaving the SP unchanged.

CCR H: UnafTected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unalffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied TSX 1 30

224

TXS
MNEMONIC FUNCTION: Decrements the IX by 1 and transfers it to the
SP, leaving the IX unchanged.

CCR H: Unaffected.
CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE
1) Implied TXS 1 35
WAI

MNEMONIC FUNCTION: Increments the PC by 1 and stacks the PC, IX
Acc A, Acc B and CCR, in that order,
decrementing the SP by 1 at each byte. Note
that double-byte registers are stored low byte
first and that bits 6-7 of the CCR are stacked
as binary 11. The program then stops and
wails for an interrupt from a peripheral. If the
interrupt mask bit is 0 prior to the interrupt
occurring, it will be set on the interrupt and
the vector lead to the PC.

CCR H: Unaffected.
CCR I: Unaffecied until interrupt. If=0 on interrupt, it is set.
CCR N: Unaffected.
CCR Z: Unaflected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES FORMAT BYTES CODE

1) Implied WAI 1 3E

225

XGDX

XGDX

MNEMONIC FUNCTION: Exchanges the IX and Acc D registers.

CCR H: Unaffected.

CCR I: Unaffected.

CCR N: Unaffected.
CCR Z: Unaffected.
CCR V: Unaffected.
CCR C: Unaffected.

ADDRESSING MODES

1) Implied

226

Arranged Numerically

Note that AIM, BSET, BTST and BTGL have codes identical with BCLR,
OIM, TIM and EIM, respectively.

222R2Y

TAP

B
B
B

=)

EC
TST B

NEG DISPX
BSET BIT,DISPX
LSR DISPX
ROR DISPX
ROL DISPX

01 NOP

04 LSR D

07 TPA

0A CLV

0D SEC

10 SBA

13 —

16 TAB

19 DAA

IC ——

IF —

22 BHI REL
25 BCS REL
28 BVC REL
2B BMI REL
2E BGT REL
31 INS

34 DES

37 PSH B

JA ABX

3D MUL

40 NEG A

43 COM A

46 ROR A

49 ROL A

4C INC A

4F CLR A

52 —

55 —

58 ASL B

5B ——

5SE —

61 AIM #IMM,DISPX
62 OIM #IMM,DISP.X
65 BTGL BITDISPX
67 ASR DISPX
6A DEC DISPX

02
05
08
0B
0E
11
14
17
1A
1D
20
23
26
29
2C
2F
32
35
38
3B
3E
41
44
47
4A
4D
50
53
56
59
5C
5F
61
63
65
68
6B

ASL D

INX

SEV

cu

CBA

TBA

SLP

BRA REL
BLS REL
BNE REL
BVS REL
BGE REL
BLE REL
PUL A

TXS

PUL X

RTI

WAI

LSR A

ASR A
DEC A
TST A
NEG B
COM B
ROR B
ROL B

INC B

CIR B
BCLR BIT,DISPX
COM DISPX
EIM #IMM,DISPX
ASL DISPX
BTST BIT.DISP.X

227

6B
6E
n
7
75
T
TA
7C
TF
82
85
88
8B
8E
91
94
97
9A
9D
AO
A3
A6
A9
AC
AF
B2
BS
B8
BB
BE
Ci
C4
c7
CA
cDh
DO
D3
D6
D9
DC
DF

TIM #IMM,DISP.X

IMP DISPX
AIM #IMMM
OIM #IMMM
BTGL BITM
ASR MM
DEC MM
INC MM

CLR MM
SBC A #IMM
BIT A NIMM
EOR A #IMM
ADD A #IMM
LDS #IH IL
CMP A M
AND A M
STAA M

ORA A M
ISR M

SUB A DISPX
SUB D DISPX
LDA A DISPX
ADCA DISP.X
CPX DISPX
STS DISPX
SBC A MM
BIT A MM
EOR A MM
ADD A MM
LDS MM
CMP B ¥IMM
AND B ¥IMM

ORA B #IMM
SUB B M
ADD D M
LDA B M
ADC B M
LDD M
STX M

E2 SBC B DISPX

E5
E8

BIT B DISPX
EOR B DISPX

228

6C
6F
71
73
15
78

D

83
86
89
8C
8F

95
98
9B
9E
Al
A4
A7
AA
AD
BO
B3
B6
B9
BC
BF

C5
C8
CB
CE
D1

D7
DA
DD
EO

E6
E9

INC DISPX
CLR DISPX
BCLR BITM
CoOM MM
EIM ¥IMMM
ASL MM
BTST BITM
TST MM

SUB A #IMM
SUB D #H IL
LDA A #IMM
ADC A #IMM
CPX #IMM
SBC A M
BIT A M
EOR A M
ADD A M
LDS M

CMP A DISPX
AND A DISPEX
STA A DISPX
ORA A DISPX
JSR DISPX
sUB A MM
SUB D MM
LDA A MM
ADC A MM
CPX MM

STS MM

SBC B ¥IMM
BIT B #IMM
EOR B #IMM
ADD B #IMM
LDX #IH IL
CMP B M
AND B M
STAB M
ORA B M
STD M

SUB B DISPX
ADD D DISPX
LDA B DISPX
ADC B DISPX

6D
70
72
74
76
79

78
7E
81

84

BA
8D

93

9F
A2
AS

AB
AE

B4
B7
BA
BD
Co
C3
co

cC
CF
D2
D5
D8
DB
DE
El

E4

E7

EA

TST DISPX
NEG MM
BSET BITM
LSR MM
ROR MM
ROL MM
TIM ¥IMM,M
IMP MM
CMP A #IMM
AND A #IMM
ORA A ¥IMM
BSR REL
SUB A M
SUB
LDA
ADC
cPX
STS M

SBC A DISPX
BIT A DISPX
EOR A DISEX
ADD A DISPX
LDS DISPX
CMP A MM
AND A MM
STA A MM
ORA A MM
ISR MM

SUB B #IMM
ADD D #H IL
LDA B #IMM
ADC B ¥IMM
LDD #H IL
SBC B M

BIT B M

EOR B M
ADD B M
LDX M

CMP B DISPX
AND B DISPX
STA B DISPX
ORA B DISPX

z>»>»0
2=

EB ADD B DISPX

EE LDX DISPX
F1 CMP B MM
F4 AND B MM
F7 STA B MM
FA ORA B MM
FD STD MM

EC LDD DISPX
EF STX DISPX
F2 SBC B MM
F5 BIT B MM
F8 EOR B MM
FB ADD B MM
FE LDX MM

ED STD DISPX
FO SUB B MM
F3 ADD D MM
F6 LDA B MM
F9 ADC B MM
FC LDD MM

FF STX MM

229

Annex F

Hexloader for the Psion Organiser

Hexloader for the Psion Organiser

F:Hexloader for the Psion Organiser

E.Q Introduction. Enter each of the routines listed below one at a time,
translating and saving each one as you go. You would be wise to omit the
REM statements. Their purpose is lo give some clarity to the code and
thereby allow you to make your own modifications. However, they take
up a great deal of space and contribute nothing to the actual performance
of the hexloader. You would therefore be better to omit them from your
code.

F.1 Making Room For Machine Code. As I mentioned in paragraph 4.7,
we must make some space into which we can place our machine code.
There are a number of ways in which we could do this but ideally our
choice should take into consideration:

a. That the area chosen must nol interfere with the workings
of the Organiser.

b. That the area must be static and not subject to movement
under the whim of the Operating System.

c. That the area must not be trashed by the Operaling System.

F2 It would be inappropriate at this point to go through all the pros and
cons of each and every possibility. Suffice it to say that the best choice in
my opinion is 10 lower the baseline of the stack to the level we want. The
space created between the default level and the new is ours to do with
pretty much as we please. Have a look at Annex C. This shows the
memory map of the Organiser. Near the top, you can see the line dividing
the processor and language stacks. The former grows no further than the
line itself but the latter starts AT the line and grows downwards. The
actual address of the line is held as a 2-byte word at location $2065.
Lowering the number held in $2065 will give us the space we need.

232

SRS

E3 The Hexloader consists of the following 21 routines:

a. MC:

b. NEW:

c. VIEW:

d. DECODE:
e. RUN:

f. FILES:

g- SPACE:

h. INFO:

j- GETNUM:
k. CENTRAL;
1. INTOBASE:
m. FROMBASE:
n. CHECK:

p- BADNEWS:
q. ORGLOAD:
1. ORGSAVE:
s. ORGDIR

t. ORGKILL:
u. PCLOAD:
v. PCSAVE:

w. SCREEN:
x. MODIFY:

F.4 Together, these routines swallow up a great deal of space. Those
readers who have less memory to play with can do without the
“DECODE:" routine, which disassembles the code. Since this routine
makes use of a sizeable mnemonic look-up table, the table itself can also
be dispensed with. Just make sure that you remove the call to
“DECODE:" in the main program (“MC:"). For those of you who would
like the disassembler, you must construct a mnemonic file. This can be
done in one of 2 ways:

a. Word Processor. Those readers fortunate enough to have a
PC at their command can simply type the mnemonics into an
ASCII file. Each mnemonic consists of 2 single-digit numbers
and a string. Each of these must be separated by a <TAB>
character and each complete 3 must be terminated by the

233

<CR> key. You would then end up with a file consisting of
256 lines, cach of which contains two items. You may vall
this PC file anything you wish as long as its file exiension is
“ ODB". To load it into the Organiser, use the “RECEIVE”
option in the "COMMS" menu and select “FILE™. Give the
file the Organiser internal name “MNEMONIC”. That’s all
there is to it.

b. No Word Processor. Those of you who do not have access
to a micro or a serial link can use lhe routine
“TYPEMNEM:". This program expects the user to type in the
data, following the prompts. As I pointed out in the sub-para
above, each line consists of 3 items. The first of these is the
“addressing mode”, the second indicates the number of bytes
in the instruction and the string holds the assembly language
mnemonic for that instruction. The routine will prompt you
for each of these in turn, allowing you to view your entry and
correct mistakes before storing it in “MNEMONIC:". Note
that there is no need to use the <TAB> key. This routine can
be deleted to save space when the file construction is
complete.

E.5 Calling The Hexloader. The best way to start the Hexloader, is by
including it in the top level menu. Refer to your Organiser manual if you
are unsure how to do this. Simply put “MC" at the desired point in the
menu. Selecting this option will cause the Organiser to jump immediately
to the Hexloader and start running the routines.

E6 Using The Hexloader. On calling “MC:", the program checks for the
existence of a “MNEMONIC™ file. If this is not present, a warning beep is
issued and the fact made known to the user:

<< WARNING >>
No mnemonic [ile

This remains on the screen for a short while and is then replaced by:

-< PROBLEMS >-
Continue <Y/N>

234

This is to allow the user the opportunity to escape from the program to
create or load the file. It is not strictly necessary to have the file in
memory but its absence is required if the user wanis to disassemble any
arca of memory. If it is not needed, the user should reply <Y> to the
enquiry. When this is done (or, indeed, if the “MNEMONIC" file IS
present), the user is presented with a Litle screen, requesting him to press a
key to begin. This leads to the main menu, offering the following options:

a. NEW

b. VIEW

c. DECODE
d.RUN

¢. FILES

f. SPACE
g-INFO

h. QUIT

FE.7 NEW. The “NEW" option allows the user to enler a new program.
Note carefully that you should not enter anything without first clearing
some space for your machine code program using the “SPACE” option in
the main menu. Calling the “NEW™ option clears the screen and offers the
user a screen showing:

-START ADDRESS-
Value: [$....]

The user is expected 1o cnter the hexadecimal address of the start of the
new routine. Note that the SHIFT key is unnecessary, since a routine
allows the user to press only the “hex alphabet™

keys. Simply pressing the <EXE> key without entering an address, will
cause the Organiser to return to the main menu. If, for example, the
address “$7D0B" is entered, the screen will change and be replaced by:

- CELL $7D0B -
Value: [$..]

A 2-digit hexadecimal number is expected and can be inpul in the same

way as the address. This number will then be POKEd into the memory
cell, the cell will be incremented and the screen will be redrawn with the

235

new address at the top centre. This continues until the <EXE> key is
pressed without entering a value. The main menu will re-appear and you
have entered your first program.

E8 VIEW. The “VIEW" option allows the user to view the contents of
any memory location. Note that this option does not take into account
“bank swilching”. It is intended, as is the disassembler, to allow the user
to examine his program, NOT to take the Organiser Operating System
apart. On calling the routine, the user will get the following screen:

- VIEW START -
Value: [$....]

The routine expects the user Lo enter the address where the memory dump
is to start. This number must be in hexadecimal and can be entcred
without the aid of the SHIFT key. Once this number is entered, the screen
will clear o give:

LZ Model CM/XP Model
7D13 B6 7D 30 FE 7D0B 86 0C 3F 10
7DOF 86 7TE 3F 10 [..2.]
7D0B 86 OC 3F 10

[.2..2..0]

The user can scroll up/down the memory map using the up/down arrow
keys. This will advance the memory by one “line’s worth”. To move a
little faster, the user can move 16 byies at a time, using the left arrow 10
decrement and the right arrow to increment. If any byte on screen needs 1o
be altered, the “MODE" key should be pressed. This will produce a left-
arrow symbol at the first byte. This can be scrolled around the screen until
it indicates the offending byte. Pressing <EXE> at this juncture will clear
the screen and display:

- NEW CONTENTS -
Value: [3....]

Enter the new value for that location or just press the <EXE> key on its

own lo Icave the current value unchanged. The screcn will change once
more and be replaced by the memory dump. If any alteration has been

236

entered, its effect should now be visible. To exit from the “VIEW™ option,
press <ON/CLEAR>.

F.9 DECODE. The “DECODE" option is very simple to use. The user is
presented with an entry screen like so:

-START ADDRESS-
Value: [§....]

Enter the start address where the disassembly is to take place. Let’s
assume that the address $9003 has been chosen. The screen would look
something like this:

$9003
STA A $2351

Pressing the <EXE> key will advance to the next mnemonic. Note that it
is not possible to scroll up and down memory as with the “VIEW™ option.
When the disassembly is no longer required, pressing the <ON/CLEAR>
key will terminate and return to the main menu.

F.10 RUN. The “RUN" option execules programs which the user has
stored in memory. The routine enquires after the start address of the
routine. This must be the address at which execution of the program must
begin. It is perfectly possible to have data and other sub-routines below
the actual main machine code program. The address requested is the
location of the code at which the user wants to start execution. The entry
is done via a screen like the following:

-EXECUTE BINARY-
Valuc: [$....]

Pressing the <ON/CLEAR> key will escape from the routine without
executing any code. However, having entered the correct address (and
assuming the user’s code is correct!!) the screen will clear after execution
and present the user with:

- ROUTINE DONE -
Another <Y/N>

237

Pressing <Y> will repeat the routine, while <N> will terminate and return
to the main menu.)

FE.11 FILES. The “FILES" oplion is, in fact, the galeway lo another menu
which offers:

a. ORGLOAD
b. ORGSAVE
¢. ORGDIR
d. ORGKILL
e. PCLOAD
f. PCSAVE
g.QUIT

F.12 ORGSAVE. Taking the “ORGSAVE" option first, it provides the
user with a means by which his binary program stored in memory can be
turned into hexadecimal TEXT and saved into a user-named file. The
importance of this step is that several files of programs can reside within
the Organiser simultaneously and that they can be loaded/saved to/from
PC in the same way as for ordinary files. This routine asks the user to give
the name of the file where the code is 1o be stored. If there is already a file
of that name it will be deleted. the entry screen looks like this:

-SAVE TO PSION-
File:

Entering a null filename will cause the routine to terminate and rctum o
the FILES sub-menu. Otherwise, the next screen will appear:

-START ADDRESS-
Value: [§....]

This is a standard address entry vehicle and is intended to set the bottom
address of the code 1o be saved. Pressing <ON/CLEAR> or entering a null
string will terminate the routine. If a valid address is cntered, the next
screen will appear:

-END ADDRESS -
Value: [$....]

238

This is entered under the same conditions as for the start address. If an
end address has been entered which is greater than the start address, the
routine will beep a warning and return to the FILES sub-menu. Otherwise,
the screen will clear to show:

- ORGSAVE -

under which is shown a growing, grey bar indicating the percentage of the
file which has been translated into text. When the save is complete, the
user is reurned to the FILES sub-menu.

F.13 ORGLOAD. The “ORGLOAD" routine, then, is the reverse of
“ORGSAVE". The user is prompted:

LOAD FROM PSION
File:

If a null filename or a file which does not exist is entered, the routine will
give a waming before returning (o the FILES sub- menu. If all is well, the
user will see:

- LOAD ADDRESS -
Value: [8....]

Enter the address at which you wish the routine 10 be loaded. Be vary
careful here. Ideally, the user should load the code to the address from
which it was originally stored. This is because jumps may specify exact
addresses. If the code contains no jumps or location-specific instructions,
then it does not matter where it gocs. The user should beware, however.
Pressing the ,ON/CLEAR> key or entering a null address string will
terminate the routine and return to the FILES sub-menu. If all is well, the
screen will change to:

- ORGLOAD -

with a growing, grey bar undemcath to show the storage progress. Once
complete, the FILES sub-menu will re-appear.

F.14 ORGDIR. The “ORGDIR" routinc allows the user to view the

239

currently held files. Pressing any key displays the next file stored until
either the end of files is reached or the <ON/CLEAR> key is pressed. The
program will then return to the FILES sub- menu.

F.15 ORGKILL. The “ORGKILL" routine deletes old program files
which are no longer required. The user is prompited with the screen:

- ORGKILL -
File:

Entering a null filename or a non-existent one will cause the routine to
terminate and return to the FILES sub-menu. Let’s suppose we wished to
delete the "MNEMONIC™ file 1o make some more room. The user would
see:

-KILL MNEMONIC-
Palience ...

and, when Lhe deletion was complete, the screen would change 10:

-KILL MNEMONIC-
Deleted

The screen would then pause for approximately 4 seconds before
returning to the FILES sub-menu.

F.15 PCLOAD. This routine is very easy 10 use. The user is first asked for
the full name (including drive and path) of the file on the PC:

- PCLOAD -
Remote:

and then the name of the file as it is to appear in the Organiser:

- PCLOAD -
Local:

Once both are entered, they are checked. If either are null, the routine
terminates and the program returns to the FILES sub-menu. If everything

240

is as it should be the screen will change to:

-READY TO LOAD-
Press any key

This gives the user the opportunity to check that the COMMS side of
things is ready. Pressing any key causes the transfer to begin. When
complete, the program returns to the FILES sub-menu.

F.16 PCSAVE. This routine is the exact corollary of “PCLOAD" except
that traffic is going in the other direction. Its description is as for E.15.

F.17 QUIT. Sclecting “QUIT" causes the FILES sub-menu to terminate
and the program retums to the main menu.

F.18 SPACE. This routine is essential if the user’s machine code programs
are 1o be successfully loaded and run. It is responsible for reserving an
area into which the code can be POKEd. The user sees:

-NEW MEMBASE -
Value: [§....]

This is a straightforward entry screen. The point at which you require the
new memory base to be set must now be entered. BE CAREFUL!! Follow
the instructions in the book until you are familiar enough with the
Organiscr memory map to do do anything exolic. Pressing <ON/CLEAR>
or entering a null string will terminate the routine with a becp and return
the user to the main menu without doing anything unfortunate. If,
however, a valid address is entered, the new memory base will be set.
This can be checked using the “INFO" option.

F.19 INFO. Using this option, the user can check the current level of the
memory base or, just as importantly, if his use of “SPACE" has worked. It
will display, for example:

-MC LOADER -
Membase= $7D0B

This display will remain on screen until the user presses any key. The
main menu will then re-appear. ;

241

F.20 QUIT. Selecting “QUIT" from the main menu will terminate the
Hexloader. If the program has been called from the Organiser's TOP
LEVEL MENU, the user will be retumed to it. Otherwise, he will find
himself in the PROG menu.

Entering a Program

F.21 So, in summary, entering a program is very simple. First, ensure that
there is enough space reserved for the code. Check this by calling the
“INFO” option. If no memory has been reserved or there is insufficient
for his requirements, the user should enter the “SPACE” routine and set
the memory base to a new level. In most of the program examples in this
book, a memory level of $7D0B is used. This reserves about 500 bytes of
space - ample for the needs of the material in this book. When this is
done, the code itself can be entered by using the “NEW™ routine. This will
ask for the start address (which should normally be the memory base) and
then repeatedly request bytes of code until <ON/CLEAR> is pressed or
<EXE> without entering any data. This will cause a return to the main
menu. The code should then be checked using “VIEW™ 1o ensure that no
finger trouble intervened. Remember - more than in any other walk of
life, Murphy's Law Rule the careless in TRAPper's country. If any small
mislakes of a byte or so have been made, they can be altered by using the
modify facility, called by pressing <MODE>. When the user is satisfied
that the code is 100% correct (wry smile), it can be executed using the
“RUN" option. Finally, the good code can be saved to an Organiser file
and from there to a PC file, if desired. Similarly, stored code can be re-
entered into memory by virtue of the "ORGLOAD™ option.

F.22 Conclusion. That concludes the description of the Hexloader. The
code follows next, including the “TYPEMNEM:" to enter the mnemonics
dircctly into the Organiser, and then the HD6303 mnemonics themselves
for the mnemonic file. Note that each routine begins with a header block
describing the code. In addition, each routine is terminated by another,
shorter block. These form no part of the code and should not be entered
into the Organiser.

242

REM #*tsesstknkssshisssbhkidsidbbndhbbbhbahidbhikbhabhhks

REM /I MAIN PROGRAM BEGINS \W\

REM L L e P e e R e e e L R s SR s PR R R 2T 2 L T
mc:

GLOBAL width%,lincs%.number$(4),number,inum, nomnem%

LOCAL keypres$(1),option%

REM Initialise variables.
lines%=2 :REM “4” FOR LZ
width%=16 :REM “20” FOR LZ
nomnem%=0

REM “Welcome" Screen.

CLS

central:("-< MC LOADER >-",1)
central:(*Press any key”,2)

GET

REM Check for existence of Mnemonic file. If not present, issue
REM waming and set “nomnem” flag.
IF NOT EXIST(*A:MNEMONIC")
CLS
central:("<< WARNING >>",1)
central:("No mnemonic file”,2)
badncws:
PAUSE 40
nomnem%-=1
REM Otherwise, open the Mnemonic file.
ELSE
OPEN"A:mnemonic™. A, modc% . bytes%,mnem$
ENDIF :
REM If the Mncmonic file is not present, off the chance to REM
terminate operation.
IF nomnem%-=1
CLS
central:("-< PROBLEMS >-",1)
central:("Continue <Y/N>",2)
keypres3=UPPERS(GETS)
IF keypres$="N"
RETURN
ENDIF
ENDIF

REM Main Loop

243

DO

REM Main Menu
option%=MENU(*"NEW,VIEW,DECODE,RUN,FILES, SPACE,INFO,QU
™)

REM Call chosen option.

IF option%=1
new:

ELSEIF option%=2
view:

ELSEIF option%=3
decode: ELSEIF option%=4
run:

ELSEIF option%=5
files:

ELSEIF option%=6
space:

ELSEIF option%=7
info:

ENDIF

UNTIL option%=8

REM If Mnemonic file WAS present, close it,
IF nomnem%=0

USE A :CLOSE
ENDIF

REM Finished.
RETURN

REM L At R R R T e T T T T L]

REM Jlf MATN PROGRAM ENDS W\

REM *#**tsxknsrbrbkbbcbbssbbsbhtbbrbhhbskbkrskihhrrhhrrhrkE

244

REM kkkkkkkkkktbkkkkktkbhb kbbb kkkk btk kb k kb kb kb kkkk

REM //{ SUBROUTINE “NEW" \\\

REM #* #5535 32k k5B RR AR AR R R RR R R XERRERRRRERERREE R EEE

new:
LOCAL cell,address

REM Get start address where code is to be stored, exiting if a REM null
string is entered.
CLS
getnum:(“-START ADDRESS-"4)
IF number$=""
RETURN
ENDIF

REM Make temporary store of address.
cell=number

CLS

REM “Entry"” loop.
DO

number=cell

REM Check that address is a legal integer.
check:
address=tnum

REM Convert it to a hexadecimal string.
intobase:(4)

REM Get byte for slorage.
getnum:(*- CELL $"+number$+" -"4)
check:

REM If byte is not a null string, size it and poke it as a word REM or a
byte, as appropriate.
IF number$ <™
IF LEN(number$)<3

245

POKEB address,tnum

cell=cell+1 :REM Increment memory address by I byte
ELSE

POKEW address,tnum

cell=cell+2 :REM Increment memory address by 1 word
ENDIF
ENDIF

REM Loop until a null string is received.
UNTIL number$=""

REM Finished.
RETURN

REM **%*kskksdsbbhsskn btk hbbbbhbebbbdbbbbbhthbhhbs kbbb

REM /l/l END OF SUBROUTINE “NEW" \W\

REM bt bl S L S e e T e P T St a Ll

246

REM *#%*ktirkksktbssrksbrkbbbt bbbtk bsrdcinhrrsss

REM {1/ SUBROUTINE “VIEW" \\\

REM kbbb kbbb bbbk bk bbbk kb kh ko k ko kR kk ok
view:

REM The following 2 lines should be one long one!!!
LOCAL legal$(7),up$(1).down$(1),leff1$(1) rite$(1),onclears(1),
mode$(1),start keypresS(1)

REM Set variables and constants to initial values.
onclear$=CHRS$(1)

modc$3=CHRS(2)

up$=CHRS(3)

down$=CHR$(4)

leffi$=CHRS$(5)

rite$=CHR$(6) ;
legal$=onclear$+mode$+up$+down$+leffiS+rite$

REM Get start address for viewing, exiting if a null string is REM input.
getnum:(*- VIEW START -"4)

-JF number$=""

RETURN
ENDIF

CLS

REM Copy address to temporary storage.
start=number

REM “View™ loop.
DO
number=start
REM Check address is a legal integer.
check:
start=number

REM Draw a “screenful” of memory contents.

247

screen:

REM Gect a legal key.
DO

keypres3=UPPER$(GETS)
UNTIL LOC(lcgal$ keypres$)>0

REM Aller memory address, enter modification routine or exit, REM
according to the key entered.
IF keypres$=up$
start=start-+4
ELSEIF keypres$=down$
start=start-4
ELSEIF keypres$=lef(t$
start=start-16
ELSEIF keypres$=rite$
start=start+16
ELSEIF keypres$=mode$ number=start
modify:
ENDIF

UNTIL keypres$=onclear$

REM Finished.
RETURN

REM titi‘titt#ttttt&t‘ittttttttitt#t“tltii*#ttttttt#t#ttl

REM //IfEND OF SUBROUTINE “VIEW" \W\\

REM ##ssssstttsdhnsnhbhsdbhhrmhhbhih il hkk € xnhhkhns bk &

248

REM P Ly e e e e R R R Lttt bt

REM J/i{ SUBROUTINE “DECODE" W

REM #*##%#4 s sk bhisadsiri shakkd S5 akahbs ko 15t iistts

decode:
LOCAL byte%,dccode$(40),mode% hash$(1),temp

hash$=CHR3(35)

REM Ensurc Mnemonic file is current.
USEA

CLS

REM Get start address for disassembly, exiting if null string is REM
entercd.
getnum:(*-START ADDRESS-"4)
IF number$=""
badnews:
RETURN
ENDIF

REM “Dccode™ loop.
DO
CLS

REM Ensure that address is legal integer.
check:

REM Convert address to hexadecimal string.
intobase:(4)

REM Get contents of memory location.
byte%=PEEKB(tnum)

REM Display memory address in hex.
central:("*$"+numbcr$,1)

REM Find the relevant mnemonic in the file.

249

POSITION byte%+1
decode$=A.mnem$+"

REM Increment the memory address and ensure legal integer.
number=number+1
check:

REM make temporary copy of addrcss.
temp=number

REM Add appropriate “text” to mnemonic.

IF A.mode%=2 OR A.mode%=3 OR (A.mode%=5 AND A.byles%=3)
decodc$=decode$+hash$+"$"

ELSEIF A.mode%=4 OR (A.mode%=5 AND A .bytes%=2)
decode$=decode$+” $”

ENDIF

REM PEEK the appropriate bytes, incrementing the memory REM
location. IF A.modc%=3 OR A.mode%=4 OR (A.modc%=5 AND
A bytes%=3)

number=PEEKW(tnum)
intobase:(4)
temp=temp+2

ELSEIF A.mode%=2 OR (A.mode%=5 AND A.bytes%=2) OR

A.mode%=7
number=PEEKB(tnum)
intobasc:(2)
lemp=tcmp+1

ENDIF

IF Amode%=2 OR A.mode%=3 OR A.modec%=4
decode$=decode$S+number$
ELSEIF A.modc%=5 AND A.bytes%=2
decode$=decodeS+number$+” X"
ELSEIF A.mode%=5 AND A.bytes%=3
decodc$=dcoodc$+LEFT$(numbcr$,2)+“,$“+RIGHT$(number$.2)+".X“

REM Relative jump.

250

ELSEIF A.modc%=7
number=number+2
IF number>129
number=number-256
ENDIF
decodc$=decode$S+GENS(number,4)
ENDIF

REM Display complete mnemonic.
central:(decode$,2)
number=temp

REM Keep going until <ON/CLEAR> pressed.
UNTIL GET$=CHR$(1)

REM Finished.
RETURN

R_EM LAl I AR SR L S R E R A R e 2t R R R R e T T

REM /{fi END OF SUBROUTINE “DECODE" W\

REM LR 2R 22t it B e T YT YT T Y T T Y

251

REM b2 i 222 A3 R R PR d bR s R R R 2 2 R R R 2 b R 2 L L 2

REM [/l SUBROUTINE “RUN" W\
REM #*##ssssassbssssissbbibisdiiibihtiiibhbbbsbeesbbtsas
run:

LOCAL byte% keypres$(1)

REM “Run” loop
DO

REM Get execution address, terminating if a null string is
REM entered.
getnum:("-EXECUTE BINARY-"4)
IF number$=""
badnews:
RETURN
ENDIF

REM Ensure address is a legal integer.
check:

REM Call routine.
byle%=USR(tnum,0)

REM Pause to allow user to view last screen display before
REM clearing screen.

PAUSE 40

CLS

REM Offer repeat performance.
central:("- ROUTINE DONE -",1)
central:("Another <Y/N>"2)
keypres$=UPPERS(GETS)

REM No more routincs required.
UNTIL keypres$="N"

REM Finished.
RETURN

Y e e e T T g et T

REM {iff END OF SUBROUTINE “RUN"\W\

REM kokkkkokkkkkhokkkkhkkkkkhkkkkkkkbkbhkkhhkhhkkkkhkkhkkkkkkkkk

252

e ———

e

REM ®*®:ssstxtiksssbbdibrbstidbiibbsbbisbsibsshrbbbnsiiisss

REM /111 SUBROUTINE “FILES" W\

REM Lt 2 2 2 22t 22 P2t 2 22 22 22 Rt Rt Rt R i R R RSt R S R Rt Lt

files:
LOCAL option%

REM “Files" loop
DO

REM *“Files" sub-menu.

optione=MENU(C*ORGLOAD,ORGSAVE,ORGDIR,ORGKILL,PCLOA
D,PCSAVE,QUIT")

REM Call selected routine.

IF option%=1
orgload:

ELSEIF option%=2
OTgsave:

ELSEIF option%=3
orgdir:

ELSEIF option%=4
orgkill:

ELSEIF option%=5
pcload:

ELSEIF option%=6
pcsave:

ENDIF

REM “QUIT™ selecled.
UNTIL option%=7

REM Finished.
RETURN

REM Ladd Rl A 2 St P2 A S22t Rt S 2 St P2 22 PR RS S22 21 222 2 2

REM {//{ END OF SUBROUTINE “FILES" W\

REM #%53 3335554552 550 84200k SRR ek e bR R AR R R SRR RS LR 0%

253

REM kkkkkkkhkkkkkkkkknhkkbkkkkkkkhkkkhkdkkkbkkbbbhkkkbdkbbhkig

REM //l{ SUBROUTINE “SPACE" W\

REM *H*# st sttt kx s a ikt d 2 a i aihhdt s shd e hhhrbhhhahs s

space:

REM Gel new memory base, exiting if null address string entered.
CLS
getnum:(*- NEW MEMBASE -"4)
IF number$=""
RETURN
ENDIF

REM POKE new memory base into sysiem variable.
POKEW $2065,number

REM Finished.
RETURN

REM **# %%k bk s 65k k5523 xR kB A RN RN AR RF AR R RN BN RRREEE

REM /l{/ END OF SUBROUTINE “SPACE™ W\

REM #*%kksidsds kkkkkkhk T PR

254

REM *kkkdkbhkhhk kbbb kR Rk kR Rk Rk kR kg

REM /[l SUBROUTINE “INFO" \W\

REM *#%s skt sdhkksbbdbbbrbi kb s kR ek R e A REXEEREERE LR REEKKE
info:

REM Display title.
central:(*- MC LOADER -",1)

REM Get current memory base from system variable.
number=PEEKW/(52065)

REM Convert address into hexadecimal string.
intobasc:{4)

REM Display memory base.
central:(“Membase= $"+number$,2)

REM Wiait for keypress.
GET

REM Finished.
RETURN

REM e e R R R e e eI T

REM /lfl END OF SUBROUTINE “INFO"\\\

2 R R L L

255

4 REM T L LI ey e R P L SR R RS L R b2 R et b Ll Lt

REM /il SUBROUTINE "GETNUM" W\

REM #*%#kxdkiks eI TR TSI SRS RS RS S S R AL S A

GETNUM:(prompt$,length%)
LOCAL legal$(19),convert$(19) keypres$(1),temp$(14)

REM Initialise variables.
converi$="YUVWOPQIIKABCDEF"+CHR$(1)+ CHR$(8)+CHR$(13)
legal$="0123456789ABCDEF"+CHR$(1)+CH R$(8)+CHR$(13)
number$=""

number=0

REM Display prompt passed as parameler.
central:(prompt3$,1)

REM “Gemum” loop.
DO

REM Construct bottom line display (this could be done in a REM single
line but has been split over 2 to avoid word REM processor-induced
misunderstandings).

temp$="Value:"+CHR$(91)+"§"

temp$=tcmp$+number$+REPTS("." len glh% LEN(numbch)}lr
CHR$(93)

REM Display bottom line.
central:(temp$,2)

REM Repeatedly get a keypress until it is one of the legal REM values.
DO

keypres$=UPPER$(GETS$)
UNTIL LOC(convert$ keypres$)>0

REM Now convert the keypress o its hex equivalent.
keypres$=MIDS$(legal$,LOC(convert$ keypres$),1)

REM If the key was , and the string is not null, delete REM the
last chractcr.

256

IF ASC(keypres$)=8 AND LEN(number$)>0
number$=LEFT$(number$, LEN(number$)-1)

REM If the key was <ON/CLEAR>, wipe the string, make a beep and
REM terminate.
ELSEIF keypres$=CHRS$(1)
badncws:
number$="""
RETURN

REM If the key was not <EXE> and the string is not at maximum REM
length, add the key character to the string.
ELSEIF keypres$<>CHR$(13) AND LEN(number$)<length%
number$=number$+keypres$
ENDIF

REM Keep doing the above until <EXE> is pressed.
UNTIL keypres$=CHR$(13)

REM If not a null string, convert it into a decimal number.
IF number§<"™
frombase:

ENDIF

REM Finished.
RETURN

REM kkkkkkkbrkbkbthrtkb bbbk bk bbbk bkt ke kR

REM {Il{ END OF SUBROUTINE “GETNUM" \\\

REM FEEREEEEXEE RN R ER R AR AR AR AR R SRR KRR SRR EE R KK

257

REM panpapap e e LTI R LT 2 2 S S RS S L Ll kR RERERE

REM /iff SUBROUTINE “CENTRAL™ W\

REM P b bkt

central:(lcxt$,row%)

REM Move the cursor to the centre of the line passed as a REM

parameter.
AT ((width%-LEN(text$))/2)+1,row%

REM Display the test string passed as a paramenter.
PRINT texi$

REM Finished.
RETURN

REM Frrapaerpeerreee e e TP TP LRI T S AL L S S R R Ll Al e bt b

REM J/ff END OF SUBROUTINE “CENTRAL™\W\

REM e et IS TIPS S PR S B AL LA L A b b

258

REM *kdkkkkkkdhkrbb kbR k ek k ke ok ko

REM M/l SUBROUTINE “INTOBASE™ W\

o Rt g

intobase: (length%)
LOCAL legal$(16),lemp]1,temp2

REM Initialise variables.
legal$="0123456789ABCDEF"
templ=number

number$="""

REM “Intobase" loop.
DO

REM Copy number to temporary store.
temp2=number

REM Get the whole number result of number divided by 16.
number=INTF(number/16)

REM Now get the remainder.
temp2=temp2-number*16

REM Add the remainder number to the string.
number$=MID$(legal$.lemp2+1,1 }+number$

REM Continue until the original number is exhausted.
UNTIL number<]

REM Pack out the string with leading zeros to make up the length REM
passed as a parameler.

number$=REPTS("0" length%-LEN(number$))+number$

REM Restore the original contents of the number variable.
number=templ

REM Finished.

RETURN

REM ***%35ssdkdhsd £ 2 ks skt e 22 R R R RBshhbbb bk bbbt Rk bhhbRR KK

REM /l{f END OF SUBROUTINE “INTOBASE" \W\

REM e et P R R R R R T T

259

REM ##sksskashhsihhhhinhhsdhbsbbbiibbibrirrtdhbkhhtihrtts

REM//// SUBROUTINE “FROMBASE" \W\

REM *##skkasnssmibdrbhshesihrihbsdhbihbhihkbbkikhbihktids

frombase:
LOCAL p,lcgal$(16)

REM Initialise variables.
legal$="0123456789ABCDEF"

p=0
number=0

REM “Frombase” loop.
DO

REM Get the decimal value of the currently sliced hex digitand REM
add it to the number variable. Note that this operation is

REM split over 2 lines to avoid word-processor originated

REM misunderstandings. They can be put togther.

number=number+(LOC(legal$ MID$(number$, LEN(number$)-p,1))-1)

number=number*(16**p)

REM Increment the “power" variable.
p=p+1

REM Continue until the end of the string.
UNTIL p=LEN(numbecr$) ’

REM Round off the number.
number=INTF(number+0.5)

REM Finished.
RETURN

REM TR EE T PN S PR TR IR 2SS P R Sl R R L L St Lt

REM /l{f END OF SUBROUTINE “FROMBASE™ W\

REM *#&&kdkhkds I3 323323381 P13 4L 222 R 2 2 2 22 2 2 a2t EEd bt d

260

REM bt L bR L LR 2 2t RSt P2t R LR R SR L E R RS RS R R R P T E L

REM //f SUBROUTINE “CHECK" \W

o e P e P P e
check:

REM Check for wrap-round.
IF number>65535
number=number-65536
ELSEIF number<0
number=65536+number
ENDIF

REM Check for legal PEEK/POKE value.
IF number>32767
tmum=number-65536
ELSE
tnum=numbecr
ENDIF

REM Finished.
RETURN

REM LR 2R 2 e e T e e E R e R R R T

REM ///{ END OF SUBROUTINE “CHECK" YW\

REM **5 5535k x5k k2 2k k52 k 53R b bRk R0 R R AR R R KRR KN

261

REM **®xxkskkkbbkbbhbbbrhhbbbhhhebbkbbhkbehbbkhhbobbkebhbbbhE

REM JIff SUBROUTINE “BADNEWS" \W\

REM *#**%*kxxkbbdhs bbbk bnbbrbrbrbrdbbkbrbsbbhhhbrrhibhktkkhk

badncws:

REM Emit 2 beeps.
BEEP 100,1000
BEEP 200,1200

REM Finished.
RETURN

REM kdkkabbkdhhkkbhkbhhbhkbkkhk kb ko ko kR kR kk ko

REM /l{{ END OF SUBROUTINE “BADNEWS" \\

REM #****#sksknkrshsshnxshshhbrbbbbtbktbbbidbibnbssbsdshskins

262

REM *kkdkkrkkkkkkkkbkdhbrkbddh kR kbR Rk Rk kR Rk

REM [/l SUBROUTINE “ORGLOAD"™ W\

o R e T T
orgload:
LOCAL namc$(8),start,record,extent,address$(4)

REM Display title and request file name.
central:("LOAD FROM PSION",1)

AT (width%-14)/2,2

PRINT'File: *;

INPUT name$

REM Exit if filcname is null string.
IF name$=""

badnews:

RETURN
ENDIF

REM Exit with warning if file does not exist.
IF NOT EXIST("A:"+name$)

badnews:

CLS

central:(*— PROBLEMS —",1)

central:(**- No such file -"2)

PAUSE 40

RETURN

REM Otherwise, open the file.
ELSE

OPEN "A:"+namc$,B,byte$
ENDIF

REM Get the start address for the load, exiting if a null string REM is
entered.

CLS

getnum:("'- LOAD ADDRESS -" 4)

IF number$=""

263

badnews:
RETURN
ENDIF

REM Make a temporary copy of the start address.
start=number

REM Initialise the record variable and set the current file REM handle.

record=0
USEB

REM Establish the size of the file.
LAST

extent=POS

FIRST

CLS

REM “Orgload™ loop.
DO
number=start

REM Ensure that the address is a legal integer.
check:

REM Convert the address 1o a hexadecimal string.
intobase:(4)

REM Display the title and memory location.

address$=number$

central:("- ORGLOAD -",1)
central:(REPT$(CHR$(255),(width%*(record/(extent+1))+1),2)

REM Get the byle string from the file.
number$=B.byte$

REM Convert siring to decimal number.
frombase:

264

REM POKE into the memory location.
POKEB mum,number

REM Point to the next record in the file.
NEXT

REM Increment the address and the record counter.
slart=start+1
record=record+1

REM Continue until all records have been read,
UNTIL record=extent

REM Finished.
RETURN

REM bt L Y T T I T Tl T I T I Ty

REM /l/{ END OF SUBROUTINE “ORGLOAD™ \W\

REM bttt bl R LRI E S L2 2 P E s d R e E T P T I

265

REM LR LR R 2 gl e T T it I I

REM /il SUBROUTINE "“ORGSAVE" "\

REM Lt b L R R L L T P T Tl i e

orgsave:
LOCAL name$(8),start,end,b

REM Display title and request filename.
central:("-SAVE TO PSION-"1)

AT (width%-14)/2+1,2

PRINT"File: *;

INPUT name$

REM Exit if nul filename entered.
IF name$="""

badnews:

RETURN
ENDIF

REM Get start address, exiting if null string entered.

CLS
getnum:(*-START ADDRESS-"4)
IF number$=""
RETURN
ENDIF
start=number

REM Get end address, exiting if null string entered.
getnum:(*- END ADDRESS -"4)
IF number$=""
RETURN
ENDIF
end=number

REM Exit if end address is greater than the start address.

IF start>end
badncws:
RETURN

266

ENDIF

REM If the file already exists, dclcte it.

IF EXIST(name$)
DELETE “A:"+name$
ENDIF
REM Create the file.
CREATE “A:"+name$,B,bytc$
USEB
REM Set the baseline address.
b=start
CLS
REM “Orgsave™ loop
DO
number=start
REM Convert address to hexadecimal string.
intobasc:(4)

REM Display title and progress bar.
central:(*- ORGSAVE -",1)
central:(REPTS(CHRS$(255), width%*((start-b)/((end+1)-b))+1),2)

REM Check legal integer value.
check:

REM Get the contents of the memory address.
number=PEEK B(tnum)

REM Convent it to a hexadecimal string.
intobase:(2)

REM Store it in the file.
B.byte$=number$
APPEND

267

REM Increment the memory address.
start=start+1

REM Continue until all bytes stored,
UNTIL start>end

REM Close the file.
CLOSE

REM Finished.
RETURN

REM L R L R E T o R T o T T T T P e

REM /lif END OF SUBROUTINE “ORGSAVE” \W\

REM *®ttkxsskkbkkrtbnbsbsinbrdbbbhbsbbbbbhitabihehhhhdnkhk

268

REM ***%kskdsrkkskbbbntkskirexshbhibrkhkbrhsbbibbkkink ks

REM M/ SUBROUTINE “ORGDIR™\\W\

e et T T T T
orgdir:
LOCAL file$(10)keypres$(1).onclear$(1)

REM Initialise variables.
onclear$=CHR3(1)
file$=DIR$("A"™)

CLS
DO

REM Display title.
central:(*- ORGDIR -",1)

REM Clear bottom line.
PRINT CHR$(15)

REM Display filename.
central:(filc$,2)

REM Wait for keypress.
keypres$=UPPERS$(GETS)
file§=DIRS("")

REM Continue until <ON/CLEAR> is pressed or end of files.
UNTIL keypresS=onclcar$ OR file$=""

REM Finished.
RETURN

REM ##*#*skdkdbthkshbbbbbtsbbbhbbbbssdbbbbtddhbhbbbbbbbbs bt

REM [/l END OF SUBROUTINE “ORGDIR"™ \

REM a2t a2 P2 2 o 22 22 SRl 2 e 2222t R Rt R iR Sl e Rt 2ttt 2t 2t L

269

REM ##tssssssssbbbbkhbassbisss P e TR T T P TR L L

REM /iff SUBROUTINE "ORGKILL" \

REM e P T T TIT R L 2 S R R B L 2 L AL b e TTT T T I L L LR L AL L S Lt

orgkill:

LOCAL file$(8)
CLS

REM Get filename to be deleted, exiting if null string entered.
central:("- ORGKILL -",1)
PRINT"File: *;
INPUT filc$
IF file$=""
badnews:
RETURN
ENDIF

CLS

REM IF file does not exist, issucs a warning and exits.
IF NOT EXIST(file$)

badnews:

central:(*-FILE “+file$+"-".1),

central:(*Docsn’t exist”,2)

PAUSE 40

RETURN

REM Otherwise, delctes the file.

ELSE
central:(*-FILE “+file$+"-",1)
central:(*Patience ...",2)
DELETE"A:"+filc$

ENDIF

REM Inform user of succesful file deletion.

central:(*-KILL “+file$+"-",1)
central:("Delcted”,2)

270

REM Wiat for 4 secs.
PAUSE 40

REM Finished.
RETURN

REM ***®skekxkkkbkk bbb kbbsxn kbbb bbxbbhkb bbb xbhhkkrbkhkhihs

REM /f{{ END OF SUBROUTINE “ORGKILL" \¥\

REM dkkakkkkdkkbbkbsbhb kb kdhks bk bkbdkd kb h bk kb khhkkhkhk

271

REM skkbkdkkhhpb bbbk ke kR ko

REM Mif SUBROUTINE “PCLOAD™ W\
REM LS LR E S SRR PR R P AR 2 AP R PR PR P PR SR I R R S R AR E L R L SR
pcload:

LOCAL mame$(100),lname$(8)

CLS

REM Get remote filename.

central:(*- PCLOAD -",1)

AT1.2

PRINT"Remote: “;

INPUT mame$

REM Get local filename.

central:(*- PCLOAD -",1)

AT 12

PRINT'Local: *;

INPUT Inamc$

REM If remote or local filenames are null, beep and exil.
IF mame$=""" OR Iname$=""
badnews:
RETURN
ENDIF
REM Display ready to load waming and wait for key.
CLsS
central:("-READY TO LOAD-",1)
central:(“Press any key™,2)
GET

REM Leoad file from PC.
XTRECV:(mame$,Iname$.0)

REM Finished.
RETURN

REM ***%skkkkaahkkkkkkirb b thhdhhhbhntbea ik eks s krbesthhes

REM /fi{f END OF SUBROUTINE “PCLOAD™ W\

REM e o ok e o o ol ok kR ok ok ok ok sk ok sk kol o e ke e ek ek ko ok ok ok kel ok kok ok ok ok ok ok

272

REM ##s#sdbbbbikdnbbhhinbhhbsdihkhhidhhkbbk kb kbbkhkths

REM //l SUBROUTINE “PCSAVE™ \\W\

Rm wkkkkkdkkkdkbhbkhkhkhbhkhkkphkbbkhhkhkbkkdhkhbkthkkkbkkkkkxkkkdE

Ppcsave:

LOCAL mame$(100).Iname$(8)
CLS

REM Get remote filename.
central:(*- PCSAVE -".1)
AT 1.2

PRINT"Remote: **;
INPUT mamec$

REM get local filename.
CLS

central:(*- PCLOAD -",1)
AT 1.2

PRINT 'Local: *;

INPUT Iname$

REM If remote or local filename is null, exit.
IF mame$=""" OR Iname$=""

badnews:

RETURN

REM Otherwise, if no extension, add “.ODB".

ELSEIF LOC(rmame$,".")=0
mameS=mame$+".ODB™

ENDIF

CLS
REM Display ready to save waming and wait for key.
central:(*-READY TO SAVE-",1)

central:(*Press any key”,2)
GET

273

REM Send file to PC.
XTSEND:(mame$,Inamc$.0)

REM Finished.
RETURN

REM #**t*%xxkxnk b kkhs kbbb bianbhrdrbkhbbbtbrhbbbnbxhhiiats

REM f/{{ END OF SUBROUTINE “PCSAVE" \W\

REM #*##sdskbbdsbbstbsbbrbsbbhdbbsbhshhssdbbbhbbrbobhhhhsks

274

REM PR TR T P PR PR S R RS S S A2 2 b 2 2l ke hkEk ¥

REM [/ SUBROUTINE “SCREEN"\W\

REM R ARk E R AR R AR R R R R RS kR R XEEEEERERE
screen:
LOCAL row%,cell%,start,ascii$(12)

REM Initialise variables.
row%=lincs%-1
start=number-4*(row%-1)
ascii$=""

REM *“Screen” loop.
DO
cell%=0
number=start
check:

REM Convert address to hexadccimal string.
intobase:(4)

REM Display address at beginning of line.
AT 110w%
PRINT number$;

REM “Linc” loop.
DO
number=start

REM Check for legal integer.
check:

REM Get memory contents, converting it into a hex string.
number=PEEKB(tnum)
intobase:(2)

REM Display byle string.
AT 6+cell%*3,row%

275

PRINT number$;

REM If byte is an alphanumeric character, add it to the ASCIIT REM
string, otherwise add *."".
IF number>31 AND number<127
ascii$=ascii$+CHR$(number)
ELSE
ascii$=ascii$+m."
ENDIF

REM Increment the memory location.
cell%=cell%+1
start=start+1

REM Continue until 4 bytes have been displayed.
UNTIL cell%=4

REM Decrement the line counter.
row%=row%-1

REM Continue until all lines have been displayed.
UNTIL row%=0

Fl

REM Display the ASCII equivalent of the memory bytes on bottom REM
line.

central:(CHR$(91)+ascii$+CHR$(93) lincs%)

REM Finished.
RETURN

REM bt i R IS R T T T T T T L]

REM /ff END OF SUBROUTINE “SCREEN"\W\

REM bbbl A d d d S E L R L T T T T e T Ty T

276

REM P2 2T 32233t 3 PRt R PR LA 2R 2 AL R 2 22 2t 2 L 2 2 2 d b2l

REM M1/ SUBROUTINE “MODIFY™ W\

REM PE 2t 2222422 TRt st 22t sttt S S it Rt R EEE S E SR S 2 2 R 2 R L

modify:

REM The ~LOCAL" statement which follows should all be on one REM

line. It is split by the wordprocessor line-wrapping.

LOCAL keypres$(1),legal$(5),up$(1).down$(1),leffi$(1).rite$(1),
onclear$(1),exc$(1),arrow$(1),start,x%.y%

REM Initialise variables.
up$=CHRS$(3)
down$=CHR$(4)
lefft$=CHR$(5)
rite$=CHR$(6)
exe$=CHR$(13)
legal$=upS+downS+leffiS+ritcS+excs
arrow$=CHR3$(126)
x%=0

y%=1

start=number

REM "Modify™ loop.
DO

REM Display the arrow symbol at the cursor position.
AT 5+x%*3,y%
PRINT arrow$;

REM Rcpeatedly get a key until it is a legal value.
DO

keypres$=UPPERS(GETS)
UNTIL LOC(legal$ keypres$)>0

REM Wipe the arrow symbol.

AT 5+x%*3.y%
PRINT™ * ;

277

REM Alter cursor position.

IF keypres$=up$ AND y%>1
y%o=y%-1

ELSEIF keypres$=down$ AND y%-<lines%-1
yTo=y%+1

ELSEIF keypres$=Iefft$ AND x%>0
x%o=x%-1

ELSEIF keypres$=ritc$ AND x%<3
xFo=x%+1

ELSEIF keypres$=exc$

REM Modify cell contents.
CLS
number=start+x%-((y %-1)*4)

REM Check legal integer address value.
check:

REM get new value and POKE it in if it is not null. getnum:(*- NEW
CONTENTS -",2)
IF number§<>""
POKEB tnum,number
ENDIF

ENDIF

REM Continue until <EXE> is pressed.
UNTIL keypres$S=cxc$

REM Finished.
RETURN

REM e et TP T TIPS TE IS TR LR AL S R LA S S LA L L b

REM //f{ END OF SUBROUTINE “MODIFY"\\\

REM “tt‘ttt‘*tt‘tiitt#t*ttit**ttt**Ktttti*l‘.t‘*tittlttt*t

278

REM EkhkkkkRkkkk Rk hEkkR Rk RRRERREE ks kkhhhkhhbkrkEEnE

REM J/{{ PROGRAM “TYPEMNEM" \W\

REM et T T T R R LR S S R S L L L L ReRRRRERRRRRERAEREEE

typemnem:
LOCAL c%k$(1)

REM Initialise variable.
c%=0

REM IF file already exists, delete it.
IF EXIST("A:MNEMONIC™)

DELETE “A:MNEMONIC"
ENDIF

REM Create new file.
CREATE "A:MNEMONIC" A mode%,bytes%,mncm$

REM “Typemnem” loop.
DO
DO
CLS

REM get address mode.
PRINT"ADDRESSING MODE:";
INPUT A.modec%

CLS

REM Get number of bytes in instruction.
PRINT"NUMBER OF BYTES:";
INPUT A.bytes%

CLS

REM Get mnemonic string.
PRINT"'MNEMONIC:"
INPUT A.mnem$

CLS

279

REM Display entry and request confirmation.
PRINT A.mode%.A.bytes%,A.mnem$
PRINT" CONFIRM <Y/N>";

k$=GET$

REM Repeat process until <Y> or <ON/CLEAR> pressed,
UNTIL k$="Y"" OR k$=CHRS$(1)

REM Add entry 1o file.
APPEND

REM Increment count.
cPo=cTH+1

REM Continue until <ON/CLEAR> pressed or 256 entries made.
UNTIL c%=256 OR k$=CHR$(1)

REM Display terminal message.

PRINT"<<< FINISHED >>>";
REM Wait for key press.

GET ’
REM Close the file.

CLOSE

REM Finished.
RETURN

REM Sk R R R R kR R R R R KRR R Rk R R Rk kb ke kk k&

REM Hll END OF PROGRAM “TYPEMNEM" \W\

REM **5% ks ks kbt bkt kb bk kb bk ene ke bk okt eh et ko TR kS

280

—

—_———

HD6303 MNEMONICS

Instructions for entering the data:

a. On Microcomputer Disc. Each of the following codes
consists of 2 digits, followed by a mnemonic string. Scan
across the page, PRESSING TAB BETWEEN EACH ITEM
FOR A CODE AND ENTER AT THE END OF EACH
MNEMONIC. For example, the first entry should look like
this:-
0<TAB>1<TAB>——<ENTER>.

You should end up with a long text file, holding 3 items on
each line. Use the serial interface on the Organiser to load the
file, which must have a “*.ODB” extension.

b. USING TYPEMNEM. Each of the following codcs
consists of 2 digits, followed by a mnemonic string. Scan
across the page, PRESSING ENTER OR EXE AFTER
EACH ITEM. For example, the first entry should look like
this:-

_O<RET>1<RET>—<RET>.

01— 61NOP 01— 01—
61LSRD 61 ASLD 61 TAP 61TPA

61 INX 61 DEX 61CLV 61 SEV

61CLC 61 SEC 61CLI 61 SEI
61 SBA 61CBA 01— 01—
01— 01— 61 TAB 61TBA
61XGDX 61DAA 61SLP 61ABA
01— 01 — 01— 01—

281

282

72BRA

72BCC

72BYC

72BGE

61TSX

61 DES

61PULX

61PSHX

11 NEG A

L1LSR A

11ASLA

11INCA

1 1 NEGB

11LSRB

11ASLB

11INCB

52NEG

52LSR

52ASL

32INC

72BRN
72BCS
72BVS
72BLT
6 1INS
61TXS
61 RTS
ﬁlMUL
01—
01—
11ROL A
11TSTA
01—
01—
11 ROLB
11 TSTB
53—
53—
52R0OL

52TST

7 2 BHI

72 BNE

72BPL

712BGT

11PULA

11PSHA

61 ABX

61 WAI

01—

11ROR A

11DECA

01—

01—

11 RORB

11 DECB

01—

53—

52ROR

52DEC

52 IMP

72BLS
72BEQ
72BMI
72BLE
11PULB
11PSHB
61 RTI
61SWI
11COMA
11ASRA
01 —
11CLRA
11COMB
11 ASRB
0] —
11CLRB
52 COM
52 ASR
53—

52CLR

4 3 NEG
43LSR
43 ASL
43INC
22SUB A
22AND A
22EOR A
22CPX
32SUBA
32AND A
32EORA
j2CPX
32SUBA
52AND A
52ECRA
52CPX
43SUB A
43ANbA

43EORA

33—

33—

4 3ROL

43TST

22CMP A

22BITA

22ADCA

72BSR

32CMP A

32BITA

32ADCA

32JSR

52CMP A

52BITA

52ADCA

52JSR

43CMP A

43BITA

43ADCA

33 —

43 ROR

43 DEC

4 3 JMP

225BCA

22LDAA

220RAA

23LDS

32SBCA

32LDAA

320RA A

32LDS

52SBCA

52LDAA

520RA A

52LDS

43SBCA

43LDA A

430RA A

43 COM

43 ASR

33—

43CLR

23SUBD

01—

22ADD A

01 —

32SUBD

32S8TA

32ADD A

32STS

52SUBD

52STAA

52ADD A

52S8TS

43SUBD

43STA A

43ADDA

283

284

43CPX

22SUBB

22ANDB

22EORB

23LDD

32SUBB

32ANDB

32EORB

32LDD

52SUBB

52ANDB

52EORB

52LDD

43SUBB

43ANDB

43EORB

43LDD

43]1SR

22CMPB

22BITB

22ADCB

01—

32CMPB

32BITB

32ADCB

32S8TD

52CMPB

52BITB

52ADCB

5258TD

43CMPB

43BITB

43 ADCB

43S8TD

43LDS

22SBCB

22LDAB

220RAB

23LDX

32SBCB

32LDAB

320RAB

32LDX

52SBCB

52LDAB

520RAB

52LDX

43SBCB

43LDAB

430RAB

43LDX

43 STS

23ADDD

01—

22ADDB

01 —

32ADDD

32STAB

32ADDB

325TX

52ADDD

52STAB

52ADDB

525TX

43ADDD

43STAB

43 ADDB

43S8TX

Annex G

The Psion Organiser Operating System

The Psion Organiser Operating System

G:The Psion Organiser Operating System

G.1 INTRODUCTION. As you can see from a glance at the memory map
in Annex C, the Organiser ROM starts at address $8000 and goes on to
$FFFF. It is in this area, unalierable by the user, that the PSION code (the
FIRMWARE) for the Operating System (OS), the Applications such as the
Diary and OPL itself are stored. The OS is used a great deal by the other 2
since it is really a library of ready-made routines which affect the whole
software environment of the computer. This Arnex therefore aims to list the
OS routines and describe how you can call them up.

G.2 CALLING AN OS ROUTINE. Calling system services is simplicity
itself. You must first tell the computer that you are about to invoke an OS
service. To do this, your machine code must call a Software Interrupt (SWI).
The hexadecimal command for this is $3F. The number of the required OS
service should immediately follow. Once the service has done its job,
control is passed to the byte in your program following the service number.
Thus, you can look upon OS services as subroutines of your own program.

G.3 PARAMETERS. Just as with OPL routines, you can (indeed, you may
be required to) pass data to the OS service. However, instead of doing this
via variables, the data is placed in the CPU registers (see Annex C),
locations $0041/50043 or the Run-time Buffer at $2188. Indeed, the OS
may make use of any location between $0041-S005A as these are used as
word-length variables. It would be prudent to assume that the registers will
be trashed during a call, however in some cases data is passed back to the
programmer via these same registers.

G.4 ERROR CODES. Although there are no actual error messages, some
OS services can give error returns. In such cases the Carry Flag is set to
indicate an error condition while the B register holds the error number. The
error codes are as detailed on pages 127-133 of the Organiser Manual with
the following exceptions:

CODE MEANING

192 Device Write Fail
193 Device Read Fail
194 Battery Too Low

286

G.5 NEW SYSTEM SERVICES. The new OS vectors for the LZ have the
numbers 128 to 179 inclusive, They are designed to be run ONLY on an
LZ system and, if called using a 2-line Organiser. they will cause the
machine to crash in a non-spectacular fashion.

VECTOR NUMBER: 0
TITLE: FREE A CELL
ENTRY REQUIREMENTS: THE TAG OF THE CELL MUST BE
PLACED IN THE X REGISTER
OUTPUT: NIL

FUNCTION: The cell whose lag is held in the X Register is freed from
memory. For a more complete description of cells, see Annex C. Note that
if the tag is not in the correct range ($2000-$203E) disastrous results
could occur unless the cell is already free.

YECTOR NUMBER: 1
TITLE: GRAB A CELL

ENTRY REQUIREMENTS: THE REQUIRED SIZE OF CELL (IN
BYTES) MUST BE PLACED IN THE D
REGISTER

OUTPUT: THE X REGISTER HOLDS THE TAG OF
THE CELL

FUNCTION: This service is used to allocate a new cell. The base address
of the cell is held at the location indicated by the X Register. Because
constant shrinking and growing (not to mention grabbing and frecing) will
inevitably change the base address of the cells, their respective addresses
are held in a table starting at $2000.

287

VECTOR NUMBER: 2
TITLE: GROW A CELL

ENTRY REQUIREMENTS: THE TAG OF THE CELL TO BE
ENLARGED IS PLACEDIN THE X
REGISTER
THE NUMBER OF BYTES TO BE
ADDED TO THE CELL IS PLACED IN
THE D REGISTER
THE POINT WITHIN THE CELL AT
WHICH THE EXTRA BYTES ARE TO BE
INSERTED IS PLACED IN THE
VARIABLE AT $41

OUTPUT: NIL

FUNCTION: This service is called to enlarge an existing cell whose tag is
held in the X Register. The number of bytes to be added is placed in the D
Register while the point at which the insertion is to be made is held in the
word variable at $41. Note that the correct tag must be used and the offset
must be less than the size of the cell if inleresting resulls are not to occur.
Moreover, while the base of the target cell will not move, those above will
change.

YECTOR NUMBER: 3
TITLE: REPLACE ITEM WITHIN A CELL

ENTRY REQUIREMENTS: THE TAG OF THE CELL IS HELD IN
THE X REGISTER
THE SIZE OF THE ITEM TO BE
REPLACED IS HELD IN THE D
REGISTER
THE OFFSET WITHIN THE CELL IS
HELD IN THE FIRST WORD VARIABLE
AT $41
THE SIZE OF THE NEW ITEM IS HELD

288

IN THE SECOND WORD VARIABLE AT
$43

OUTPUT: NIL

FUNCTION: This service will replace a byte length (held in the D
Register) with a new byte length (held in the second word variable) at the
offsct (held in the first word variable) of the cell whose tag is held in the
X Register. Be careful that the tag is in the correct range and that the
offset is not bigger than the size of the cell.

VECTOR NUMBER: 4
TITLE: SHRINK A CELL

ENTRY REQUIREMENTS: THE TAG OF THE CELL IS HELD IN
THE X REGISTER
THE NUMBER OF BYTES TO SHRINK
THE CELL IS HELD IN THE D
REGISTER
THE OFFSET WITHIN THE CELL IS
HELD IN THE FIRST WORD VARIABLE
AT $41

OUTPUT: NIL

FUNCTION: The cell whose tag is held in the X Register is shrunk by the
number of bytes held in the D Register. The removal takes place at the
point indicated by the offset held in the first word variable.

Note that the cell tag must be within range and that the offset must not be
larger than the cell size.

VECTOR NUMBER: 5
TITLE: SIZE A CELL

ENTRY REQUIREMENTS: THE TAG OF THE CELL IS HELD IN
THE X REGISTER

289

QUTPUT: THE SIZE OF THE CELL IS RETURNED
IN THE D REGISTER

FUNCTION: The purpose of this service is to calculate the current size c_:f
the cell whose tag is held in the X Register. The required number is
returned in the D Register.

YECTOR NUMBER: 6
TITLE: ZERO A CELL
ENTRY REQUIREMENTS: THE TAG OF THE CELL IS HELD IN
THE X REGISTER
OUTPUT: NIL

FUNCTION: This service will reduce the size of a cell to zero but does
not de-allocate it. Ensure that the cell tag is within the correct range.

VECTOR NUMBER: 7

TITLE: NON-MASKABLE INTERRUPTS (NMI)
DISABLE

ENTRY REQUIREMENTS: NIL
OUTPUT: NIL

FUNCTION: NMIs to the CPU can be disabled by invoking this service.
However, it should be noted that since the Organiser maintains its clocks
(and thereby the Diary) by using the NMI as a time base, the accuracy of
all time-related functions will be affected. Users who wish to disable
NMIs and still maintain the clock should see Vector 9.

If Vector 7 is used to disable NMIs, they should be switched back on
when required by means of Vector 8.

290

VECTOR NUMBER: 8

TITLE: NON-MASKABLE INTERRUPTS (NMI)
ENABLE

ENTRY REQUIREMENTS: NIL
OUTPUT: NIL

FUNCTION: Re-activates NMIs disabled by Vector 7.

VECTOR NUMBER: 9
TITLE: DISABLE NMI - MAINTAIN CLOCK
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL

FUNCTION: Vector 9 switches off the NMI in such a way as to preserve
the Organiser’s limekeeping. NMlIs disabled in this fashion must be re-
activated by calling Vector 10 within 2048 seconds if the clock is 1o
maintain time. :

When the NMI is restored, the Vector 10 service must wait for the first
new NMI pulse to the clock before it can count the number of NMIs
which have occurred in the NMI-disabled interval. Since NMIs occur
once per second, a delay of 0-1 second can happen depending on when in
the cycle Vector 10 is called. Moreover, since the counter which totals
NMISs is also used to poll the keyboard, interrupts should be disabled
before calling Vector 9 and no keyboard services should be called.

YECTOR NUMBER: 10

TITLE: RE-ENABLE NMI - MAINTAIN CLOCK
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL

FUNCTION: This service is used to re-enable NMIs disabled by Vector 9.

VECTOR NUMBER: 11

TITLE: SAVE/RESTORE WORD-LENGTH
VARIABLES

ENTRY REQUIREMENTS: NIL
OUTPUT: NIL

FUNCTION: The use of the 7 word-length variables were outlined in
paragraph G.3. The service call must be followed by a byte which
describes the exact operation required as detailed below:

Bit 0 - If set, operate on word variable number 0

Bit 1 - If set, operate on word variable number 1

Bit 2 - If set, operate on word variable number 2

Bit 3 - If set, operate on word variable number 3

Bit 4 - If set, operale on word variable number 4

Bit 5 - If set, operate on word variable number 5

Bit 6 - If set, operate on word variable number 6

Bit 7 - If sct, then the operation on the variables detailed
above will be to restore (pop) them (o their position in
memory. If it is clear, then those indicated will be saved
(pushed) onto the stack.

Note that the higher variables are pushed first and the lower ones are
popped first. If different combinations of pushing and popping are
involved, the contents of the variables can be mixed up.

292

YECTOR NUMBER: 12
TITLE: SWITCH OFF
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL
FUNCTION: The Organiser is switched off using this service. The entire

status of the machine is saved so that, on power-up, everything is restore
lo the state immediately prior to calling the switch-off,

VECTOR NUMBER: 13
TITLE: SOUND THE ALARM
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL

FUNCTION: This service emits the sound produced by the alarm. Note
that it disables interrupts with an SEI.

VECTOR NUMBER: 14

TITLE: SOUND THE BEEP NOTE
ENTRY REQUIREMENTS: NIL

OUTPUT: NIL

FUNCTION: The beep produced by CHR$(16) is emitted by this service.

VECTOR NUMBER: 15
TITLE: SOUND A TONE
ENTRY REQUIREMENTS: THE DURATION OF THE NOTE IN

MILLISECONDS IS HELD IN THE X
REGISTER

THE PITCH OF THE NOTE IS HELD IN
THE D REGISTER. THE NOTE IN HZ IS
CALCULATED AS:

HZ=921600/(78 + 2 * D REGISTER)

OUTPUT: NIL

FUNCTION: This routine will emit a note of X milliseconds with a pitch
determined by the D Register. Not that this routine disables interrupts
with an SEL

VECTOR NUMBER: 16

TITLE: OUTPUT A CHARACTER
ENTRY REQUIREMENTS: THE A REGISTER HOLDS THE

CHARACTER TO BE OUTPUT
OUTPUT: NIL

FUNCTION: This service outputs a characler to the display, including the
UDGs. Control characiers can also be called. While characters 8-16 have
effects as detailed in pages 196-7 of the User Manual, 3 other ones are not
documented:

a. Refresh Display - If character number 17 is used, the

display will be refreshed from the line buffers. These hold the

top and bottom lines, respectively (see Annex C).

b. Refresh Top Line - Character 18 refreshes only the top line.

c. Refresh Bottom Line - Character 19 refreshes the bottom
line only.

As each printable character appears on the screen, the cursor position is
updated and scrolling occurs as in the OPL PRINT statement.

294

VECTOR NUMBER: 17
TITLE: PRINT STRING

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
NUMBER OF CHARACTERS TO PRINT
THE X REGISTER HOLDS THE
DOUBLE-BYTE ADDRESS OF THE
STRING TO BE PRINTED
OUTPUT: NIL

FUNCTION: This service prints out the indicated string one character at a
time by calling Service Number 16.

VECTOR NUMBER: 18
TITLE: RESTORE SCREEN
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL
FUNCTION: This service restores a screen stored by a previous call to
Service Number 19. Note that if such a previous call has not been made,
the results may not be those cxpected! This is the case even when the LZ

is being operated in 2-line mode. Similarly, Vector 18 will restore the
screen from the 4-line buffer.

VECTOR NUMBER: 19
TITLE: SAVE SCREEN
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL
FUNCTION: This service saves the screen display into the 32-byte buffer

starting at $2090. The cursor position and status are stored in locations
$67 and $68, respectively. LZ users should note that the 4-line buffer at

295

$7F62 is used instead of the 2-line variant at $2090. This is the case even
when the LZ is being operated in 2-line mode. Similarly, Vector 18 will
restore the screen from the 4-line buffer.

VECTOR NUMBER: 20
TITLE: CURSOR DISPLAY CONTROL

ENTRY REQUIREMENTS: THE A REGISTER HOLDS THE CURSOR
POSITION
THE B REGISTER HOLDS DATA
CONCERNING THE CURSOR
APPEARANCE

OUTPUT: NIL

FUNCTION: The A Register holds the cursor position as a single- byte
number in the range 0-31. The B Register controls 2 aspects of the cursor

appearance:

a. ONJOFF - If bit 7 of the byte contained in Register B is set,
the cursor is displayed. Otherwise it is concealed.

b. LINE/BLOCK - If bit 0 of the Register B byte is set then
the cursor will be displayed as a line. Otherwise it is
displayed as a block.

YECTOR NUMBER: 21
TITLE: VIEW STRING

ENTRY REQUIREMENTS: THE A REGISTER DETERMINES THE
DISPLAY LINE AND TERMINATION
CONDITIONS
THE B REGISTER HOLDS THE LENGTH
OF THE STRING TO BE VIEWED
THE X REGISTER HOLDS THE
DOUBLE-BYTE ADDRESS OF THE
STRING TO BE VIEWED

296

THE SCROLL DELAY, IN 1/20 SEC, IS
HELD IN THE FIRST WORD VARIABLE
AT $41

OUTPUT: THE B REGISTER HOLDS THE KEY
PRESS WHICH TERMINATED
SCROLLING

FUNCTION: The A Register parameter should hold 0-1 for the
Organiser II and 0-3 for the LZ variants when in 4-line mode, while a 1
uses the bottom line. In addition, if bit 7 of the A Register byte is set, this
service will ignore the arrow keys and terminate scrolling on any key

press.

The service stores the key press in the B Register but if this key is not of
interest to the programmer the service can be called again, this time with
the X register set to zero. This can be done as often as necessary but no
other calls to the display driver should be made in between. Note that the
initial call to the service must not be made with the X Register set to zero
or unpredictable results could follow.

While the cursor is removed from the display during this service, it is
returned to its state prior to the call but the original position will be
trashed.

VECTOR NUMBER: 22

TITLE: READY-TO-DISPLAY PAUSE

ENTRY REQUIREMENTS: NIL

OUTPUT: NIL

FUNCTION: This Service waits until the value in the Ready-to- Display
counter ($6D/E) has decremented to zero. This counter is decremented by
1 on each keyboard interrupt and therefore provides a sort of 50
millisecond timer. It is used by the display driver to implement scrolling

pauses. Note that this Scrvice will still work even if interrupts have been
disabled.

297

VECTOR NUMBER: 23
TITLE: BOOT DEVICES
ENTRY REQUIREMENTS: Nil.
OUTPUT: NIL.

FUNCTION: This function will boot all devices which are currently
connected to the Organiser. Should any errors cccur, the screen contents
are first restored before the error message is displayed. Afterwards, the
original screen is restored. LZ users should note that, unless 4-line mode
has been set, this function will go to 2-linc mode when running
"REMOVE" and "INSTALL" vectors which print.

VECTOR NUMBER: 24
TITLE: UN-BOOT
ENTRY REQUIREMENTS: Nil.
OUTPUT: NIL.

FUNCTION: The reverse of Vector 23.

VECTOR NUMBER: 25
TITLE: LOOKUP

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE STRING.

OUTPUT: THE A REGISTER HOLDS THE DEVICE
NUMBER.
THE B REGISTER HOLDS THE VECTOR
NUMBER.

FUNCTION: The X Register holds the address of the name string of a
procedure. This service calls the language vector of all devices booted in

298

and offers the procedure. If a device is prepared to do so, the service
retumns with the A Register holding the device number and the B Register
holding the vector of the procedure handling code.

VECTOR NUMBER: 26
TITLE: LOAD

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
ADDRESS TO LOAD THE OVERLAY.
THE X REGISTER HOLDS THE
ADDRESS ON PACK OF OVERLAY.

$41/$42 HOLDS THE RELOCATION
ADDRESS.

OQUTPUT: NIL.

FUNCTION: This service loads a relocatable program from a device into
memory, applying any fix-ups. The rclocated address is as held in
$41/$42. The D Register holds the memory address for the load and the X
Register the address on the pack where the code may be found. The
exccution address is held in $41/$42. NOTE THAT THE CORRECT
SLOT SHOULD ALREADY BE SELECTED (USING VECTOR 98)
BEFORE CALLING THIS SERVICE.

VECTOR NUMBER: 27
TITLE: GET VECTOR

ENTRY REQUIREMENTS: THE A REGISTER HOLDS THE
NUMBER OF THE REQUIRED DEVICE.

THE B REGISTER HOLDS THE VECTOR NUMBER.
OUTPUT: NIL.

FUNCTION: This veclor searches for the device whose number is held in
the A Register. If found, it then checks to see that the vector number, as
indicated by the B Register, is not greater than the maximum vector
number supported by the device. If all is well, a jump will be made to the
appropriatc veclor.

299

Note that the X Register and the contents of $41/842 are passed to the
device. The user can therefore use these as paramelers.

VECTOR NUMBER: 28
TITLE: CALL EDIT

ENTRY REQUIREMENTS: THE A REGISTER SHOULD HOLD: BIT
0 CLEAR FOR SINGLE-LINE EDITS
BIT 0 SET FOR MULTI-LINE EDITS
BIT 7 CLEAR FOR EXIT ON MODE KEY
BEING PRESSED
BIT 7 SET FOR NO EXIT ON MODE KEY
BEING PRESSED.
THE B REGISTER HOLDS THE
MAXIMUM INPUT LENGTH.

OUTPUT: THE B REGISTER HOLDS THE KEY
RESPONSIBLE FOR TERMINATING THE
EDIT.

FUNC]‘]O}J: Thi§ service calls the line editor afier selting the cursor on
the first editable line using $41/842. LZ users should note that if BIT 1 of
the A register is set, the edit will terminate if the Up or Down arrow is

pressed.

VECTOR NUMBER: 29
TITLE: LINE EDITOR

ENTRY REQUIREMENTS: THE A REGISTER SHOULD HOLD: BIT
0 CLEAR FOR SINGLE-LINE EDITS
BIT 0 SET FOR MULTI-LINE EDITS
BIT 7 CLEAR FOR EXIT ON MODE KEY
BEING PRESSED.

BIT 7 SET FOR NO

EXIT ON MODE KEY BEING PRESSED.
THE B REGISTER HOLDS THE
MAXIMUM INPUT LENGTH.

MEMORY LOCATIONS $41/$42 HOLD
THE POSITION WITHIN THE LINE TO
START EDITING.

300

OUTPUT: THE B REGISTER HOLDS THE
NUMBER OF THE KEY RESPONSIBLE
FOR TERMINATING THE EDIT.

FUNCTION: This is the service used to edit lines. The maximum number
of characters which can be edited is specified by the B Register. In single-
line editing, using the UP/DOWN arrows will place the cursor at the
beginning/end of the editable text. In multiple line editing, these keys
retain their normal use.

The text held in the Editor Buffer is used as the default string for editing.
Pressing the EXE key, or ON/CLEAR with an empty buffer, will exit the
service. An occupied buffer can be cleared using the ON/CLEAR key. In
the latter case, the routine will not exit. Note also that the user can decide
10 allow the MODE key to cause an exit. LZ users should note that if BIT
1 of the A register is set, the edit will terminate if the Up or Down arrow

is pressed.

VECTOR NUMBER: 30

TITLE: VIEW

ENTRY REQUIREMENTS: THE X REGISTER HOLDS ZERO IF THE
USER WISHES TO TAKE UP VIEWING
WHERE HE LEFT OFF LAST TIME.
OTHERWISE, IT IS NON-ZERO.
MEMORY LOCATIONS $41/8$42 HOLD
THE DELAY BEFORE SCROLLING
ACTION TAKES PLACE.

OUTPUT: NIL.

FUNCTION: Views the string held in the Run Time Buffer. The Run
Time Buffer Length must also be specified. TABs cause NEWLINEs and
the UP/DOWN arrows control which line is VIEWed. Pressing any other
key will exit the routine, while preserving the offending key in the B
Register.

301

VECTOR NUMBER: 31

TITLE: LOCATE ERROR MESSAGE

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE ERROR
NUMBER.

OUTPUT: THE X REGISTER HOLDS THE
ADDRESS OF THE APPROPRIATE
ERROR MESSAGE.

FUNCTION: This service is used by the OPL function ERRS. Taking an
error number in the B Register, the routinc finds the address of the
appropriate message. If there is no specific message for the number, the
address of the string “*** ERROR ***" js given instead. The string
starts with its byte count.

VECTOR NUMBER: 32

TITLE: DISPLAY ERROR MESSAGE

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE ERROR
NUMBER.

OUTPUT: NIL.

FUNCTION: This routine displays the message associated with the error
number held in the B Register. As in the case of Vector 31, the default
“#** ERROR ***” is displaycd in the casc of unspecified errors. The
routine waits for the SPACE or ON/CLEAR key to be pressed before
continuing. Note that if the error number is 194, the message “BATTERY
TOO LOW™ will be displayed for 4 seconds before the Organiser switches
off. LZ uscrs should note that this function prints errors on four lines if
the Organiser is being operated in 4-line mode.

302

VECTOR NUMBER: 33
TITLE: BACK
ENTRY REQUIREMENTS: Nil.

OUTPUT: THE X REGISTER HOLDS THE
UPDATED RECORD NUMBER.

FUNCTION: Used by the OPL command. It makes the previous record
the current one. It should not be called if the X register is 0 or 1 i.e. if
there IS no previous record.

VECTOR NUMBER: 34
TITLE: BLOCK FILE CATALOGUE

ENTRY REQUIREMENTS: THE A REGISTER HOLDS 1 ON INTIAL
CALL TO THE ROUTINE AND 0 ON
SUBSEQUENT CALLS.
THE B REGISTER HOLDS THE DEVICE
NUMBER (0-3).
THE X REGISTER HOLDS THE
DESTINATION ADDRESS OF THE
FILENAME.
MEMORY LOCATION $42 HOLDS THE
FILE TYPE ($81- &8F).

OUTPUT: Nil.

FUNCTION: Functions similar to the OPL DIRS. Repeated calls store the
names (count byte first) of block files of type as specified in $42, held on
the device indicated by the B Register, at the address held in the X
Register. When no more files of the specified type remain, the Carry flag
is set and the B Register contains the END-OF-FILE error number.

303

VECTOR NUMBER: 35§
TITLE: DELETE BLOCK FILE

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE FILENAME.
THE B REGISTER HOLDS THE BLOCK
FILE TYPE ($82-$8F)

OUTPUT: Nil.

FUNCTION: This function deletes the block file whose name is stored at
the location pointed to by the X Register. The name, stored count byte
first, is in the form D:NAME.

VECTOR NUMBER: 36
TITLE: OPEN BLOCK FILE

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
_ LOCATION OF THE BLOCK FILENAME.
THE B REGISTER HOLDS THE BLOCK
FILE TYPE.

OUTPUT: THE D REGISTER HOLDS THE LENGTH
OF DATA IN THE BLOCK FILE.

FUNCTION: Opens a block file of type as specified by the B Register and
name as pointed to by the X Register. The pack address is set to the
beginning of the file and the D Register retumns with the length of data.

VECTOR NUMBER: 37

TITLE: PREPARE TO SAVE

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE BLOCK
FILE TYPE.
THE X REGISTER POINTS TO THE
FILENAME.

304

LOCATIONS $41/$42 HOLD THE
LENGTH OF CODE TO BE SAVED BY
VECTOR 97.

OUTPUT: NIL.

FUNCTION: This routine is called in preparation for a block file save. It
saves the filename, long record code $0280 and the code length as
indicated by $41/842. It also checks to see if there is enough room on the
pack for the above data. The filename is preceded by is length byte and is
in the form D:NAME. Vector 97 must then be called to actually save the
code.

VECTOR NUMBER: 38
TITLE: FILE CATALOGUE

ENTRY REQUIREMENTS: THE A REGISTER CONTAINS 1 FOR A
FIRST CALL AND 0 FOR SUBSEQUENT
ONES
THE B REGISTER CONTAINS THE
DEVICE NUMBER (0- 3)
THE X REGISTER CONTAINS THE
DESTINATION ADDRESS FOR THE
FILENAME (INCLUDING ITS LEADING
COUNT BYTE)

OUTPUT: Nil.

FUNCTION: On being called repeatedly, this service outpuls the names
of each file on the device indicated by the B Register. When no more files
remain, the Carry flag is set and the B Register returns with the
“END_OF_FILE" error code. The operation of this vector is similar o the
OPL function DIRS.

VECTOR NUMBER: 39

TITLE: CoPY

ENTRY REQUIREMENTS: THE D REGISTER POINTS TO THE
COPY-TO STRING.

305

THE X REGISTER POINTS TO THE
COPY-FROM STRING.

LOCATIONS $41/$42 INDICATE THE
TYPE OF COPY REQUIRED.

OUTPUT: Nil.

FUNCTION: This routine copies files from one device to another. The
$41 must contain zero or a legal file type in the range $82 to $8F. If the
copy-to string contains only the device name, the file will be copied with
the same name. If both names are omitted, all files on the copy- from
device will be copied 1o the target device.

The copy-to device must be different from the copy-from device.
Morcover, the copy-to filename can be different to the copy-from.
However, in the latter case, the first line of any procedure file will remain
with its copy-from name and this will show up on any subsequent

printout.

If a the copy-to filename already exists, the copy-from will be appended
to it.

VECTOR NUMBER: 40

TITLE: CREATE FILE

ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
FILENAME LOCATION.

OUTPUT: 1IFNO ERROR HAS OCCURRED, THE A

REGISTER WILL RETURN WITH THE
DATA RECORD TYPE TO BE USED.

FUNCTION: Creates a file whose name, leading count byte first, is held
at the location pointed to by the X Register.

306

VECTOR NUMBER: 41
TITLE: DELETE FILE

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
ADDRESS OF THE FILENAME STRING.

OUTPUT: NIL.

FUNCTION: This routine deletes the file whose name is held at the
location (leading count byte first) stored in the X Register.

VECTOR NUMBER: 42
TITLE: ERASE RECORD
ENTRY REQUIREMENTS: Nil.
OUTPUT: NIL.
FUNCTION: This service erases the current record in the current file,
maintaining the current position but pulling up the next record in the file.

In RAM files, the space is recovered but in DATAPACKSs only the top bit
of the file type is cleared.

VECTOR NUMBER: 43
TITLE: FIND

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE SEARCH STRING.
THE A REGISTER HOLDS THE LENGTH
OF THE SEARCH STRING.
THE B REGISTER HOLDS THE RECORD
TYPE TO BE SEARCHED FOR.
OUTPUT: NIL.

FUNCTION: This service searches through the current pack for a record
of the type indicated by the B Register which BEGINS with the string

307

indicated by the X Register. If found, the maich is placed in the RUN
TIME BUFFER starting at $2187 as a leading length count byte string.

VECTOR NUMBER: 44
TITLE: NEXT FIND

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
ADDRESS OF THE SEARCH STRING.
THE X REGISTER 1S THE DESTINATION
ADDRESS OF THE MATCH.

OUTPUT: THE A REGISTER HOLDS THE RECORD
TYPE OF THE MATCH.

FUNCTION: This service finds the next record of the current type on the
current datapack which CONTAINS the scarch string. The malching
record is placed at the location pointed to by the X Register and the A
Register will return with the record type of the match.

VECTOR NUMBER: 45
TITLE: LOCATE RECORD

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE RECORD
NUMBER TO BE FOUND.
OUTPUT: THE A REGISTER HOLDS THE
LENGTH OF THE RECORD.
THE B REGISTER HOLDS THE TYPE OF
RECORD.
LOCATION $41 HOLDS THE MOST
SIGNIFICANT BYTE OF THE 3- BYTE
PACK ADDRESS.
THE X REGISTER HOLDS THE LOWER
2 BYTES OF THE PACK ADDRESS.

FUNCTION: This routine returns information concerning the record

specified by the D Register in the current record on the current pack. If
found, the A Register retums with the length of the record the B Register

308

with the record type while location $41 and the X Register combine to
indicate the 3-byte pack address of the record.

VECTOR NUMBER: 46
TITLE: NEXT
ENTRY REQUIREMENTS: Nil.
OUTPUT: NIL.
FUNCTION: Increments the current record number. Note that this vector

does not check for end of file. Any subscquent READ will return the
“END OF FILE" error.

VECTOR NUMBER: 47

TITLE: OPEN FILE

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE FILENAME.

OUTPUT: THE A REGISTER RETURNS THE
RECORD TYPE OF THE DATA (IF THE
FILE IS FOUND)

FUNCTION: This routine opens a previously existing file whose name is
held, lcading count byte first, at the location indicated by the X Register.
If the device name is omitled from the filename, the device number held
at location $97 is assumed.

VECTOR NUMBER: 48
TITLE: CHECK FILENAME
ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE FILENAME TO BE

CHECKED.
THE D REGISTER HOLDS THE

309

DESTINATION ADDRESS OF THE
CHECKED ADDRESS.

LOCATION $41 HOLDS THE DEFAULT
DEVICE NUMBER.

OUTPUT: NIL.

FUNCTION: This service checks that the filename indicated by the X
Register is legal and adds the default device if the user omitted it from the
filename. The finished product, padded with spaces to make 8 characters,
is stored at the address indicated by the D Register. OPL users will be
familiar with the naming conventions of the Organiser.

VECTOR NUMBER: 49
TITLE: READ RECORD

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
DESTINATION ADDRESS OF THE
RECORD TO BE READ.

OUTPUT: THE B REGISTER HOLDS THE RECORD
TYPE.

FUNCTION: This routine reads the cumrent record in the current file into
the memory address (Icading count byte first) indicated by the X Register,
leaving the record number unchanged.

VECTOR NUMBER: 50
TITLE: SET CURRENT RECORD TYPE

ENTRYREQUIREMENTS: THE B REGISTER HOLDS THE
REQUIRED RECORD TYPE.

OUTPUT: NIL.

FUNCTION: This service scts the current record type to the value in
Register B. This value should be between $80-SFE.

310

VECTOR NUMBER: 51

TITLE: RENAME

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE CURRENT
FILENAME.
THE D REGISTER HOLDS THE

ADDRESS OF THE NEW FILENAME.
OUTPUT: NIL.
FUNCTION: Renames an already existing file. Note that a file can only

be renamed onto the same pack. The filenames are stored leading count
byte first.

VECTOR NUMBER: 52
TITLE: SET CURRENT RECORD NUMBER

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
REQUIRED RECORD NUMBER.

OUTPUT: NIL.

FUNCTION: This service sets the current record number the that held in
the D Register.

VECTOR NUMBER: 53
TITLE: SELECT PACK
ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
NUMBER OF PACK TO BE SELECTED -
THIS MUST BE BETWEEN 0 AND 3.

OUTPUT: NIL.

311

FUNCTION: This service sclects the pack indicated by the B Register. It
is ESSENTIAL that this number lies in the range 0-3, since this service
does not check the legality of the number. The selected pack then
becomes the current one.

VECTOR NUMBER: 54
TITLE: SIZEPACK
ENTRY REQUIREMENTS: Nil.

OUTPUT: LOCATION $43 AND THE D REGISTER HOLD THE
NUMBER OF BYTES FREE ON THE
DATAPACK AS A 3-BYTE NUMBER,
THE MOST SIGNIFICANT BYTE BEING
HELD IN $43.

THE X REGISTER HOLDS THE
NUMBER OF RECORDS OF THE
CURRENT RECORD TYPE HELD ON
THE PACK.

LOCATIONS $44,541,842 HOLD THE
ADDRESS OF THE FIRST FREE BYTE
ON THE PACK AS A 3-BYTE NUMBER.

FUNCTION: This service returns general information about the currently
selected datapack, file type and record type.

VECTOR NUMBER: 55
TITLE: APPEND
ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE RECORD TO BE
WRITTEN TO THE CURRENT DEVICE.
OUTPUT: NIL.

FUNCTION: This service adds the record, stored leading count byte first,
indicaied by the X Register to the current device. The record length must

312

be no more than 254 characters and the routine checks to see if there is
sufficient room before appending the record. Note that a write failure on
an EPROM will result in the loss of the record. The current record
number becomes the number of the appended record.

YECTOR NUMBER: 56

TITLE: ARCTANGENT

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

FUNCTION: This routine retumns the arctangent of the argument, in
radians, on the run-time stack.

YECTOR NUMBER: 57

TITLE: COSINE

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

FUNCTION: This service returns the Cosine of the floating point
argument, which must be in radians, on the run-time stack.

YECTOR NUMBER: 58

TITLE: EXPONENT

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

313

FUNCTION: This service returns the floating point exponent on the run-
time stack.

VECTOR NUMBER: 59

TITLE: LOG (e)

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

FUNCTION: This service returns LOG e of the floating point argument
on the run-time stack.

VECTOR NUMBER: 60

TITLE: LOG (10)

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

FUNCTION: This service retumns the floating point argument to LOG(10)
on the run-time stack.

VECTOR NUMRER: 61
TITLE: POWER
ENTRY REQUIREMENTS: THE TWO FLOATING POINT
ARGUMENTS MUST FIRST BE
STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

314

FUNCTION: This service returns the floating point result of the first
argument raised to the power of the second. The result is stacked on the
run-time stack. Note that the stack pointer will have incremented by 8
after this service.

VECTOR NUMBER: 62
TITLE: RANDOM
ENTRY REQUIREMENTS: Nil.

OUTPUT: THE FLOATING POINT RANDOM
NUMBER IS STACKED

FUNCTION: This scrvice returns a floating point random number on the
run-time stack. As in OPL, this number lies between 0 and
0.999999999999 inclusive. Note that the stack pointer will then be
decremented by 8. Note also that the sequence of numbers produced by
this service are always the same. To alter the sequence Lo a new one, the
7-byte random number seed at $23AE will have to be altered.

VECTOR NUMBER: 63

TITLE: SINE

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

FUNCTION: This function returns the floating point SIN of the argument,
assumed 1o be in radians, on the run-time stack.

VECTOR NUMBER: 64
TITLE: SQUARE ROOT

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED

315

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

FUNCTION: This service returns the floating point square root of the
argument on the run-time stack.

VECTOR NUMBER: 65

TITLE: TANGENT

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST FIRST BE STACKED.

OUTPUT: THE FLOATING POINT RESULT IS
STACKED.

FUNCTION: This service returns the floating point TANGENT of the
argument, assumed to be in radians, on the run-time stack.

VECTOR NUMBER: 66

TITLE: ACTION PARAMETER OFFSET

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE OFFSET
TO THE ACTION PARAMETER.

OUTPUT: THE B REGISTER HOLDS THE VALUE
OF THE ACTION PARAMETER.

FUNCTION: This service rcturns the value of the ACTION
PARAMETER by using the B Register as an offsct.

YECTOR NUMBER: 67

TITLE: ACTION PARAMETER REGISTER
OFFSET

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE OFFSET

TO ACTION PARAMETER SPECIFYING
A REGISTER.

316

OUTPUT: THE X REGISTER HOLDS THE
ADDRESS OF THE TABLE REGISTER.

FUNCTION: This service causes the X Register (o point to the table
register by using the B Register as an offset.

VECTOR NUMBER: 68
TITLE: TABLE START

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
ADDRESS OF THE TABLE TO BE
INTERPRETED.

OUTPUT: THE B REGISTER IS SET TO 0 IF THE
END ACTION IS PERFORMED
LAST.THE Z FLAGIS SET IF THE END
ACTION IS PERFORMED LAST.

FUNCTION: This service interprets the table whose base address is held
in the D Register. This is not discussed further.

VECTOR NUMBER: 69
TITLE: TABLE ADD

ENTRY REQUIREMENTS: THE B REGISTER IS SET TO HOLD THE
OFFSET TO THE ACTION PARAMETER.

OUTPUT: THE D REGISTER HOLDS THE WORD
WHICH IS LOCATED B BYTES FROM
THE TABLE PROGRAM COUNTER.

FUNCTION: This service adds the contents of the B Register to the table
program counter and placcs the word at that location in the D Register.

317

VECTOR NUMBER: 70
TITLE: BREAK TEST
ENTRY REQUIREMENTS: NIL

OUTPUT: IF THE ON/CLEAR KEY IS PRESSED,
THE CARRY FLAG IS SET

FUNCTION: This Service checks to see if the ON/CLEAR key is being
pressed, both by reading the keyboard and checking in the Keyboard
Buffer. If found, the Service waits for the key to be released, flushes the
Keyboard Buffer and sets the Carry Flag of the CCR. Otherwise, the
Carry Flag is cleared.

VECTOR NUMBER: 71
TITLE: FLUSH KEYBOARD BUFFER
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL

FUNCTION: The contents of the Keyboard Buffer. along with all the
associated variables, are flushed.

VECTOR NUMBER: 72
TITLE: GET KEY
ENTRY REQUIREMENTS: NIL

OUTPUT: THE B REGISTER HOLDS THE ASCII
CODE OF THE CHARACTER REMOVED
FROM THE KEYBOARD BUFFER

FUNCTION: The routine waits for a key to be pressed and puts it in the B
Register. If there are no keys in the Buffer, the machine executes a SLP
instruction 1o save power until a keypress is detected. Note that the Auto
Switchoff Counter at $7D is reset to the value in the Auto Switchoff
Constant at $20CD at the beginning of a call to this Service to give the
maximum possible time to get a key before a machine switch-off.

318

VECTOR NUMBER: 73
TITLE: INITIALISE KEYBOARD INTERRUPTS
ENTRY REQUIREMENTS: NIL
OUTPUT: NIL
FUNCTION: This Service initialises the keyboard interrupts by:

a. Flushing the Keyboard Buffer.

b. Sctting the value of the Keyboard Interrupt Rate variable to
$B3DD.

c. Setting the value of the Keyboard Delay variable to 14.

d. Setting the value of the Keyboard Repeat Rate variable 1o
0.

€. Clearing the flags in the Keyboard Status Byte to 0.

f. Seuting the value of the Keyboard Click variable to 1.

g. The interrupts arc cnabled.

h. The Free Running Counter is reset.

i. The Timer 1 Output Compare Register is set to $B3DD.

Jj- Bit 3 of Timer 1 Control Status Register 1 is set.

k. The I mask of the CCR is cleared.

YECTOR NUMBER: 74

TITLE: SET THE KEYBOARD STATE

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
REQUIRED KEYBOARD STATE

OUTPUT: THE B REGISTER IS PRESERVED

FUNCTION: This service acts in the same way as the OPL KSTAT
command. The contents of the B Register are stored in the Keyboard
Status variable at $§7B. The bytc is constructed as follows:

a. If Bit 0 of the byte is sct then Lower Case is selected,
otherwise Upper Case is in force.

319

b. If Bit 6 is sct then Numeric Lock is selected otherwise
Numeric Lock is de-selected.

Note that the other bits of the byte are used by the Operating System for
other purposes and should not be changed. For this reason, users wishing
to employ Vector 74 should read the byte from the Keyboard Status
variable and dcal with bits 0 or 6 before calling the routine. This service
also affects the cursor display, since it varics according to the keyboard
state. Any change will be effected at the next display refresh.

VECTOR NUMBER: 75

TITLE: TEST KEYBOARD BUFFER

ENTRY REQUIREMENTS: NIL

OUTPUT: ASCII NUMBER OF NEXT KEY IN
BUFFER OR 0 IF NO KEY

FUNCTION: This is a surprisingly complex Secrvice. It looks into the
Keyboard Buffer and, if it has somcthing in it, puts the ASCII number of
the first character into the B

Register. It also looks into the Unget Buffer at $76. If it is empty and there
is something in the Keyboard Bulffer, the first key of the Keyboard Buffer
is transferred into the Unget Buffer. However, if no keys are found, things
become more complicated:

a.If the Pack Switch-off flag at $20Cl1 is not 0, the Pack will
swilch off.

b. If the Auto Switch-off flag at $7C is not 0 and the Auto-
switchoff Countdown Counter at $7D is 0, the Organiser will
switch off,

c. If a Battery Low condition is detected, the machine will
display “BATTERY TOO LOW?" for 4 scconds before
swilching off.

320

YECTOR NUMBER: 76
TITLE:

ENTRY REQUIREMENTS: THE KEY TO BE PLACED IN THE
BUFFER IS HELD IN THE B REGISTER

OUTPUT: NIL

FUNCTION: This Service puts the key held in the B Register into the
Unget Buffer at $75 if the Buffer is empty.

VECTOR NUMBER: 77
TITLE: NEW PROCEDURE
ENTRY REQUIREMENTS: Nil.
OUTPUT: NIL.

FUNCTION: This service gives the user access to the RUN,LIST, EDIT
and DELETE commands found in the PROGRAM Menu. Note that while
LIST, EDIT and DELETE can be used on any text file, only OPL
procedurcs can be the subject of a RUN command. The name of the file
must first be placed in the Find Buffer at $22C9. The length of the name
is held in the preceding byte. Morcover, the actual function required must
be entered into location $A3:-

FUNCTION REQUIRED VALUE FOR $A3
A. EDIT 3
B. LIST 4
C.RUN 7
D. DELETE 8

An area specially created for the Editor is set up and all entries are placed
in it. The keys function as for the OPL versions and the block file type
must be indicated at location $23EQ for all operations using this vector. If
the user is manipulating a text-only file, the TRANSLATE option can be
sugg;césed by inserting any non-zero number in the menu oplion location
at 1.

321

VECTOR NUMBER: 78
TITLE: PROCESS PROCEDURE
ENTRY REQUIREMENTS: Nil.
OUTPUT: NIL.
FUNCTION: This service is similar to the preceding in that it allows the
user to employ the PROGRAM Menu functions on an already existing

file. All circumstances are as for vector 77 exccpt that the file is brought
into the editing are for work.

VECTOR NUMBER: 79
TITLE: TRANSLATE

ENTRY REQUIREMENTS: THE B REGISTER IS SET TO :
0 TO TRANSLATE LANGUAGE
PROCEDURES.
1 TO TRANSLATE CALC EXPRESSIONS.
2 TO LOCATE CALC ERRORS.
3 TO LOCATE LANGUAGE ERRORS.
THE X REGISTER HOLDS THE Q-CODE
OFFSET TO THE RUN-TIME ERROR.
HOWEVER, IF THE B REGISTER IS SET
TO TRANSLATE, THE X REGISTER IS
IGNORED.

OUTPUT: ERROR: THE X REGISTER CONATINS THE
TEXTCELL OFFSET TO THE ERROR.
THE B REGISTER HOLDS THE ERROR
NUMBER.

NO ERROR: THE TRANSLATED PRODUCT IS HELD
IN THE Q-CODE OUTPUT CELL.

FUNCTION: This service runs the TRANSLATOR. LZ users should note

322

that this function will translate the OPL in 2- or 4-line mode, as specified
by the "display mode” variable at $2184.

VECTOR NUMBER: 80
TITLE: MENU

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE BIT
MASK REQUIRED TO TERMINATE THE
SERVICE.
THE X REGISTER HOLDS THE
ADDRESS OF THE MENU LIST.

OUTPUT: IF THE A REGISTER IS ZERO, THE X
REGISTER HOLDS THE ADDRESS OF
THE SELECTED ROUTINE.
OTHERWISE, THE X REGISTER POINTS
TO THE NAME OF THE SELECTED
ITEM IN THE MENU LIST.

THE B REGISTER HOLDS THE
TERMINATING KEY PRESS.
LOCATION $41 HOLDS THE NUMBER
OF THE MENU ITEM SELECTED. NOTE
THAT THE FIRST ELEMENT 1S
NUMBER 0.

FUNCTION: This service operates in the same way as the OPL. MENU
function. The menu list is held in memory at the address pointed to by the
X Register. Each name is stored, leading byte count first, followed by the
address of the corresponding routine or zero where appropriate. The list is
completed by a name of zero length. The service operates as for the
MENU command. LZ users should note that menus are aligned in three
columns when operating in 4-line mode. Furthermore, spaces within menu
items are changed to hard spaces (character 254) to avoid confusion.

The terminating mask allows the user to select those keys which will
terminate the service. Each bit of Register D controls a key. If set, it will
terminate when the key with the corresponding number+1 is pressed.
Thus, if bit 0 is set, the ON/CLEAR key, which has an ASCII code of 1,

323

will terminate the menu when pressed.

When the routine terminates, the X Register will contain the address of
the routine indicated after the item in the menu list. If this address was
entered as zero, the X Register will hold the address of the menu item in
the menu list. The A register indicates which of the 2 cases is in force.
The B Register returns the terminating key press. Note that this will be the
EXE key if the routine is terminated by pressing the initial letter of the
menu item. Location $41 returns the number of the menu item.

VECTOR NUMBER: 81
TITLE: STRING TO FLOATING POINT

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE STRING TO BE
CONVERTED.
THE D REGISTER CONTAINS THE
DESTINATION ADDRESS OF THE
FLOATING POINT NUMBER.

OUTPUT: THE FLOATING POINT NUMBER IS
PLACED AT THE PREVIOUSLY
INDICATED ADDRESS.
THE X REGISTER POINTS TO THE END
OF THE STRING.

FUNCTION: This service converts the string held at the address indicated
by the X Register into a floating point number and places the number at
the address indicated by the D Register. The string may be terminated by
any non-numeric character. Moreover, the characters “E", “e” and “Mare
illegal unless they have already occurred within the string.

Note that although the D Register indicates the start address for the result,
a copy of this address should be kept BEFORE calling the service, as the
Register is subsequently trashed.

324

VECTOR NUMBER: 82
TITLE: FLOATING POINT ADDITION

ENTRY REQUIREMENTS: THE TWO FLOATING POINTNUMBERS
ARE PLACED IN THE FLOATING POINT
REGISTERS.

OUTPUT: THE FLOATING POINT ACCUMULATOR
HOLDS ITS PREVIOUS VALUE PLUS
THE CONTENTS OF THE FLOATING
POINT OPERAND.

FU'!\TC’I'[ON: This service adds the operand register to the accumulator
register and places the result in the accumulator register.

VECTOR NUMBER: 83
TITLE: FLOATING POINT TO DECIMAL

ENTRY REQUIREMENTS: THE FLOATING POINT
ACCUMULATOR HOLDS THE
FLOATING POINT NUMBER TO BE
CONVERTED.

THE A REGISTER HOLDS THE FILED
WIDTH OF THE STRING TO BE
OUTPUT.

THE B REGISTER HOLDS THE
NUMBER OF DECIMAL PLACES
REQUIRED.

THE X REGISTER HOLDS THE
DESTINATION ADDRESS OF THE
DECIMAL STRING.

OUTPUT: THE B REGISTER HCOLDS THE LENGTH
OF THE DECIMAL STRING.

FUNCTION: This service converts the floating point number held in the

floating point accumulator 1o decimal-format ASCII text and stores it at
the address held in the X Register.

325

YECTOR NUMBER: 84

TITLE: FLOATING POINT TO ASCII
EXPONENTIAL

ENTRY REQUIREMENTS: THE NUMBER TO BE EXPRESSED IS
STORED IN THE FLOATING POINT
ACCUMULATOR.

THE A REGISTER HOLDS THE FIELD
WIDTH OF THE RESULT.

THE B REGISTER HOLDS THE
NUMBER OF DECIMAL PLACES
REQUIRED.

THE X REGISTER HOLDS THE
DESTINATION ADDRESS OF THE
RESULT.

OUTPUT: THE B REGISTER HOLDS THE LENGTH
OF THE RESULT.

FUNCTION: This service takes the BCD-format floating point number
held in the accumulator and converts it into ASCII exponential, storing it
at the address indicated by the X Register.

VECTOR NUMBER: 85

TITLE: FLOATING POINT TO NUMERIC ASCII

ENTRY REQUIREMENTS: THE A REGISTER HOLDS THE
REQUIRED FIELD WIDTH.
THE B REGISTER HOLDS THE
NUMBER OF DECIMAL PLACES.
THE X REGISTER HOLDS THE
DESTINATION ADDRESS FOR THE
STRING.

OUTPUT: THE B REGISTER HOLDS THE LENGTH
OF THE RESULTANT STRING.

326

FUNCTION: This service converts the number in the floating point
accumulator into a numeric ASCII string, stored at the address indicated
by the X Register.

The number will be converted into an integer, decimal or exponential as
appropriate. The number of decimal points can be set using the B
Register. A negative number in the B Register will disable this facility.

VECTOR NUMBER: 86
TITLE: FLOATING POINT TO INTEGER ASCII

ENTRY REQUIREMENTS: THE A REGISTER INDICATES THE
FIELD WIDTH REQUIRED.
THE X REGISTER INDICATES THE
DESTINATION BUFFER FOR THE
STRING.

OUTPUT: THE B REGISTER CONTAINS THE
LENGTH OF THE RESULTANT STRING.

FUNCTION: This service converts the number in the floating point
accumulator and stores it as an ASCII integer at the address indicated by
the X Register, rounding to the nearest integer if necessary.

VECTOR NUMBER: 87
TITLE: FLOATING POINT DIVISION
ENTRY REQUIREMENTS: THE DIVIDEND IS PLACED IN THE
FIRST FLOATING POINT
ACCUMULATOR, THE DIVISOR IN THE
SECOND.

OUTPUT: THE FLOATING POINT ACCUMULATOR
HOLDS THE RESULT.

FUNCTION: This service performs a floating point division on the two
numbers as indicated above.

327

YECTOR NUMBER: 88

TITLE: FLOATING POINT MULTIPLICATION.

ENTRY REQUIREMENTS: THE TWO FLOATING POINT
ACCUMULATORS CONTAIN THE
NUMBERS TO BE MULTIPLIED.

OUTPUT: THE FLOATING POINT ACCUMULATOR
CONTAINS THE RESULT.

FUNCTION: This service performs a floating point multiplication on the

two numbers indicated above.

VECTOR NUMBER: 89

TITLE: FLOATING POINT NEGATION

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE REGISTER WHOSE
CONTENTS IS TO BE NEGATED.

OUTPUT: NIL.

FUNCTION: This service negates the floating point number held in the
address pointed to by the X Register. Notc that an already negative
number will become positive. Moreover, the routine expects a 7-digit
mantissa. If the number is BCD, the user should set the X Register to
indicate the byte below the first byte of the target number.

VECTOR NUMBER: 90
TITLE: FLOATING POINT SUBTRACTION
ENTRY REQUIREMENTS: THE TWO FLOATING POINT
ACCUMULATORS HOLD THE
NUMBERS TO BE SUBTRACTED.

OUTPUT: THE FIRST ACCUMULATOR HOLDS
THE RESULT.

328

FUNCTION: This service subtracts the two floating point numbers
indicated above, placing the result in the first accumulator.

VECTOR NUMBER: 91
TITLE: PACK TURN OFF
ENTRY REQUIREMENTS: NIL.
OUTPUT: NIL.

FUNCTION: This service tums off all slots.

VECTOR NUMBER: 92
TITLE: CURRENT PACK
ENTRY REQUIREMENTS: NIL.

OUTPUT: THE B REGISTER HOLDS THE UPPER
BYTE OF THE PACK ADDRESS.
THE X REGISTER HOLDS THE LOWER
TWO BYTES OF THE PACK ADDRESS.

FUNCTION: This service rcturns the address of the current pack as a 3-
byte word in the B and X Registers. Note that the B Register will return
zero if the machine is a CM version.

VECTOR NUMBER: 93
TITLE: PACK READ BYTE
ENTRY REQUIREMENTS: NIL.

OUTPUT: THE B REGISTER CONTAINS THE BYTE
READ BY THE ROUTINE.

FUNCTION: Reads a byte at the current location in the current pack and

stores it in the B Register, incrementing the pack address by one. DO
NOT ATTEMPT TO READ BEYOND THE PACK.

329

VECTOR NUMBER: 94
TITLE: PACK READ SERIES

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
NUMBER OF BYTES TO BE READ.

OUTPUT: THE X REGISTER HOLDS THE
DESTINATION ADDRESS OF THE
SERIES.

FUNCTION: Reads a number of bytes, as indicated by the D Register,
FORM THE CURRENT POSITION and stores them at the address
indicated by the X Register.

VECTOR NUMBER: 95
TITLE: PACK READ WORD
ENTRY REQUIREMENTS: NIL.

OUTPUT: THE D REGISTER HOLDS THE WORD
READ.

FUNCTION: This service reads a word from the current position in the
current pack and returns it in the D Register,

incrementing the pack address by two. DO NOT ATTEMPT TO READ
BEYOND THE PACK.

VECTOR NUMBER: 96
TITLE: SET PACK ADDRESS
ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE UPPER
BYTE OF THE PACK ADDRESS.
THE X REGISTER HOLDS THE LOWER
2 BYTES OF THE ADDRESS.
OUTPUT: NIL.

FUNCTION: This scrvice scis up the address indicated by the B and X
Registers.

330

VECTOR NUMBER: 97
TITLE: PACK SAVE BYTES

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
NUMBER OF BYTES TO BE SAVED.

THE X REGISTER HOLDS THE SOURCE ADDRESS.

OUTPUT: NIL.

FUNCTION: This routine saves a series of bytes, as indicated by the D
Register, from the currcnt address on the cument pack. If a failure occurs,
the pack counter will indicate the offending byte.

VECTOR NUMBER: 98
TITLE: SET PACK

ENTRY REQUIREMENTS: THE A REGISTER IS MADE NON-ZERO
IF A PACK CHANGEIS TO BE
REPORTED AS AN ERROR.
THE B REGISTER INDICATES WHICH
PACK TO CHANGE.

OUTPUT: THE A REGISTER INDICATES THE
PACK TYPE.
THE X REGISTER INDICATES THE
PACK SIZE IN 8K BLOCKS.

FUNCTION: THIS SERVICE MUST BE CALLED PRIOR TO ANY
OTIIER PACK ROUTINES IF THE PACKS HAVE BEEN TURNED OFF.
The current pack becomes as indicaled by the B Register and the
operating system configured to access il.

VECTOR NUMBER: 99
TITLE: PACK SKIP BYTES

ENTRY REQUIREMENTS: THE D REGISTER CONTAINS THE
NUMBER OF BYTES TO BE SKIPPED.

331

OUTPUT: NIL.

FUNCTION: Adds the contents of the D Register to the pack address.

VECTOR NUMBER: 100
TITLE: RUN PROCEDURE

ENTRY REQUIREMENTS: THE X REGISTER INDICATES THE
ADDRESS OF THE PROCEDURE NAME.
IF THE B REGISTER IS SET, THE
CALCULATOR IS RUN.

OUTPUT: NIL.

FUNCTION: Runs the OPL procedure whose name is indicated by the X
Register. Note that the procedure must not contain parameters. LZ users
should note that this Vector will revert to 2-line mode when running OPL
which was translated on an Organiser II model.

YECTOR NUMBER: 101
TITLE: TOP MENU INSERT

ENTRY REQUIREMENTS: THE B REGISTER CONTAINS THE
POSITION IN THE MENU LIST AT
WHICH THE INSERTED TEXT IS TO BE
PLACED.

OUTPUT: NIL.

FUNCTION: This routine inserts an item into the top level menu at the
position indicated by the B Register, “0™ meaning at the beginning of the
list, “1" after the first itcm and “$FF" before “OFF™.

The item lo be inserted is stored in the run time buffer at $2187. It starts
with a leading count byte, the item text and its execution address (or zero,
if appropriate). Refer to the Organiser Manual for further details of the top
level menu customising procedure.

332

VECTOR NUMBER: 102
TITLE: COPY
ENTRY REQUIREMENTS: NIL.
OUTPUT: NIL.

FUNCTION: This service performs all the functions of the OPL “COPY™
command.

VECTOR NUMBER: 103

TITLE: TOP MENU DELETE

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE ITEM NAME.

OUTPUT: NIL.

FUNCTION: This service deletes the item indicated by the X Register
(the name begins with a leading count byte) from the top level menu.

VECTOR NUMBER: 104
TITLE: EDIT FILENAME.

ENTRY REQUIREMENTS: BIT 0 OF THE A REGISTER IS SET FOR
SINGLE- LINE EDITING, CLEARED FOR
MULTI-LINE. NOTE THAT BIT 7 MUST
BE CLEAR FOR THIS SERVICE TO
WORK .

THE B REGISTER HOLDS THE
MAXIMUM INPUT LENGTH.

THE X REGISTER HOLDS THE
ADDRESS OF THE PROMPT (WITH
LEADING COUNT BYTE) EXCLUDING
THE PACK INDICATOR.

OUTPUT: THE CARRY FLAGIS SET IF THE
ON/CLEAR WAS PRESSED.

333

FUNCTION: This service clears the screen and prints the prompt pointed
to by the X Register, followed by the pack letter+™:". Normal editing is
then allowed.

VECTOR NUMBER: 105

TITLE: CALCULATE DAY

ENTRY REQUIREMENTS: THE X REGISTER INDICATES THE
ADDRESS OF THE TIME BUFFER.

OUTPUT: THE B REGISTER HOLDS THE DAY
VALUE.
THE X REGISTER HOLDS THE

ADDRESS OF THE 3-BYTE DAY NAME.

FUNCTION: This scrvice takes the date stored in the time buffer
indicated by the X Register and retumns the day as a B Register byte in the
range 0 1o 6 and the address of the 3-lctter day in the X Register. The date
must be in the range 1 JAN 1900 to 31 DEC 1999 for Organiser Il owners
and 31 DEC2155 for those with LZ variants.

VECTOR NUMBER: 106
TITLE: GET TIME
ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
DESTINATION ADDRES FOR THE TIME
VALUE.

OUTPUT: NIL.

FUNCTION: This scrvice gets a copy of the real-time clock and places it
in the buffer indicated by the X Register.

VECTOR NUMBER: 107
TITLE: UPDATE TIME
ENTRY REQUIREMENTS: THE A MINUTES CONTAINS THE

NUMBER OF MINUTES TO UPDATE
THE TIME.

334

THE B REGISTER HOLDS THE
NUMBER OF SECONDS TO UPDATE
THE TIME.

THE X REGISTER HOLDS THE
ADDRESS OF THE 6- BYTE BUFFER
HOLDING THE TIME.

OUTPUT: NIL.

FUNCTION: This service updates the time stored in at the address
indicated by the X Register(pointing to the year field) by the minutes and
seconds stored in the A and B Registers.

VECTOR NUMBER: 108

TITLE: WAIT

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE DEGREE
OF PAUSE.

OUTPUT: NIL.

FUNCTION: This service pauses for the number of ticks indicated by the
D Register. Note that a lick is the interval belween successive keyboard
interrupts, normally 50ms.

VECTOR NUMBER: 109
TITLE: COPY BUFFER

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
ADDRESS OF THE SOURCE BUFFER.
THE D REGISTER CONTAINS THE
ADDRESS OF THE DESTINATION
BUFFER.
LOCATIONS $41/$42 INDICATE THE
LENGTH OF BUFFER TO BE COPIED.

OUTPUT: NIL.

FUNCTION: This service copies the first buffer, indicated by the X
Register into the buffer pointed to by the D Register. The two buffers may
overlap. The routine caters for this.

335

YECTOR NUMBER: 110
TITLE: DATA DISPLAY 1

ENTRY REQUIREMENTS: THE D REGISTER CONTAINS THE
ADDRESS OF THE FORMAT CONTROL
STRING.
THE MACHINE CODE CONTAINS THE
VARIABLES TO BE DISPLAYED.

OUTPUT: NIL.

FUNCTION: Displays text/variables as governcd by the control string.
The display is not pre-cleared.

VECTOR NUMBER: 111

TITLE: DATA DISPLAY 2

ENTRY REQUIREMENTS: THE MACHINE STACK CONTAINS THE
VARIABLES TO BE DISPLAYED.

OUTPUT: NIL.

FUNCTION: As for service 110, except that the control string is held on
the stack insicad of in a discrete buffer. LZ uscrs have a further control
code - ASCII 31. When used, the next string to be displayed will be
printed centred on the screen with the line on either side cleared of old
text.

VECTOR NUMBER: 112
TITLE: ENTER ROUTINE
ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
ADDRESS OF THE ROUTINE.
THE D REGISTER CONTAINS THE
PARAMETER TO BE PASSED TO THE
ROUTINE.

OUTPUT: THE B REGISTER CONTAINS A CODE

336

NUMBER.

THE CARRY FLAG IS CLEARED IS THE
B REGISTER IS EMPTY. SET
OTHERWISE.

FUNCTION: This service allows the routine indicated by the X Register
1o be called in a way which allows it to be exited from any routines nested
within it. A very useful application of this service in in the ON ERROR
and RAISE commands.

VECTOR NUMBER: 113
TITLE: FILL BUFFER

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
ADDRESS OF THE BUFFER TO BE
FILLED.
THE A REGISTER CONTAINS THE
BYTE TO BE USED AS A FILLER.
THE B REGISTER INDICATES THE
LENGTH OF THE FILL.

OUTPUT: NIL.

FUNCTION: This service fills the buffer pointed to by the X Register
with the byte indicated by the A Register.

VECTOR NUMBER: 114
TITLE: INDEPENDENT BUFFER COMPARE

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
ADDRESS OF THE FIRST STRING.
LOCATIONS $41/842 INDICATE THE
ADDRESS OF THE SECOND STRING.
THE A REGISTER INDICATES THE
LENGTH OF THE FIRST STRING.
THE B REGISTER CONTAINS THE
LENGTH OF THE SECOND STRING.

OUTPUT: THE B REGISTER WILL BE ZERO IF
THE STRINGS ARE IDENTICAL, LESS

337

THAN ZERO IF THE FIRST STRING IS
FIRST ALPHABETICALLY AND
GREATER THAN ZERO IF THE SECOND
STRING IS FIRST ALPHABETICALLY.
THE Z AND N FLAGS ARE SET TO
REFLECT THE CONTENTS OF THE B
REGISTER.

FUNCTION: This service compares the two strings, independent of case.

VECTOR NUMBER: 115

TITLE: BUFFER INSTRING

ENTRY REQUIREMENTS: THE X REGISTER INDICATES THE
MAIJOR STRING.
LOCATIONS $41/$42 INDICATE THE
MINOR STRING.

THE A REGISTER CONTAINS THE
LENGTH OF THE MAJOR STRING.
THE B REGISTER CONTAINS THE
LENGTH OF THE MINOR STRING.

OUTPUT: THE B REGISTER INDICATES THE
POSITION OF OCCURRENCE OF THE
MINOR STRING WITHIN THE MAJOR
STRING IF A MATCH WAS FOUND. THE
LENGTH OF THE MAIOR STRING
OTHERWISE.

FUNCTION: This scrvice returns the position within the major string that
the minor string occurs. Note that the first position is “0", If no match is
found, the B Register retumns with the length of the major string.

338

VECTOR NUMBER: 116
TITLE: LEAVE ROUTINE

ENTRY REQUIREMENTS: THE B REGISTER CONTAINS THE
CODE NUMBER TO BE RETURND BY
SERVICE 112.

OUTPUT: THE B REGISTER CONTAINS THE
REQUIRED CODE.
THE CARRY FLAGIS CLEARIF THEB
REGISTER IS CLEAR, SET OTHERWISE.

FUNCTION: This service allows early termination from a routine set up
using service 112.

VECTOR NUMBER: 117
TITLE: INTEGER DIVISION

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
NUMERATOR.
THE D REGISTER CONTAINS THE

DENOMINATOR.

OUTPUT: THE X REGISTER CONTAINS THE
RESULT.

FUNCTION: This service carrics out a signed intcger division of the two
numbers indicated above.

VECTOR NUMBER: 118

TITLE: INTEGER MULTIPLICATION

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE FIRST
SIGNED INTEGER.
THE D REGISTER HOLDS THE SECOND
SIGNED INTEGER.

339

OUTPUT: THE X REGISTER HOLDS THE LESS
SIGNIFICANT WORD OF THE
PRODUCT.
THE D REGISTER CONTAINS THE
MORE SIGNIFICANT WORD OF THE
PRODUCT.

FUNCTION: This service carries out a signed integer multiplication of
the two numbers indicated above, placing the less significant word of the
4-byte result in the X Register and the more significant in the D Register.

VECTOR NUMBER: 119
TITLE: SPLIT OUT FIELD

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
ADDRESS OF THE BUFFER FROM
WHICH THE FIELD IS TO BE
EXTRACTED.
LOCATIONS $41/$42 INDICATE THE
LENGTH OF THE BUFFER.
THE A REGISTER CONTAINS THE
CHARACTER SEPARATOR.
THE B REGISTER CONTAINS THE
FIELD NUMBER REQUIRED.

OUTPUT: IF THE FIELD WAS FOUND, THE X
REGISTER WILL CONTAIN THE
ADDRESS OF THE FIELD, THE D
REGISTER WILL INDICATE THE
LENGTH OF THE FIELD AND THE
CARRY FLAG WILL BE CLEAR.
OTHERWISE, LOCATIONS $41/$42 WILL
CONTAIN THE B REGISTER MINUS
THE NUMBER OF FIELDS FOUND AND
THE CARRY FLAG WILL BE SET.

FUNCTION: Finds a specific ficld within the record held at the location

indicated by the X Register. The length of the record is indicated by
locations $41/$42. The ficld scparator is held in the A register, while the

340

ficld number is stated by the B Register. Note that the first filed is
numbered 0.

VECTOR NUMBER: 120
TITLE: UNSIGNED INTEGER DIVISION

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
NUMERATOR.
THE D REGISTER CONTAINS THE

DENOMINATOR.
OUTPUT: THE X REGISTER CONTAINS THE

QUOTIENT.
THE D REGISTER CONTAINS THE
REMAINDER.

LOCATIONS $45/$46 CONTAIN A COPY
OF THE X REGISTER.

FUNCTION: This service carries out an unsigned integer division.
The DIV goes to the X Register, while the MOD goes to the D Register.

YECTOR NUMBER: 121

TITLE: UNSIGNED INTEGER MULTIPLICATION

ENTRY REQUIREMENTS: THE D REGISTER CONTAINS THE
FIRST INTEGER.
THE X REGISTER CONTAINS THE
SECOND INTEGER.

OUTPUT: THE X REGISTER HOLDS THE LESS

SIGNIFICANT WORD OF THE RESULT.
THE D REGISTER HOLDS THE MORE
SIGNIFICANT WORD OF THE RESULT.
LOCATIONS $45/$46 CONTAINS A
COPY OF THE X REGISTER.
LOCATIONS $43/544 CONTAINS A
COPY OF THE D REGISTER.

341

FUNCTION: This service carries out an unsigned integer multiplication
of the two numbers indicated above. The product is placed in the D and X
Registers with copies in locations $43-846.

VECTOR NUMBER: 122
TITLE: BINARY TO DECIMAL

ENTRY REQUIREMENTS: THE X REGISTER INDICATES THE
DESTINATION BUFFER.
THE D REGISTER CONTAINS THE
UNSIGNED BINARY NUMBER TO BE
CONVERTED.

OUTPUT: THE B REGISTER CONTAINS THE
LENGTH OF THE RESULTANT STRING.

FUNCTION: This routine converts the unsigned binary number held in
the D Register into an ASCII decimal at the location pointed to by the X
Register. The length of the result is placed in the B Register.

VECTOR NUMBER: 123

TITLE: DEVICE CATALOGUE

ENTRY REQUIREMENTS: LOCATION $42 INDICATES THE
RECORD TYPE.

OUTPUT: NIL.

FUNCTION: This scrvice displays all the records of record type, as
indicated by location $42, on the current device. Displays each record
after EXE is pressed until “END OF PACK" or the ON/CLEAR key is
pressed.

342

VECTOR NUMBER: 124

TITLE: BINARY TO HEX

ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
DESTINATION BUFFER.
THE D REGISTER HOLDS THE
UNSIGNED BINARY NUMBER.

OUTPUT: THE B REGISTER INDICATES THE

LENGTH OF THE STRING RESULT.

FUNCTION: This service lakes the unsigned binary number held in the D
Register and converts it to ASCII hex, storing it in the buffer pointed to
by the X Register and returning its length in the B Register.

YECTOR NUMBER: 125
TITLE: CONFIRM

ENTRY REQUIREMENTS: NIL.

OUTPUT: THE B REGISTER CONTAINS THE
VALUE OF THE KEY PRESSED.
THE CARRY FLAG IS SET FOR “n”, “N”
OR “ON/CLEAR".

FUNCTION: This service waits until “Y”, "y, *N”, “n™ or
“ON/CLEAR?" is pressed and returns the key in the B Register, setting the
Carry flag if any of the last 3 are the causc. Note that this routine first
does the equivalent of a KSTAT 1, destroying the previous keyboard
condition.

VECTOR NUMBER: 126
TITLE: UTSCDSP
FUNCTION: This function is a gencral utility display facility which is

available only on versions 2.5 and above. No further information is
presented here.

343

VECTOR NUMBER: 127
TITLE: TL$RSTR

FUNCTION: This facility is a translation function and is only available
on versions 2.7 and above. It is not discussed further here.

VECTOR NUMBER: 128
TITLE: SET LANGUAGE

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE CODE
OF THE LANGUAGE TO BE USED BY
THE LZ. CODES ARE:

0 = ENGLISH

1 = FRENCH

2 = GERMAN

3 = SPANISH

4 =ITALIAN

5 =PORTUGUESE
6 = SWEDISH

7 = DANISH

8 =NORWEGIAN
9 =DUTCH

10 = TURKISH

OUTPUT: SETS LANGUAGE VARIABLE ($2186)
TO CODE SELECTED.

FUNCTION: This function is available only on multi-lingual Organisers.
It sets the language to that indicated by the code in the B Register, unless
the language is not available. In the latter case, English is usced by default.
The top level menu is reset, which means that any user-inserted menu
items will be lost. Note that in cases of restricted memory, there may be
insufficicnt RAM space for the new menu, since different languages
require different space. Should this occur, the language will remain
unchanged. The language variable can be read but must not be set directly.

344

LZ users should note that the range of languages offered is, sadly, not as
extensive as multi-lingual CM/XP models and is currently limited to
English, French and German.

NEW CALLS PECULIAR TO THE LZ VERSION
VECTOR NUMBER: 129
TITLE: TEMPORARY SWITCH OFF

ENTRY REQUIREMENTS: THE D REGISTER IS SET TO HOLD
SWITCH OFF PERIOD IN SECONDS (IN
THE RANGE 2-1800).

OUTPUT: NIL

FUNCTION: This function allows the user to make the LZ switch off for
a number of scconds, as specified by the D Register. When this period is
over, the machine will switch back on automatically. Since the Organiser
must periodically update its clock, the maximum time it can be swilched
off using this function is 30 minutes, or 1800 seconds. Longer periods can
be simulated by repeatedly calling this vector. Note that if an out-of-range
value is set in the D Register, incorrect results will follow.

VECTOR NUMBER: 130
TITLE: SET LINE MODE

ENTRY REQUIREMENTS: THE A REGISTER IS SET AT ‘0" FOR 2-
LINE MODE AND *‘1' FOR 4-LINE. BIT 7
IS SET TO LEAVE UDG CLOCK
UNAFFECTED AND CLEARED TOKILL
IT

OUTPUT: THE A REGISTER HOLDS THE
PREVIOUS MODE.

FUNCTION: This function is called to convert the display to/from 2-/4-
line mode. It first checks to sce if the top bit of the A Register is clear,

345

disabling the UDG Clock if this is the case. The variable DPB-MCHK is
cleared and the routine exits at this point if the mode called is already in
force. If no exit is made, the system clears a 2x16 window with border
(for 2-line mode) or the entire 4x20 screen. The variables holding the
address of the screen buffer ($2090), the number of screen lines ($2092)
and the screen width ($2093) are initialiscd.

YECTOR NUMBER: 131
TITLE: SET CLOCK DISPLAY STATUS

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
POSITION OF THE CLOCK ON SCREEN.
BIT 718 SET TO SWITCH OFF CLOCK
DISPLAY.

OUTPUT: THE B REGISTER HOLDS THE
PREVIOUS CLOCK POSITION AND
STATUS.

FUNCTION: This function sects the clock display position and status.
Since the clock is printed right-justified in a 6-character field, this gives a
B Register range of 0-74 (0-26 in 2-line mode). No clock will be
displayed if the top bit of the B Register is set. UDGs 3-7 are used to
display the clock in 24-hour mode and UDG 1 is additionally used as an
am/pm indicator in 12-hour. These will overwrite previous definitions.

VECTOR NUMBER: 132
TITLE: RE-DEFINE CLOCK UDGs

ENTRY REQUIREMENTS: IF THE A REGISTER HOLDS '0*, ONLY
UDG 5 WILL BE RE-DEFINED.

OUTPUT: NIL
FUNCTION: This function re-defines the UDGs used to display the
current time. If the A Register holds ‘0', UDG 5 will be defined as a

flashing colon, otherwise as the underscore symbol. The screen status and
all scralch registers ($41-$4B) arc prescrved.

346

VECTOR NUMBER: 133
TITLE: READ/WRITE UDG

ENTRY REQUIREMENTS: THE A REGISTER HOLDS “0' FOR 8-
BYTE PATTERN AND ‘1' FOR A 5-BYTE
ONE. THE TOP BIT IS SET TO READ
THE UDG AND CLEAR TO WRITE.
THE B REGISTER HOLDS THE UDG
NUMBER.
THE X REGISTER POINTS TO THE
ADDRESS WHERE THE DEFINITION IS
LOCATED.

OUTPUT: NIL

FUNCTION: This function allows the user to define 2 UDG or to read the
bit patiemn of an existing definition. If bit 7 of the A Register is clcar, the
call will definc a UDG whose number is held in B and whose data is held
at the location pointed to by the X Register. Normally, a UDG would be
stored as 8 bytcs of data. However, since the actual appearance of the
character is 5x8 pixcls, this call allows the user to retrieve definitions
which have been stored in 5-byie formats. To do this, the A Register must
hold *1". The definition of a UDG can be read into the location specified
at the X Register (always in 8-byte format) if the top bit of the A Register
is sct. Users should note that this call disables interrupts.

VECTOR NUMBER: 134
TITLE: TITLED MENU DISPLAY
ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
TERMINATING BIT MASK.
THE X REGISTER POINTS TO THE
LOCATION OF THE MENU LIST.

OUTPUT: THE A REGISTER ACTS AS A FLAG TO
INDICATE THE NATURE OF THE

347

CONTENTS OF THE X REGISTER. IF A
IS ZERO, THE X REGISTER WILL HOLD
THE ADDRESS OF THE ROUTINE
WHICH IS ASSOCIATED WITH THE
ITEM SELECTED FROM THE MENU
LIST.IFIT IS NON-ZERO, THE X
REGISTER WILL POINT TO THE NAME
OF THE SELECTED ITEM IN THE MENU
LIST BUFFER.

THE B REGISTER HOLDS THE
TERMINATING KEY PRESS.

THE GENERAL WORD VARIABLE 0
($41) HOLDS THE NUMBER OF THE
MENU ITEM SELECTED (STARTING AT
ZEROQ).

FUNCTION: This function works in the same way as the normal menu
call except that it treats any text already on the screen as a title. The menu
is then displayed on the next clear line. If the title text occupies more than
3 lines, the 4th will be wiped and the menu located at that position. Users
should note that if the D Register is specificd as ‘0" for the call, the
routine will never terminate - there will be no valid terminating character.
In addition, this call automatically puts the keyboard into alpha shift.

VECTOR NUMBER: 135
TITLE: SINGLE-LINE MENU DISPLAY

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
TERMINATING BIT MASK.
THE X REGISTER HOLDS THE
ADDRESS OF THE MENU LIST.

OUTPUT: THE A REGISTER ACTS AS A FLAG TO
INDICATE THE NATURE OF THE
CONTENTS OF THE X REGISTER. IF A
IS ZERO, THE X REGISTER WILL POINT
TO THE ADDRESS OF THE ROUTINE
LINKED TO THE ITEM WHICH HAS

348

BEEN SELECTED FROM THE MENU. IF
IT IS NON-ZERO, THE X REGISTER
WILL POINT TO THE NAME OF THE
ITEM IN THE MENU LIST.

THE B REGISTER HOLDS THE
TERMINATING KEYPRESS.

GENERAL WORD VARIABLE 0 (341)
HOLDS THE NUMBER OF THE
SELECTED MENU ITEM (STARTING AT
0).

FUNCTION: This function operates like the normal menu display call
except that the menu is displayed on a single, scrolling line. The
remaining 3 lines of the display are left untouched. The line used by the
menu will be the one containing the cursor in its current position, as
specified by the cursor position variable at $62. Users should note that if
the D Register is passed as ‘0’, the routine will never terminate, having no
valid terminating character. In addition, the call puts the keyboard into
alpha shift.

VECTOR NUMBER: 136

TITLE: DISPLAY MENU WITH ICON
ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
TERMINATING BIT MASK.
THE X REGISTER HOLDS THE
ADDRESS OF THE MENU LIST.
OUTPUT: THE A REGISTER INDICATES THE

NATURE OF THE X REGISTER. IF A IS
ZERO, THE X REGISTER WILL POINT
TO THE ROUTINE WHICH IS LINKED
WITH THE ITEM SELECTED FROM THE
MENU. OTHERWISE, IT POINTS TO THE
NAME OF THE SELECTED ITEM IN THE
MENU LIST.

THE B REGISTER HOLDS THE
TERMINATING KEYPRESS.

349

THE GENERAL WORD VARIABLE 0
($41) HOLDS THE NUMBER OF THE
SELECTED ITEM (STARTING AT ZERO).

FUNCTION: This function operates much like the other menu functions
except that the top line is used to display an icon al the left and the clock
on the right. UDG 0 is always used at the top left. Users should note that
if the D Register is passed with zero contents, the routine will never
terminate, having no valid terminating character. In addition, this function
puts the keyboard into alpha shift.

VECTOR NUMBER: 137
TITLE: FLOATING POINT SUM

ENTRY REQUIREMENTS: THE POINTER TO THE ADDRESS OF
THE FIRST FLOATING POINT NUMBER
IS PUSHED ON THE STACK,
FOLLOWED BY THE LENGTH OF THE
SERIES TO BE SUMMED.

OUTPUT: THE FLOATING POINT RESULT IS LEFT
ON THE STACK.

FUNCTION: The address of the series of numbers is pushed onto the
runtime stack, followed by a word-length number denoting the length of
the series to be summed. The result is placed on the stack and the original
input parameters are left unchanged.

VECTOR NUMBER: 138
TITLE: FLOATING POINT MEAN

ENTRY REQUIREMENTS: THE ADDRESS OF THE SERIES OF
FLOATING POINT NUMBERS IS
PLACED ON THE STACK FOLLOWED
BY A WORD DESCRIBING THE
LENGTH OF THE SERIES.

350

OUTPUT: THE FLOATING POINT MEAN IS LEFT
ON THE STACK.

FUNCTION: This function takes the address of the series of number from
the stack, together with the length of the series, and calculates the mean.
This result is then left on the stack, leaving the input parameters
unchanged.

YECTOR NUMBER: 139
TITLE: FLOATING POINT VARIANCE

ENTRY REQUIREMENTS: THE ADDRESS OF THE SERIES OF
NUMBERS S PUSHED ONTO THE
STACK, FOLLOWED BY A WORD-
LENGTH NUMBER DESCRIBING THE
LENGTH OF THE SERIES.

OUTPUT: THE FLOATING POINT RESULT IS
PLACED ON THE STACK.

FUNCTION: This function takes the address and length of the serics from
the stack and calculates the sample variance using the formula:

N
var(Xi) = (Sigma (Xi-Xm)**2)/(N-1)

i=1
where Xm is the arithmetic mean,
Users should note that this is the sample variance. If the population

variance is required, it can be arrived at by multiplying the sample
variance by (N-1)/N.

351

VECTOR NUMBER: 140

TITLE: FLOATING POINT STANDARD
DEVIATION

ENTRY REQUIREMENTS: THE ADDRESS OF THE SERIES IS
PLACED ON THE STACK, TOGETHER
WITH A WORD-LENGTH NUMBER
DESCRIBING THE LENGTH OF THE
SERIES.

OUTPUT: THE FLOATING POINT RESULT IS LEFT
ON THE STACK.

FUNCTION: This function takes the address of the floating point series,
together with its length, from the stack and calculates the sample standard

deviation, using the formula:

N
std(Xi) = sqri((Sigma (Xi-Xm)**2)/(N-1)) = sqrt(var(Xi))

i=1

The floating point result is left on the stack with the original parameters.
This assumes that the data set is only a sample and not the complete
population. If it IS, in fact, the complete sci, the population standard
deviation can be calculated by multiplying the sample deviation by

sqri(N-1)/N).

VECTOR NUMBER: 141
TITLE: FLOATING POINT MIN
ENTRY REQUIREMENTS: THE ADDRESS OF THE SERIES OF
FLOATS IS STACKED, TOGETHER
WITH THE LENGTH OF THE SERIES.

QUTPUT: THE FLOATING POINT RESULT IS LEFT
ON THE STACK.

352

FUNCTION: This function finds the series of floating point numbers and,
knowing the length, finds the minimum of the series. This number is
placed on the stack, lcaving the original parameters unchanged.

YECTOR NUMBER: 142
TITLE: FLOATING POINT MAX

ENTRY REQUIREMENTS: THE ADDRESS OF THE SERIES,
TOGETHER WITH THE LENGTH OF
THE SERIES, IS PLACED ON THE
STACK.

OUTPUT: THE FLOATING POINT RESULT IS
PLACED ON THE STACK.

FUNCTION: This function finds the address of the series indicated by the
stack and calculates the maximum of the series. This number is placed on
the stack, leaving the original paramciers unchanged.

VECTOR NUMBER: 143
TITLE: | VALIDATE WILD CARD FILENAME.

ENTRY REQUIREMENTS: THE B REGISTER CONTAINS THE
LENGTH OF THE FILENAME.
THE X REGISTER POINTS TO THE
FILENAME. NULL FILENAMES ARE
ILLEGAL.

OUTPUT: THE A REGISTER HOLDS THE FILE
TYPE OF THE FILENAME. THIS WILL
BE 0 IF THE EXTENSION IS *.*" AND
$FF IF NO EXTENSION IS SPECIFIED.
FURTHERMORE, IF THE EXTENSION IS
*.OPO" OR “.OPT" THE FILETYPE WILL
BE RETURNED AS “$83", WHICH IS
THE CODE FOR “.OPL" FILES. IF THIS
IS THE CASE, LOCATION $43 (THE

353

LOW BYTE OF GENERAL WORD
VARIABLE 0) WILL BE SET
ACCORDINGLY.

THE B REGISTER HOLDS THE LENGTH
OF THE FILENAME BEFORE THE “."
CHARACTER. THIS MUST BE NO
LONGER THAN 8 CHARACTERS AND
EXTENSIONS MUSTBY 3
CHARACTERS LONG OR “.*",
ADDRESS $42 HOLDS 1 IF THE
EXTENSION IS “.0PO", 2IFIT IS “OPT™
AND 0 IN ANY OTHER CASE.

FUNCTION: This function retrieves the wild card filename pointed to by
the X Register, validates it and returns with its length and filetype.

VECTOR NUMBER: 144
TITLE: WILD CARD CATALOGUE.

ENTRY REQUIREMENTS: THE A REGISTER IS SET TO 1 FOR THE
INITIAL CALL TO THE ROUTINE AND 0
THEREAFTER. THE TOP BIT IS SET IF
THE USER WISHES THE SIZES OF THE
FILE TO BE DISPLAYED.

THE B REGISTER CONTAINS A CODE
INDICATING THE DEVICE:

0= DEVICE A

1 = DEVICE B

2=DEVICEC

3= DEVICED

THE X REGISTER INDICATES THE
BUFFER TO HOLD THE FILENAME
AFTER THE CALL. NOTE THAT THE
BUFFER WILL HOLD THE LEADING
COUNT BYTE FIRST.

THE LOW BYTE OF GENERAL WORD
VARIABLE 0 ($42) INDICATES THE
LENGTH OF THE MATCH STRING. SET

354

THE TOP BIT TO INDICATE THAT THE
FILETYPE OF THE MATCH HAS BEEN
PLACED IN THE HIGH BYTE OF THE
VARIABLE ($41).

THE HIGH BYTE OF THE GENERAL
WORD VARIABLE 0 ($41) HOLDS THE
FILETYPE OF THE MATCH IF BIT 7 OF
LOCATION $42 HAS BEEN SET.
GENERAL WORD VARIABLE 1 ($43)
POINTS TO THE MATCH STRING.

OUTPUT: THE A REGISTER HOLDS THE TYPE OF
THE FILE FOUND.
THE B REGISTER HOLDS 1 IF “.0PO", 2
IF “.OPT" AND 0 OTHERWISE.
GENERAL WORD VARIABLE 0 ($41)
HOLDS THE NUMBER OF BYTES IN A
BLOCK FILE OR THE NUMBER OF
RECORDS IN A “ODB" FILE, IF THE
TOP BIT OF THE A REGISTER WAS SET.

FUNCTION: This function provides the user with a facility to call a
catalogue of a specificd device using wild card matches. The initial call to
the function must sce the A register non-zero and subsequent require it to
be zero. In the latier case, only the X register need be passed. The match
string can contain “*" to indicatc any number of wild characters and “+"
to indicate a single one. In addition, file extensions from the following list
may also be specified:

.ODB TEXT OR DATABASE FILES

.OPL TEXT OR PROCEDURE FILES

.DIA CM/XP DIARY SAVE FILES

.COM COMMS LINK SETUP FILES

.PLN SPREADSHEET FILES

.PAG PAGER SETUPFILES

NTS NOTEPAD FILES

.TY8-TYF FILE TYPES IN THE RANGE $88-38F

.OPT TEXT-ONLY OPL PROCEDURES

.OPO OBIJECT-ONLY OPL PROCEDURES

355

Users should note that only “*" may be used in the extension and that
*“.OPL" will maich a text OR object file, and that “.OPO” and ".OPT"
operate in the same way.

VECTOR NUMBER: 145

TITLE: WILD CARD COPY.

ENTRY REQUIREMENTS: THE D REGISTER CONTAINS THE
ADDRESS OF THE “COPY-TO"
FILENAME.

THE X REGISTER CONTAINS THE
ADDRESS OF THE “COPY-FROM"
FILENAME.
GENERAL WORD VARIABLE 0 ($41)
CONTAINS THE ADDRESS OF ANY
USER ROUTINE WHICH SHOULD BE
CALLED EACH TIME A FILE IS
COPIED. IF NO SUCH ROUTINE EXISTS,
THIS VARIABLE SHOULD CONTAIN

- $0000.

OUTPUT: NIL.

FUNCTION: This function allows the user 1o copy files from one device
to another. Copying to the same device is not permitted but a different
filename may be specified when performing legal copies. Note, however,
that a *.OPL" filc copicd in this way will NOT have the name of the first
line changed. Subsequent printing of this filc will reveal this disparity. If
the device alone is specified in the “copy-10" string, the file will be copied
with the same name. Wildcards (“*” for any number of wild characters
and “+" for a single onc) can be uscd in the “copy-from™ string but not,
for obvious rcasons, in the “copy-to”. In such a case, the *“‘copy-lo” string
must specify ONLY the device e.g. “C:". Extensions, as specified in
Vector 144, may also be uscd. If the General Word Variable 0 (841)
indicates a user routine address, the routine will be called each time a file
is copied. On the call, the X register will be sct to indicate the filename
just copiced and the A register will indicate its filetype.

356

VECTOR NUMBER: 146
TITLE: WILD CARD DELETE.

ENTRY REQUIREMENTS: THE X REGISTER CONTAINS THE
ADDRESS OF THE FILENAME TO BE
DELETED (LEADING BYTE COUNT).
GENERAL WORD VARIABLE 0
CONTAINS THE ADDRESS OF ANY
USER ROUTINE TO BE CALLED EACH
TIME A DELETION 1S COMPLETED.
THIS SHOULD HOLD $0000 IF NO
ROUTINE IS TO BE CALLED.

OUTPUT: NIL.

FUNCTION: This function allows the uscr to delete the file whose name
is indicated by the X register. Wildcards are allowed (“*" to indicate any
number of wild characters and “+" 1o indicate a single one). Only the “*"
may be used in the extension of the filename, which must be in the form
“A:BBBBBBBB.CCC".

VECTOR NUMBER: 147
TITLE: WILD CARD FIND.

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
ADDRESS OF THE SEARCH STRING,
LEADING BYTE COUNT.
THE X REGISTER INDICATES THE
BUFFER TO HOLD THE “FOUND"
RECORD, LEADING BYTE COUNT.

OUTPUT: THE A REGISTER CONTAINS THE
RECORD TYPE OF THE “FOUND"
RECORD.

FUNCTION: This function works like the normal FIND call except that
wildcards are permitted (“*" for any number of wild characters and *“+"

357

for a single one). Note that the call works from the CURRENT position in
the file and that, if the uscr wishes the search to start from the beginning
of the file, Vector 52 must be called with the D register set to 1.

VECTOR NUMBER: 148
TITLE: WILD INSTRING.

ENTRY REQUIREMENTS: THE A REGISTER HOLDS THE LENGTH
OF THE MAJOR STRING.
THE B REGISTER HOLDS THE
ADDRESS OF THE MINOR STRING.
THE X REGISTER POINTS TO THE
LOCATION OF THE MAJOR STRING.
GENERAL WORD VARIABLE 0 POINTS
TO THE LOCATION OF THE MINOR
STRING.

OUTPUT: THE B REGISTER HOLDS THE
POSITION OF THE MATCH OF THE
MINOR STRING WITHIN THE MAJOR.
THE CARRY FLAGIS CLEARIF A
MATCH WAS FOUND AND SET
OTHERWISE.

FUNCTION: This function works much in the same way as Vector 1185,
except that wildcards are permitted (**” to mcan any number of wild
characters and *+" to indicate a single onc). However, note the following,
where null strings are involved:

MAJOR MINOR MATCH

“ABC” wr FALSE
e = TRUE
- oo TRUE
e M4t FALSE

358

VECTOR NUMBER: 149
TITLE: NUMBER OF DAYS.

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE 3-BYTE DATE IN
THE FORMAT “YEAR:MONTH:DAY".

OUTPUT: THE B REGISTER HOLDS THE MOST
SIGNIFICANT BYTE OF THE RESULT.
THE X REGISTER HOLDS THE 2 LESS
SIGNIFICANT BYTES OF THE RESULT.
THE CARRY FLAG IS SET IF THE DATE
1S INVALID.

FUNCTION: This function retumns the number of days which have passed
from 01 Jan 1900 to the date indicated by the X register. The “year” byle
can be any number in the range 0-255, while the “month™ and “day” bytes
must hold valid calendar values.

VECTOR NUMBER: 150
TITLE: WEEK NUMBER.

ENTRY REQUIREMENTS:THE X REGISTER HOLDS THE
ADDRESS OF THE 3-BYTE DATE IN
THE FORMAT “YEAR:MONTH:DAY".

OUTPUT: THE B REGISTER HOLDS THE WEEK
NUMBER.
THE CARRY FLAG IS SET IF THE DATE
WAS INVALID.

FUNCTION: This function retums the weck number of the date indicated
by the X register. Weck number 1 (which is actually returned as 0) is
assumed to start with the first Monday of the year. Any days prior to this
are assumed to be part of the last week of the previous year. Note that
applications convert the range 0-53, which is returned by this function, to

359

range 0-255, while the “month™ and “day" bytes must hold valid calendar
values.

VECTOR NUMBER: 151
TITLE: DAY NAME.

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE DAY
NUMBER IN THE WEEK (0-6, WITH
MONDAY AS 0).

OUTPUT: THE X REGISTER POINTS TO THE 3-
LETTER DAY NAME STRING.

FUNCTION: This function returns a 3-letter day name string for a given
day-of-the-week number. Note that this string is in the selected langu.age
and that if numbers outside the 0-6 range arc passed to the routine,
garbage will be assiduously handed back.

VECTOR NUMBER: 152
TITLE: GET EXTENSION,

ENTRY REQUIREMENTS: THE A REGISTER HOLDS THE
FILETYPE.
THE X REGISTER INDICATES WHERE
TO STORE THE FILE EXTENSION.
THE LESS SIGNIFICANT BYTE OF
GENERAL WORD VARIABLE 0 (342)
HOLDS THE OPL FILETYPE IF THE A
REGISTER HOLDS $83.

OUTPUT: THE B REGISTER HOLDS THE LENGTH
OF THE EXTENSION.

FUNCTION: This function will retrieve the file extension for a specified

filetype. The string, including the “.", is stored at the location indicated by
the X register.

360

YECTOR NUMBER: 153
TITLE: GET TYPE.

ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
LOCATION OF THE EXTENSION
STRING.
THE B REGISTER HOLDS THE LENGTH
OF THE EXTENSION. LEGAL VALUES
ARE024.

OUTPUT: THE A REGISTER HOLDS THE
FILETYPE FOR THE EXTENSION
INDICATED BY THE X REGISTER.
THE LOW BYTE OF GENERAL WORD
VARIABLE 0 ($42) HOLDS “1" IF THE
FILEIS *“.0PO", *2" IFIT IS “.OPT" AND
“0" OTHERWISE.

FUNCTION: This function is the reverse of Vector 152. The X register
points to the location of the “.” of the cxtension in memory while the B
register specifies its length. If the extension is *.*" the A register will
return “0". If the length is passed as *0", the A register will return “$FF".

VECTOR NUMBER: 154

TITLE: LZ-ONLY TRANSLATE.
ENTRY REQUIREMENTS: THE B REGISTER HOLDS:
0 TO TRANSLATE LANGUAGE
PROCEDURE.

1 TO TRANSLATE CALC EXPRESSIONS.
2 TO LOCATE ERRORS IN CALC.

3 TO LOCATE ERRORS IN LANGUAGE
PROCEDURES.

THE X REGISTER HOLDS THE OFFSET
IN Q CODE TO RUNTIME ERROR. THIS
IS IGNORED IF THE B REGISTER
HOLDS 0OR 1.

361

THE A REGISTER HOLDS:

0 TO PERFORM TRANSLATION AS FOR
2-LINE MACHINE.

1 TO PERFORM TRANSLATION AS FOR
4-LINE MACHINE.

OUTPUT: IF AN ERROR OCCURS:
THE X REGISTER HOLDS THE OFFSET
IN SOURCE CODE TO ERROR.
THE B REGISTER HOLDS THE ERROR
CODE.

FUNCTION: This function operates much like the Translate routine at
Vector 79 except that the user can specify, via the A register, whether the
codc is to be translated as if the machine was a 2-line version OR a 4-line.
This allows 4-line code to take advantage of the increased facilities of the
LZ family. Uscrs should note that object code generated in 4-line mode is
2 bytes longer than identical source code translated under 2-line mode.
Thus, LZ code will be recognized as such by a 2-line machine and will
not run.

VECTOR NUMBER: 155
TITLE: DIRTY EDIT FILENAME.

ENTRY REQUIREMENTS: THE X REGISTER HOLDS THE
ADDRESS OF THE PROMPT STRING.
THE A REGISTER HOLDS THE
PARAMETER FOR VECTOR 28.
THE B REGISTER HOLDS THE
MAXIMUM INPUT LENGTH.
THE LOW BYTE OF GENERAL WORD
VARIABLE 0 (842) INDICATES THE
LINE NUMBER FOR THE PROMPT.

OUTPUT: THE B REGISTER HOLDS THE KEY
WHICH CAUSED EXIT.

FUNCTION: This function performs much like Vector 104 cxcept that the

362

screen is not cleared. The key causing exit from the routine is returned in
the B register. In addition, the Carry Flag is set if the <ON/CLEAR> key
was used Lo terminate the edit.

VECTOR NUMBER: 156
TITLE: SPECIAL DIRECTORY.

ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
LOCATION OF THE PROMPT STRING
WHICH IS STORED WITH A LEADING
COUNT BYTE.

THE B REGISTER HOLDS THE
MAXIMUM LENGTH OF THE INPUT
STRING.

THE A REGISTER HOLDS THE FILE
TYPE FOR THE DIRECTORY ($81-$8F
OR $00 FOR ALL).

THE RUN-TIME BUFFER AT $2188
HOLDS THE DEFAULT FILENAME. THE
LENGTH IS STORED AT $2187.

THE HIGH BYTE OF THE GENERAL
WORD VARIABLE 0 (841) HOLDS:

0 FOR PROMPT ON TOP LINE.

1 FOR PROMPT ON SECOND LINE.
THE LOW BYTE HOLDS:

0 TO PRODUCE NO DIRECTORY (IN
WHICH CASE, ITJUST CALLS
VECTOR 155).

1 FOR DIRECTORY OF FILES.

2 TO DISPLAY FILE SIZES AT RIGHT.
4 TO DISPLAY FILETYPES AT LEFT.
8 TO PUT “*" AS ENTRY 1 FOR “COPY"
ETC.

16 TO INSERT FILETYPE AFTER
PROMPT.

32 TO DISABLE <EXE> KEY FROM
EXITING.

64 TO DISABLE <MODE> FROM
SWITCHING PACKS. :

363

OUTPUT: THE A REGISTER RETURNS THE
FILETYPE OF THE FILE SELECTED,
PROVIDING $42 IS NON-ZERO.

IF <ON/CLEAR> WAS PRESSED, CARRY
FLAG SET.

ELSE

THE RUNTIME BUFFER AT $2188
HOLDS THE SELECTED FILENAME
AND THE “SELECTED PACK™
VARIABLE AT $A2 HOLDS THE
DEVICE SELECTED.

FUNCTION: This function displays a directory of files with a prompt.
The user can select a file using the <EXE> key, after which the lower 2 or
3 lines of screen will be cleared when the function terminates.

VECTOR NUMBER: 157
TITLE: N'TH WILD CARD CATALOGUE.

ENTRY REQUIREMENTS: THE A REGISTER HOLDS “1" ON
INITIAL CALL AND “0" THEREAFTER.
THE TOP BIT IS SET TO DISPLAY FILE
SIZES.

THE B REGISTER HOLDS THE DEVICE
TYPE (0.1,2, ETC).
THE X REGISTER POINTS TO THE
FILENAME BUFFER.
THE TOP BYTE OF GENERAL WORD
VARIABLE 0 ($41) HOLDS THE
FILETYPE IF THE TOP BIT OF THE
LOW BYTEIS SET.
THE LOW BYTE OF GENERAL WORD
VARIABLE 0 ($42) HOLDS THE LENGTH
- OF THE STRING POINTED TO BY THE
GENERAL WORD VARIABLE 1 ($43).
THE GENERAL WORD VARIABLE 1
($43) POINTS TO THE MATCH STRING.
GENERAL WORD VARIABLE 2 ($45)

364

INDICATES THE N'TH MATCH
REQUIRED.

OUTPUT: THE A REGISTER INDICATES THE
FILETYPE FOUND.
THE B REGISTER HOLDS “1” FOR
“.OPO", 2 FOR “.OPT” AND “0”
OTHERWISE.
THE GENERAL WORD VARIABLE 0
($41) INDICATES THE NUMBER OF
BYTES IF A BLOCK FILE OR THE
NUMBER OF RECORDS IF A “.ODB”
FILE (IF THE TOP BIT OF THE A
REGISTER WAS SET).

FUNCTION: This function is similar to Vector 144 except that it gets the
nth match as held in the General Word Variable 2 ($45).

VECTOR NUMBER: 158
TITLE: ALARM ENTRY.

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
FUNCTION NUMBER INTHE RANGE 0-
6.

OUTPUT: NIL.

FUNCTION: This function provides a user with a means to enter the
alarm routines. The functions available are:

Function 0 - Initialise. This function clears all alarms and
allows the alarm to be checked by setting the “alarm-check”
variable at $2335.

Function 1 - Call Alarm Application. This function calls the
alarm application as is it were from the top-level and sets the
screcn 1o 4-line mode. It then allows the alarms to be viewed
and modified. When the routine is exited, the display is
returned to its previous mode.

365

Function 2 - Check For Time-out Alarms. If the “alarm-
check” variable at $2335 is set, this function checks for diary
and ordinary alarms which are due to sound within the next
34 mins 08 secs and scts them off. The maximum likely 10
sound is 1 diary and 2 ordinary alarms. Alarms which are due
to sound within the next 2048 secs are then examined. If any
arc in fact due, the routine exits with the Carry Flag set and
the D register indicaling the number of scconds before the
first of the alarms is due. The contents of the D register in
such cases will be greater than or equal to 2 and less than
2048.

Function 3 - Check For Alarms Due Now. If the “alarm-
check” variable at $2335 is set, this function checks for
alarms due now and sounds them (maximum of 1 diary and 2

ordinary).

Function 4 - Check For Unacknowledged Alarms. If the
“alarm-check” variable at $2335 is set, this [unction aclivates
the “Review Missed Alarms™ on swilch-on. Any Diary alarms
which were not cleared by the <ON/CLEAR> key are
reviewed, preserving the existing screen.

Function 5 - Turn Alarms Off. This function clears the
“alarm-check" variable at $2335 afier copying its previous
state lo another storage location. Users should exercise some
degree of care in using this apparently simple call. If it is
called again without restoring the state of the “alarm-check™
variable, all alarms will be disabled until the variable is set by
POKEing it.

Function 6 - Restore Alarms. This is the reverse of Function
5. It copies the preserved alarm status into the “alarm-check”
variable at $2335.

366

VECTOR NUMBER: 159

TITLE: NOTEPAD ENTRY.

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
FUNCTION NUMBER.

OUTPUT: NIL.

FUNCTION: This function provides the user with an entry point to the
Notepad facilities. There are 5 functions, all of which begin by flushing
the Diary Pastc Buffer. This buffer is used by the Notepad application to
save the current find string. The block file type and cell type are
initialised for Notepad editing and, aftcr the function has terminated, they
are restored to OPL editing values. The functions are:

Function 0 - Initialise Notepad. This function is called on cold
booting the LZ. It inserts the name “Notepad:™ into the cell,
sets the cursor to the [irst editable character and clears the
“password status" variable at $7EFB to indicate that no
password exists. In addition, it sets the “Notepad Flags"
variable at $7FEA 1o 8, which indicates that the Notepad is
not to be numbered, the name is not capitalized, a title line is
required and exit is permitted on <ON/CLEAR>.

Function 1 - Call Notepad. This function calls the Notepad

application as if it had been selected from the top level menu
“Notes™.

Function 2 - Find String. This function is also called by the
“Search” option in the *“Utils" menu. It searches all Notepads
not password-protected, starting with the current and then all
the saved Notepads in “A:", “B:", “C:" order. The find string
must be stored in the run-time find buffer at $22C9. When a
maich is located, it will be displayed on the bottom line of the
screen. Pressing:

<MODE> will allow cdiling at that point.

<EXE> will scarch for the next match.

<ON/CLEAR> will exit from the scarch.

367

Function 3 - Edit Notepad. Allows the user to edit a named
notepad as if from a top-level Notepad menu item. The
General Word Variable 0 (341) points to the location of the
Notepad name. If this name does not match that in the
Notepad cell, the packs are searched in “A:", “B:", “C:" order
until the match is made. The file is then loaded into the
Notepad cell. Any errors are displayed immediately. No error
codes are returned. However, on exit, the following can be
true:

Carry Set = search went past end.

Carry Clear + B Register Clear = <ON/CLEAR> pressed.

Carry Clear + B Register Set = = <MODE> pressed.
Function 4 - Check Password Status. This function ascertains
whether a Notepad file is password protccted. The General
Word Variable 0 ($41) points to the location of the Notepad

name. On exit, the B register returns “1" if the Notepad is
protected and 0™, otherwise.

VECTOR NUMBER: 160

TITLE: ENTER CALCULATOR.
ENTRY REQUIREMENTS:NIL.
OUTPUT: NIL.

FUNCTION: This function enters the calculator in exactly the same way
as from the top level menu. Users should note that this facility must not be
called from within an OPL proccdure. This is due to the fact that, unless

all variables are preserved, OPL is not re-entrant.

VECTOR NUMBER: 161
TITLE: ' CALL UTILITY APPLICATION.

ENTRY REQUIREMENTS: THE B REGISTER HOLDS FUNCTION
NUMBER (0-11).

OUTPUT: NIL.

FUNCTION: This function allows the user to call any of the options in
the top level “UTILS" menu. Twelve functions are available:

Function 0 - Initialises the system password.
Function 1 - Calls the “UTILS" menu.

Function 2 - Calls the Utils “Search” option.

Function 3 - Calls the Utils “Info” option.

Function 4 - Calls the Utils *Passw" option.

Function 5 - Calls the Utils “Lang" option.

Function @ - Checks the system password if set “ON™.
Function 7 - RESETS the machine.

Function 8 - Formats the RAMPAK whose code is passed in
the A Register (1="B:", 2="C:").

Function 9 - Calls the Utils “Dir” option.

Function 10 - Calls the Utils “Copy” option.

Function 11 - Calls the Utils “Delete” option.

368

VECTOR NUMBER: 162

TITLE: CREATE BAR UDGs

ENTRY REQUIREMENTS: THE A REGISTER SPECIFIES THE %
BLACK ON LEFT.
THE B REGISTER SPECIFIES THE %
GREY ON RIGHT.

OUTPUT: PLACES THE BAR CHARACTERS IN

THE RUNTIME BUFFER AT $2188.
SETS THE RUNTIME BUFFER LENGTH
AT 52187 TO 20.

369

FUNCTION: This function sets up the UDGs for drawing the bar graph
and stores them in the runtime buffer.

YECTOR NUMBER: 163

TITLE: PARTIAL VIEW STRING.

ENTRY REQUIREMENTS: THE TOP BIT OF THE A REGISTER IS
SET IF EXIT ON ARROW KEYS IS
REQUIRED.

THE B REGISTER HOLDS THE LENGTH
OF THE STRING TO VIEW.
THE X REGISTER POINTS TO THE
LOCATION OF THE STRING.
GENERAL WORD VARIABLE 0 HOLDS
THE TIME DELAY BEFORE SCROLLING
BEGINS.

OUTPUT: NIL.

FUNCTION: This function operates in the same way as Vector 21 but at
the current cursor position, as specified by the “Cursor Position” variable
at $62. Characters before the cursor position will not be scrolled but the
rest of the string will scroll on the remainder of the line.

VECTOR NUMBER: 164

TITLE: ENTER TIME.

ENTRY REQUIREMENTS: THE B REGISTER CONTAINS THE
FUNCTION NUMBER.

OUTPUT: NIL.

FUNCTION: This function allows the user 1o cnter the TIME application
as from the top level menu. There are 2 functions:

Function 0 - Initialisc. This function actually does nothing at

all.

Function 1 - Calls the TIME application as if from the top

level menu.

370

VECTOR NUMBER: 165
TITLE: QUICK SORT.

ENTRY REQUIREMENTS: THE D REGISTER HOLDS THE
NUMBER OFITEMS TO BE SORTED.
THE X REGISTER CONTAINS THE
ADDRESS OF THE USER-SUPPLIED
ROUTINE.

OUTPUT: NIL.

FUNCTION: This function provides the basis for a Quick Sort by
assigning space for a tag for each of the itlems to be sorted. The user's
routine is called for each of these items to obtain the tag. Using the user's
routine, these are sorted and passed (again to the user’s routine). The
user’s routine must not usc the runtime variables at $4D, $4F and $51
unless their contents are preserved on each call. Furthermore, the runtime
buffer at $2188 is also used by the Vector and should therefore be
avoided.

The user’s routine can be called by the Vector, giving a parameter with 3
possible values:

Register B = 0. When the call to the User’s rouline is made
with this value, the X register indicates the number of the
record (0 to n-1), Icaving it as the tag for that record.

Register B = 1. This indicates that the X register holds the tag
for the left hand record and the General Word Variable 0
($41) the right. The routine should leave the condition flags
as for “CMP X,UTW_S0".

Register B = 2. This means that the X register holds the tag
for the next SORTED record.

As this is a rather complex subject, users should siudy the assembler
example below which is reproduced courtesy of PSION PLC.

371

EXAMPLE . VECTOR NUMBER: 166
Sorts the qwerty alphabet into order

TITLE: ENTER WORLD.
LDD #26
LDX #MYROUTINE ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
OS UTSSORT FUNCTION NUMBER.
BCC OKRTS
OS ERSMESS it _NIL
OKRTS: RTS
FUNCTION: This Vector allows the user to enter the “WORLD”
MYROUTINE: application as from the top level menu. It has 3 functions:
TST B | : 2
BNE 18 Function 0 - Initialise. This sets the base to London, Bonn or
XGDX - yeniticaliress of lenes Paris according to the language in force (indicated by the
ADDD #ORIGINAL “language™ variable at $2186) and sets the initial city to
XGDX Manhattan.
RTS 3
Function 1 - Enters the *“WORLD" application as if from the
1$: DEC B top level menu.
BNE 2% : : :
LDA A0X Function 2 - Places the base city and country name into the
LDX UTW SO: runtime buffer at $2188. The function then returns the city
LDA B.(}.x_ name at $2188+100 and the country name at $2188+120
CBA : docs comparison unless there IS no city. In such a case the country name is
RTS placed in the city location and the country location is left
blank. Both strings are byte length.
25:LDA AO0X ; copies sorted letters in order
STA A0X
INX TITLE: ENTER DIARY.
STX SRTTAG
RTS ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
' FUNCTION NUMBER.
SRTTAG:
.word SORTED OUTPUT: NIL.
ORIGINAL:
.ascii “QWERTYUIOPASDFGHJKLZXCVBNM" FUNCTION: This Vector provides the user with a means of enltering the
SORTED: Diary application. there are 4 functions, each of which begins by enabling
_ascii “00000000000000000000000000" <SHIFT-EXE>, clearing the Diary paste buffer, sctting the time in the

372 | 373

Diary

to the system time and defining the Diary UDGs. All Functions end

by disabling <SHIFT-EXE>. The functions are as follows:

374

Function 0 - Initialise. This works as per cold boot, clearing
the diary, setting the “slot boundary" variables ($20A9-
$20AB) to 48,56 and 72 respectively. It also cnables Diary
alarm prompts by selting the “alarm prompt” variable at
$20AC to a non-zcro value.

Function 1 - Call Diary. This function enters the Diary week-
view as if from the top level menu.

Function 2 - Find String. This searches the current Diary for a
given string which must be located in the find buffer at
$2209. If a match is found, it will be displayed on the bottom
2 lines, allowing the user o press:

<MODE> o enter the Diary at that point in page mode.
<EXE> 1o scarch for thc next match.
<ON/CLEAR> to abort.

On exit from this function, one of the following conditions
will be set:

Carry Flag Sct. This means that the scarch went past the end
of the Diary.

Carry Set + B Register Clear. The <ON/CLEAR> key was
pressed, aborting the scarch.

Carry Set + B Register Set. The <MODE> key was pressed,
the Diary entcred and subsequently feft.

Function 3 - Display Monthly Calendar. This is as per top
level option “Month”. The day pagc can be cntered by
pressing <EXE>.

VYECTOR NUMBER: 168

TITLE: ENTER XFILES.

ENTRY REQUIREMENTS: THE B REGISTER CONTAINS THE
FUNCTION NUMBER.

OUTPUT: NIL.

FUNCTION: This Vector allows the user to enter the “XFILES”
application. there are 6 functions available:
Function 0 - Initialise. This function initialises the current
XFILES file to “MAIN",

Function 1 - This function allows the user to enter the
XFILES application as from the top level menu.

Function 2 - Find Siring. This function searches files on all
devices for the string stored in the find buffer at $22C9,
whose length is held at the “find buffer length™ variable at
$22C8. On exit:
Carry Set. This means that the string was not found or that it
WAS found but that <EXE> was then pressed.
Carry Clear and B Register Set. This indicates that
<MODE> was pressed.
Carry Clear and B Register Clear. This means that
<ON/CLEAR> was pressed or an error occurred.

Function 3 - Find File. This function searches for the file
whose name string is pointed to by the General Word Variable
0 ($41). The search examines packs in the order “A:", “B:"
and “C:", If the file is found, it is made the current XFILES
file. ;

Function 4 - FIND Function. This function runs the top level
FIND function.

Function 5 - SAVE Function. This function runs the top level
SAVE function.

375

VECTOR NUMBER: 169

TITLE: DISPLAY ERROR.

ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
ERROR STRING.

OUTPUT: NIL.

FUNCTION: This function displays the string which is stored, leading
byle count, at the address pointed to by the X register in error message
format. Note that the string must be less than 21 characters for 4-line
displays and less than 17 for 2-line.

VECTOR NUMBER: 170
TITLE: MONTH NAME.
ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE MONTH
NUMBER (0-11).
OUTPUT: THE X REGISTER POINTS TO THE
MONTH NAME.

FUNCTION: This function retums the 3-letter, capitalized month name in
the current language. The B register value does not appear to be checked.
Values outside the range 0-11 will return garbage.

VECTOR NUMBER: 171

TITLE: ENTER EDITOR.

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
FUNCTION NUMBER.

OUTPUT: THE X REGISTER INDICATES THE
CURRENT LINE.

THE A REGISTER CONTAINS THE
FOLLOWING FLAGS:

376

BIT 7 - TRUE IF NUMBERED.

BIT 2 - TRUE IF PROMPT TO BE
CAPITALIZED.

BIT 1 - TRUEIF NO TITLE REQUIRED.
BIT 0 - TRUE IF CHANGED.

THE B REGISTER HOLDS THE
POSITION IN THE LINE INDICATED BY
THE X REGISTER.

FUNCTION: This Vector allows the user to enter the Editor. The Register
A flags which are passed 1o Function 2 can be ignored by passing 0 in the
MSB of the General Word Variable 0 ($41) before calling “EDIT™. This
will cause editing, as in the Organiser 11, to be enforced. This Vector does
not handle files but offers the following funclions:

Function 0 - Initialise. This function initialises the

parameters. The A register should holds the block file type

and the General Word Variable 0 ($41) the cell address®2.

Function 1 - New. This function requires the name siring of
the new file to be pointed to by the X register. It will insen
the name at the start of an existing cell.

Function 2 - Edit Cell. This function allows editing of an
existing cell which must have a name terminated by a colon at
the start. The function requires the following input data:

The X Register 1o indicale the current line (starting at 0).

The A Register to indicate the position in the current line.

The MSB of the General Word Variable 0 ($41) to hold these
flags: ;

BIT 7 - True if numbered.

BIT 2 - True if prompt 1o be capitalized.

BIT 1 - True if no title required.

BIT O - True if changed.

Function 3 - Find.

377

Function 4 - Zap.
Function 5 - Top.
Function 6 - Bottom.
Function 7 - Print.

Function 8 - Restore Editor Status. This function must be
called when finished with the editor.

VECTOR NUMBER: 172

TITLE: ARCSIN.

ENTRY REQUIREMENTS: FLOATING POINT ARGUMENT MUST
BE STACKED.

OUTPUT: FLOATING POINT RESULT IS
RETURNED ON THE STACK.

FUNCTION: This function rcturns the arcsine in radians of the floaling
point argument on the stack, Icaving the stack pointer (8A5) unchanged.

VECTOR NUMBER: 173

TITLE: ARCCOS.

ENTRY REQUIREMENTS: THE FLOATING POINT ARGUMENT
MUST BE STACKED.

OUTPUT: FLOATING POINT RESULT IS LEFT ON
THE STACK.

FUNCTION: This function takes the floating point argument from the
stack and retumns the floating point arccosine again on the stack. The stack
pointer ($A5) is left unchanged.

378

YECTOR NUMBER: 174
TITLE: SORT FILE.

ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
FILENAME TO BE SORTED.
THE D REGISTER HOLDS THE
ADDRESS OF THE USER ROUTINE TO
BE CALLED OR $0000 FOR NO
ROUTINE.

OUTPUT: NIL.

FUNCTION: This function is similar to Vector 165, except that the X
register indicates the name string (leading count byte in form
“A:NNNNNNNN") of the file to be sorted. The D register points to the
user routine which will be given a value in the A register at each pass
(1.2,3). In addition, the X rcgister will contain the record number/number
of comparisons during the sort. There are 3 passes, First the tag list is
generated, then the list is sorted and, finally, the file is re-constructed from
the sorted tag list. If there is insufficient space in memory for the tag list,
the file will be left unsorted.

VECTOR NUMBER: 175

TITLE: ENTER PROG.

ENTRY REQUIREMENTS: THE B REGISTER HOLDS THE
FUNCTION NUMBER.
OUTPUT: NIL.

FUNCTION: This Vector provides the user with a means by which he can
enter the top level PROG application. There are 2 functions:

Function 1 - Call PROG. This calls the PROG application as
if from the top level menu.

Function 2 - Find String. Scarches the block files, whose type
is held in variable $23EQ, for the string held in the runtime

379

find buffer at $22C9 and whose length is stored in the FUNCTION: This function is similar to Vector 72 except that the cursor is
“runtime find buffer length™ variable at $22C8. On exit, one tumned ON before the key is “GOT™ and OFF afterwards.

of the following will be true;

Carry Set. This means that the string was not found or that it

VECTOR NUMBER: 178

WAS found but that <EXE> was subsequenily pressed. TITLE: CASE DEPENDENT BUFFER COMPARE.
Carry Clear + B Register Set. This means that <MODE> ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
was pressed. LEFT HAND STRING.

Carry Clear + B Register Clear. This means that either
<ON/CLEAR> was pressed or that an error occurred.

VYECTOR NUMBER: 176
TITLE: FAST DELETE.

ENTRY REQUIREMENTS: THE D REGISTER INDICATES THE OUTPUT:
RECORD TO DELETE FROM.
THE X REGISTER INDICATES EITHER
THE NUMBER OF RECORDS TO
DELETE OR “$FFFF” TO DELETE TO
END OF FILE.

OUTPUT: NIL.

FUNCTION: This function “fast deletes” the number of records specificd
in the X register of the type indicated by the “current record lype
variable™ at $96, starting at the record stated in the D register (or 1o the
end of the file, if the X register holds $FFFF).

VECTOR NUMBER: 177

TITLE: CURSOR-ON GET KEY.

ENTRY REQUIREMENTS: NIL.

THE GENERAL WORD VARIABLE 0
($41) POINTS TO THE RIGHT HAND

"~ STRING.

THE A REGISTER HOLDS THE LENGTH
OF THE LEFT HAND STRING.

THE B REGISTER HOLDS THE LENGTH
OF THE RIGHT HAND STRING.

THE B REGISTER WILL BE:

a. EQUAL TO ZERO IF THEY STRINGS
ARE IDENTICAL.

b. LESS THAN ZERO IF THE LEFT
HAND STRING IS FIRST
ALPHABETICALLY.

c. GREATER THAN ZERO IF THE RIGHT
HAND STRINGIS FIRST
ALPHABETICALLY.

THE Z FLAG WILL BE SET ACCORDING
TO THE CONTENTS OF THE B
REGISTER.

THE N FLAG WILL BE SET
ACCORDING TO THE CONTENTS OF
THE B REGISTER.

FUNCTION: This function compares 2 buffers and is similar to Vector
OUTPUT: THE B REGISTER HOLDS THE ASCII 114 except that the comparison is case dependent.

VALUE OF THE KEY PRESS.

380

381

VECTOR NUMBER: 179

TITLE: SET TIME.

ENTRY REQUIREMENTS: THE X REGISTER POINTS TO THE
DATE AND TIME.

OUTPUT: NIL.

FUNCTION: This function sets the time indicated by the X register. The
data must be 6 bytes in length and cannot be directly POKEd into

memory, since the system time might be undergoing an update by the
NML

382

Index

A

ABA, 176

ABXIX, 176

Accumulator Addressing, 169
Accumulators, 39, 45
Accumulators A, Band D, 39,
Action Parameter Offset, 316
Action Parameter Register Offset, 316
ADCA,1TT

ADCB, 177

ADD A, 178

ADDB, 178

ADDD, 179

Addition, simple, 56

Address Bus, 14

Address Bus, 153

Address of keyboard lookup table, 141
Addressing, 169

AIM, 179

Alarm checking enabled, 143
Alamn entry, 365

Alam loop, 110

Alamm table, 143

Alarm Variables, temporary area, 139
Allocator cells, 145

AND A, 180

AND B, 180

Answers to Post Tests, 116-125
Append, 312

Applications, 83

Arccos, 378

Arcsin, 378

Arctangent, 313

Array 10 sort numbers, Using an, 93
ASL, 181

ASLD, 181

ASR, 182

Assigning value 10 a variable, 46
Asynchronous mode, 156,158

B

Back, 303

Baud Rate, control the, (BR), 159
BCC, 182

BCLR, 183

BCS, 183

BCS, Branch if Carry Set, 71

BEQ, 184

BEQ, Branch if EQual, 71

BGE, 184

BGE, Branch if Greater than or Equal 10
zero, 72

BGT,185

BGT, Branch if Greater Than zero, 72

BHI, 1851

BHI, Branch if Higher, 72

Binary, 24

Binary to Decimal, 24, 342

Binary to Hex, 343

BIT A, 186

BITB, 186

BLE, 187

BLE, Branch if Less than or Equal to
zero, 72

Block File Catalogue, 303

BLS, 187

BLS, Branch if Lower or Same, 72

BLT, 188

BLT, Branch if Less Than zero, 72

BMI, 188

BMI, Branch if MInus, 72

BNE, 189

BNE, Branch if Not Equal, 72

Boot devices, 298

Bottom line screen buffer, 142

BPL, 189

BPL, Branch if PLus, 73

BRA, 190

BRA, BRanch Always, 73

Branch instructions, 71

Break Test, 318

BRN, 190

BRN, BRanch Never, 73

BSET, 191

BSR, 192

BSR, Branch to SubRoutine, 73

BTGL, 192

BTST, 193

Bubble Sor, 93

Buffer for maths + overflow, 143

Buffer Instring, 338

Bus Available (BA), 153

383

index Buz-Dis

Buzzer on, off, 140

BVC, 194

BVC, Branch if oVerlow Clear, 73
BVS, 194

BVS, Branch if oVerflow Set, 73
Bytc, 28

C

Calculate Day, 334

Call edit, 300

Call utility application, 369
Calling an OS routine, 286
Caps key, 142

Camiage retum flag, 139

Camy (C), 168

Carry Flag, 39,60

Case dependent buffer compare, 381
CBA, 194

Central processing unit (CPU),11
Checking for alarms, 143

CLC, 195

CLI, 195

CLR, 195

CLV, 196

CMI re-vector address, 141
CMP A 196

CMP B, 197

COM, 197

Condition Code Register, 39, 70
Confirm, 343

Control/Staws Register, 155
Convert, 129

Copy, 305, 333

Copy Buffer, 335

Copy of current time when checking

alarms, 143
Copying a valuc from onc variable 10
another, 50
Cosine, 313
CPURAM, 135
CPU Registers (Diag 1), 38
CPX, 198
Create bar UDGs, 369
Create File, 306
Crystal Oscillator, The, 150
Current branch label number, 144

384

Current error condition, 139

Current logical name, 139

Current Pack, 329

Current year 0-99,month 0-11,day 0-31,
hour 0-23, minute 0-59, second 0-59,
143

Cursor Display Control, 296

Cursor-on get key, 380

D

DAA, 198

Data Activity in Immediate Addressing
Mode, (Diag 14), 169

Data Activity in the Direct Addressing
Mode, (Diag 15),170

Data Activity in the Extended
Addressing Mode, (Diag 16),171

Data Activity in the Indexed Addressing
Mode, (Diag 17),172

Data Activity in the Relative Addressing
Mode, (Diag 18),173

Data Bus, 153

Data Display 1,336

Data Display 2, 336

Database cell, 140

Day, 139, current, 143

Day name, 360

DEC, 199

Decimal places in calculator display, 144

Decimal to Binary, 26

Declared vaniables count, 144

Decode option, 49, 237

Delete Block File, 304

Delete File, 307

DES, 199

Device Catalogue, 342

Device of 1op procedure, 139

DEX, 200

Diary cell, 140

Diary Variables, 139

Direct Addressing, 170

Direct Addressing mode, 47

Dinty edit filename, 362

Disable NMI - maintain clock, 291

Display error, 376

Display Error Message, 302

index Disp-ind

Display menu with icon, 349
Do...until loop%=101, 69
Duplicate, 50

E

Edit Filename, 333

EIM, 200

Enable NMI 10 processor, counter, 140
End of text pointer, 144

Enter calculator, 368

Enter diary, 373

Enter editor, 376

Enter prog. 379

Enter Routine, 336

Enter time, 370

Enter world, 373

Enter Xfiles, 375

Entering a program, 242

EOR A, 200

EOR B, 201

Error Codes, 286

Escape Flag, 139

Exponent, 313

Extended Addressing, 171
Extended Addressing mode, 47
Extension O codc operator code, 144
Extemal O code size, 144

F

Fast delete, 380

Fibonacci, 87

Field name symbol table 1, 2, 3, 4, 140-1
File buffer 1-4, 140

File Catalogue, 305

Fill Buffer, 337

Find, 307

FIND buffer, length, 143

Flag to ignore an NMI, 141

Floating Point standard deviation, 352
Floating point sum, 350

Floating point variance, 351

Floating Point Addition, 325

Floating Point Division, 327

Floating point max, 353

Floating point mean, 350

Floating point min, 352

Floating Point Multiplication, 328

Floating Point Negation, 328

Floating Point Subtraction, 328

Floating Point to ASCII Exponential,
326

Floating Point to Decimal, 325

Floating Point to Integer ASCTI, 327

Floating Point to Numeric ASCII, 326

Flush Keyboard Buffer, 318

Frame counter, 143

Frame pointer for ENTER/LEAVE, 141

Free a cell, 287

Free-running counter, 167

Function type, 144

G

General word variables, 139

Get extension, 360

Get Key, 318

Get time, 334

Get type, 361

Get Vector, 299

Global & local data sizes, 144

Global record cell, 140

Grab a cell, 287

Grow a cell, 288

Half Carry Flag (H), 168

Half-Carry Flag, 40

HALT, 154

Halt Enable (HLTE), 154

HD6303X MCU, 38, 148-173, 176-229

Hexadecimal, 30

Hexloader, Using the, 49

Hitachi HD6303X, 148-173, Instruction
Set, 176-229

Hour, 139, current, 143

I

ICI re-vector address, 141
Immediate Addressing, 169
Implicd Addressing, 172

INC, 201

Independent Buffer Compare, 337
Index Register, 168

Index Register, 39, 73

Indcxed Addressing, 172

385

Index Ini-Nop

Initialise Keyboard Interrupts, 319

Input Capture Flag, (ICF), 165

Input/Output Chips, 13

INS, 202

Instruction Set, HD6303X, 176-229

Instructions for entering data, 281

Integer Division, 339

Integer Multiplication, 339

Intemal Architecture of the Psion
Organiser, 15

Intemal CPU Operation, 168

Internal CPU RAM Addresses, 135

Internal RAM, 153

Interrupt Mask, 40

Interrupt Mask (T), 168

Interrupts, 151

INX, 202

IRQ1 re-vector address, 141

IRQ2 re-vector address, 141

J

IMP, 202

JSR, 203

JSR, Jump 10 SubRoutine, 101

K

Keyboard + clock counter reset, 140
Keyboard poll routine, 141

L

LA/OS only, lowest , highest addr used
in low RAM, 143

Language stack base, 141

Language text cell, 140

Language type, 144

Last procedure name, 144

LCD data register, 140

LDA A, 203

LDA B, 204

LDD, 204

LDS, 205

LDX, 205

Leave Routine, 339

Length of keyboard click, 142

Line Editor, 300

Liquid Crystal Display (LCD) control

386

register, 140
Load, 299
Load Instruction Register, 152
Locate Error Message, 302
Locate Record, 308
LOG (10), 314
LOG (e), 314
Lookup, 298
Loop structure, 69-70
LSR, 206
LSRD, 206
LZ - only translate, 361

M

Machine code, Making room for, 232

Machine Code, What is...7 35

Main Memory Zero Page Locations,
136-138

Memory Map, 134

Memory Read Enable (MRE), 154

Memory Ready (MR), 154

Memory slots for calculator, 143

Memory Viewer, 236

Menu, 323

Minute, 139, current, 143

Mnemonics, 37, 281

Modular Programming, 100

Month, 139, current 143

Month name, 376

MUL, 207

Multiplication, 83

N

Nth wild card catalogue, 364
NEG, 207

Negative Flag, 40

Negative (N), 168

New Procedure, 321

Next, 309

Next Find, 308

NMI re-vedor address, 141

Non-maskable interrupts (NMI) disable,

250

Non-maskable interrupts (NMI) enable,

291
NOP, 208

Index Not-Res

Notepad entry, 367

Number Bases Test Programme, 128
Number of days, 359

Nums key, 142

0

OCI re-vector address, 141
OIM, 208

Open Block File, 304

Open File, 309

Operating Mode, 150

Operating System, 108, 286-382
OPL, Returning 10,47
ORA A, 209

ORA B, 209

ORG staternent, 70
Orgkill, 240

Orgload, 239

Qutput a character, 294
Output Compare Flag 1 (OCF1), 165
Output Enable 1 (OE1), 166
Overblow factor, 144
Overflow buffer, 145
Overflow Flag, 39

Overflow (V), 168

Overlayed against maths, 145
Overlays, 139

P

Pack Read Byte, 329
Pack Read Series, 330
Pack Read Word, 330
Pack Save Bytes, 331
Pack Skip Bytes, 331
Pack Tum Off, 329
Parameters, 286

Panial view string, 370
PCLOAD, 240
PCSAVE, 241
Permanent cell, 140
Port 2 Data Direction Register, 167
Port 6, 153

Power, 314

Prepare 1o Save, 304
Print string, 295
Process procedure, 322

Program, Checking the, 49

Program Counter, 39

Program layout, 48

Programming, modular, 100

Programs, The, 241-253

PSH, 210

PSHA (PuSH the A register on to the
stack), 91

PSHX, 210

Psion Organiser Opcrating System, 286-

382

PUL, 211

PULA (PULIlthe A register from the
stack), 91

Pulse disable, 140

Pulse enable, 140

PULX, 211

Q code offset 10 stop at, 144
QCODE output cell, 140
Quick sort, 371

R

RAM, 12

Ram Enablc (RAME), 154

Random, 315

Random Access Memory (RAM), 12
Random number seed, 144
Re-define clock, 346

Re-enable NMI - maintain clock, 291
Read Record, 310

Read-only memory (ROM), 11
Read-to-display pause, 269-70
Read/Write UDG, 347

Reading & Writing, 152
Ready-1o-display pause, 297

Receive Data Register Full (RDRF), 159

Receive Enable (RE), 158

Receive Interrupt Enable (RIE), 158
Relative Addressing, 173

Rename, 311

Replace item within a cell, 288
RESET, 240

Resetting the MCU, 151

Restore Screen, 295

387

Index Ret-Sys

Index T-Z

Return address used in UT_DDSP, 144
ROL, 212

ROR, 212

RTIL, 213

RTS, 100

RTS, 213

RUN, 49

Run Procedure, 332

RUN ROUTINE, 237

Run time buffer length, $100 long,143
Run Time Variables, 139

S

Save interrupt mask while blowing, 143

Save interrupt mask while off, 141

Save Screen, 295

Save stack pointer while off, 142

Save TCSR1 while off, 141

Save/Restore word-length variables, 292

Saved sign, 144

Saved token for un-lex, class forun-
lIex, 144

SBA, 214

SBCA,214

SBCB, 215

SEC, 215

Seccond, current, 143

SEL 216

Select Pack, 311

Semi-Custom Chip, The, 140,
Addresses, 140

Serial Communications Interface (SCI),
156

Sct Clock display status, 346

Set Current Record Number, 311

Set Current Record Type, 310

Set for pack switch off, 142

Set language, 344

Set line mode, 345

Sct Pack, 331

Set Pack Address, 330

Set the Keyboard State, 319

Set time, 382

Sct 1o ignore TRAN option after editing,
144

SEV, 216

388

Shift key, clear 1o enable, 143

Shrink a cell, 289

Simple Arthmetic, 56
Sine, 315

Single-line menu display, 348
SIO re-vector address, 141
Size a cell, 289

Size pack, 312

SLP, 217

Sort, 93

Sont file, 379

Sound a tone, 293

Sound alarm, 110

Sound the Alarm, 293
Sound the Beep Note, 293
Space, 237

Special directory, 363
Split Out Field, 340
Square root, 315
Squaring, 81

STA A, 217

STA B, 218

Stack Pointer, 39

Stack, The, %0

Standby mode, 151
Standby Power, 154

Stant of current token, 144
STD, 218

String to Floating Point, 324
§TS,219

STX, 219

SUB A, 220

SUB B, 220

SUB D, 221

Subroutine, Calling a, 101
Subtraction, simple, 58
SWI, 221

SWI re-vector address, 141
Switch off, 140, 293
SWOF rc-vector address, 141
Symbol 1able cell, 140
Symbol wable data pointer, 144
Synchronous Mode, 160
Sysicm variables, 140

T

TAB, 222

Table Add, 317

Table stack, 143

Table Stant, 317

Table user vector, 143

Tangent, 316

TAP, 224

TBA, 224

Temporary arca to save screen, 142

Temporary buffer, 143

Temporary swilch off, 345

Test Keyboard Buffer, 320

TIM, 223

Time Constant Register, 155

Time one week from now, 145

Timer 2 Enable, 156

Timer 2 Upcounter, 155

Timer Control/Status Register 1, 165,
Register 2, 166

Timer Overflow Flag (TOF), 165

Tiled menu display, 347

TOI re-vector address, 141

Top level menu cell, 140

Top line screen buffer, 142

Top Menu Delete, 333

Top Menu Insen, 332

Top of allocator area, 141

TPA, 223

Translate, 322

Transmit Data Register Empty,
(TDRE)159

Transmit Enable (TE), 158

Transmil Interrupt Enable (TIE), 158

Transmit/Receive Control Status
Register (Diag 7) 158

Trap flag, 139

TRAP re-vector address, 141

TST, 224

TSX, 224

Two's Complement, 29

TXS, 225

Type ahead buffer, 142

U

Un-boot, 298

Unsigned Integer Division, 341
Unsigned Integer Multiplication, 341
Update ume, 334

\%

Validate wild card filename, 353
Variables, 45

Vector Location, 152

Vector 10 vector table, 144
View, 301

View string, 296

A%

WAL 225

Wait, 335

Wake Up (WU), 158

Week number, 359

Wild card catalogue, 354
Wild card copy, 356

Wild card delete, 357

Wild card find, 357

Wild instring, 358

Word processor, 233, no...234
WRM re-vector address, 141

XYZ

XGDX, 226

Year, 139, current, 143

Zero a cell, 290

Zero Flag, 40

Zero page locations outside the CPU,
136

Zero (Z), 168

4 file control blocks, 143
4 pack IDheaders, 10 bytes each, 143

389

Machine Code Programming
on the Psion Organiser

Machine Code programming gets down to the most
fundamental elements of a computer, it is a very
precise and unforgiving art. This book is seeks to give
the background needed to understand what machine
code is, and uses the Psion Organiser Il to
demonstrate how programming can be practically
achieved.

The micro-processor used in this hand-held computer
n p

has a "regular”, well behaved instruction set and so is

particularly suitable for this learning exercise.

Psion users are lucky that a slightly more advanced
language system "OPL" which shortcuts many of the
more tedious aspsects of low level programming. The
contents of this book apply to the models CM, XP and
174

LT T Published by

Kuma Computers Ltd, ISBN 0-7457-0138-8
Pangbourne, Berkshire, England 0 1495
Telephone: 0734 - 844335
Telex: 846741 KUMA G

807457701

