FILEHANDLING | PROGRAMS

a1 ”Mﬁﬁﬁ_h R
D) 20| €3] K2

o) PRy Tr-_"\ i PR

A Sl ¥ '""“I,E..I.’

and other programs for
the PSION ORGANISER II

)
=
-
-
——
<
—
L)
——
b

File Handling and other programs

for the Psion Organiser Il

Other books by Mike Shaw
published by Kuma Computers Lid:

Behind the Screens of the MSX
Using and Programming Psion Organiser II

FILE HANDLING
AND OTHER PROGRAMS
FOR THE
PSION ORGANISER Il

Mike Shaw

To Kevin, Simon, Adam, Zoe and Melanie,
and to Karen, Andrea, Vincent and Andy.

Published b
KUMA COMPUTERS LTD.

First Published 1988
Kuma Computers Ltd.

Unit 12, Horseshoe Park,
Horseshoe Road, Pangbourne,
Berkshire RG8 7JW
Telex 846741 KUMA G Tel 07357 4335

Copyright © 1988 Mike Shaw
Printed in Great Britain

ISBN 07457-0135-3

This book and the programs within are supplied in the belief that its
contents are correct and they operate as specified, but Kuma
Computers Ltd. (the Company) shall not be liable in any circumstances

~ whatsoever for any direct or indirect loss or damage to property
incurred or suffered by the customer or any other person as a result of
any fault or defect in the information contained herein.

ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval
System or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written

_permission of the author and publisher.
The only exception is the entry of programs contained herein onto a single
FPsion Organiser II for the sole use of the owner of this book.

Forward

Many people have purchased a Psion Organiser II for the valuable
facilities it offers (the diary, address book, smart calculator and so
on), to discover subsequently that they have a very powerful computer
system in their hands ... a computer system capable of doing far more for
them if they could onlytap into its resources by using the built-in program-
ming language.

Those with previous programming experience should find very little
difficulty in getting to grips with the Organiser’s language'- OPL. But for
the inexperienced, computer programming can seem incomprehensible:
it uses a strange, almost alien language, and demands a strict adherence
to precise rules. Their problem is aggravated by the fact that, for the most
part, they must learn 'from the book’ - with little if any outside guidance.

So how does the newcomer learn? By practice (obviously). And,
strangely, by entering programs other people have written. Copying
programs gives an insight into how a computer language can be used to
achieve desired results. Studying how a program works enables similar
programs to be written - sometimes by doing little more than making a
few fairly simple changes. Examining the techniques used in a program
can reveal ‘tricks’ for shorter and/or faster running routines.

This book is designed to help: it is not so much a tutorial on how to
program, but rather a collection of routines and programs that you are
invited to enter as written, and to adapt to suit your own purposes. Each
routine is explained in detail, so that it may be understood and changed
asrequired. It can be regarded as an extension of my earlier book *Using
and Programming the Psion Organiser Il - but is in no way dependent on
that book having been read.

This book concentrates on 'file-handling’ routines, since file handling
is probably one of the most difficult areas for the newcomer to understand
- and yet it is the one most often required.

An explanation of the principles involved in handling files on the Psion
Organiser is given first, followed by a variety of "utility' routines that can
be used in file-handling (and other) programs. This is followed by a
demonstration of their use with two fairly comprehensive examples of file
handling programs. These cover maintaining a Stock Control/Price List,
and a Bank Account Handler, Both programs can be adapted to suit a
variety of other applications: for example the Stock Control/Price List

program can easily be adapted to handle a Stamp Collection or a Club
Membership list.

_ The Biank Account Handler demonstrates the use of having two files
1n operation at a time — and shows how a file can be 'updated’ automati-
cally by using Organiser’s internal calendar. The short routines used in
these programs have been specially designed so that they can be adapted
and incorporated in your own file handling programs without too much
cffort — thus making such programs easier to prepare.

There is also a number of other *stand-alone’ programs which you may
find useful.

I! should perhaps be mentioned that there is never just one way to
achieve a result. Ask 100 people to write a program to perform a specific
task, anft you will get 100 different answers. Some solutions will be short.
Some will be fast in operation. Some will be very 'user-friendly’ - that is,
give clear and meaningful messages.

Furthermore, with very few exceptions practically every program can
be improved to suit a particular individual’s requirements. There is a
Saylng among programmers that a program is never finished: it is only in
an advanced state of completion. No claim is made that the routines and
programs in this book are the fastest or the shortest possible: they have
bce_n written to combine, as far as possible, understandability with space
saving, and to demonstrate some fairly common programming techni-
ques.

All the routines and programs in this book were written, developed and
"de-bugged’ on a PC using Psion’s Organiser Developer, then down-
loaded into a 16k Organiser Model XP (Version 2.4) and a 32k Model
XP (Version 3.3), and verified before being loaded, unchanged, into the
Word Processor. The printing has been taken directly from the Word
Processor files using Desk Top Publishing. Thus, every effort has been
mad? to ensure that there have been no changes and hence no errors in
thf.'. listings. Furthermore, to avoid any potential mishaps through user
mis-entry, 'machine-coding’ techniques have not been used at all, even
lhnugh in some instances these could have resulted in shorter and faster
running programs. You are at liberty to adapt the programs listed in this
book to suit your own purposes — indeed, you are encouraged to do so -
the only proviso being that they are for your own use only, and are not
sold or passed on to others.

Happy programming!

Mike Shaw
September 1988

vi

CONTENTS

CHAPTER 1 File Handling Theory

1.1 The Principles
What isacomputerfile?
Computer files have fields’
How Organiser separatesfields
Organiser's built-in filingsystem
The need for a file handling program
Wheretokeepyourfiles
Whereto keepyourprograms
Developing programsonaPC

1.2 Planning the Program
PAESESIBNG. oy wih s £ JH0E SR O WU eET b
Whatdoyouwanttodo
Mapouttheprogram

1.3 Handling Organiser Files
Creating and openingafile
Addingrecords
Changingrecordsccouivuonen.
Findtherecordo un..
Viewingtheentirerecord
Identify the fleldstoamend
Makingthechange(s)
Re-savetherecord
Deletingarecord00 vveonan
AnaIVaINg records . .. vow s s s s e e e e e
Using more thanonefile

vili

CHAPTER 2 File Handling Functions
2.1 Adding to the Language
Who needs morefunctions

Whatitdoes g
Spacerequired
Howitworks

Globalsneeded
Variablesused
CHROMBING « < « oo w5 585 won UaS 5% i e s
Thelsting

2.2 How to Enter a Program
TheBasicPrinciples
Using The OPL Programming menu:
NEW. oo ver wowes apem womek e wesE e EIE S

2.3 Display a Timed Message
MBBD, & siw v sam 0El T BN Ve s e

2.4 Yes or No Test
YORN: © s ciui 5650 iinie st sia v oot v v s s

2.5 Get an input
GIS:0 i &

2.8 Get a Pack Location
URIILS: s s s WiGmEE aeme G

2.7 Get a File Name
GENE < i o3 08 5570 408 4 5 St e

wili

50

2.8 Edit Functions

ERL Bl B8 5 v soon srm S waw wow e 68
2.9 Show a Record

AR e s sna na a B RS SR AT DAY 72
2.10 Month Name Sealector

MNS:D e e 76
2.11 Truncate a Number

DIED i simos covnm e som i wie s moems wgma smws s 78
2.12 Pad Out a String

FILS o coiin wams womvm oo 0s 5 wil a0ss womnih & » 80
2.13 What's the Remainder?

MOBED) s swn s s 3 200 8 ae o waiie i & 83

CHAPTER 3 Stock Control/Price List Program
3.1 Taking Stock

corkeepingtrack oo i w s E e wee M e e 86

Adaptingtheprogram 87

Enteringtheprogramo 88
3.2 The Main Stock Control routine

BTOOI: o s Ve 1S Sl B e 06 i g 20
3.3 Adding a Stock Record

SCANL: e e L. 94
3.4 Find a Stock Record

BOFR: o vow e weve vosis wwes won & 0 S sy e 97
3.5 Caption a Stock Record

SCBEEY .o vnica i svwd Wi o7 N 8B 9 A s s 102
3.6 Update a Stock Record

BOUID: . ¢ s smie s sl S TR B 5% B WEE 2 106
3.7 Delete a Stock Record

SCDR: i i e e s 109

ix

3.8 Analyse Stock File
SCTV: . e, 111

3.9 Printout Stock Records
SOETE o s suwen sovne PG B BD6GS R ANRBIEE SO 114

CHAPTER 4 Bank Account Handler Program
4.1 Keeping Your Balance

..without losingyourhead 118

Where doesthemoneygo? 119

Enteringtheprogram 120
4.2 Using the Banker Program

Settingupafile 122

Whenyouseethemainmenu 123

TheSEEOPHON . . . v i vt i it v e ve s ve mee s 123

The TRANSACToption 124

The CHANGE-SOoption 125

TheVERIFYoption 126

The PRINTOUToption:...... 126

AEIRAEWOI: i 555 5 5 55 tis Sl sies sen s 126
4.3 The Main Banker routine

BRANKER: o on s wen oa oy 9a0y R B 0 127
4.4 Add Date to a Banker Record

BIRLE 506 i 0085 5870 e sias sobm 500w oue s ame 133
4.5 Add a Standing Order

BNSO: 135
4.6 Pay Standing Orders

BUBEE" ovor soame s sin w0 s Soai Bals woes SAOE e 138

4.7 Locate a Record

BLARIG: cors e voim g Sy WG AN TEG 26 § iR 142
4.8 View Banker Records
BBER! i 5 V5 5o suss s mimi ww m s am 146
4.9 Caption a Transaction Record
BREC: 148
X

4.10 Caption a S/Order Record

BSSEE v mn oo wown vaem was dave TR B o Wi 151
4.11 Make a Transaction

BUPLEE: : o6 o i s aiys dogie oS AUy 505 e s 154
4.12 Get the Transaction Details

BCAD:() it e e e e e e e 157
4.13 Change Standing Orders

BASD: . . . e e e e e e 160
4.14 Verify Bank Statement

BOBS: = v w oo s duw sems oo sm o s & eE s 163
4.15 Print Out Banker Records

BPRO: o oo v e s wosms oo e s aown w 166

CHAPTER 5 General Programs

5.1 Pot-Pourri 170
Something foreveryone? 170
Startsmall e e e 170

5.2 Exchange Rates
7 o 172

5.3 Miles per Gallon (litre)

MRS wooon aimsin aits om sieeE GHEOR R B0 AN R av 175

5.4 Umpteenth Roots
ROOTDL BOODD e cws sas e w o o i #iFs w3 177

5.5 Number 'Base’ Conversion
NUMCON:,BASE:) 179

5.6 Day and Date Finder
DAYFIND:, GTDATE:(), FTOD:,DTOF 183

5.7Biorhythms 193
BIO:, VBIO:()

5.8 When’s Easter?
BARTER: . . v womex wvom svame s0sis son © 5% $80 oo 197

APPENDIX 1 OPL Commands and Functions

FleHandiing 200
General 201
INDUGEDAE . con oen o 25 2oms o i o o 201
MachineCode20
Mathematical Functions 202
ProgramControl 202
StringHandling 203

APPENDIX 2 Index of Routines

UMMOR . .« oo woos sons cmma svane s w0 oo 5 won S & 204

Stock Control/Price List Program 204

Banker - Bank AccountProgram 205

Conbral PrOgramis « «.<x va's o « o Wl s e g 205
Xii

CHAPTER 1

File Handling Theo

v]

File Handling Theory

1.1 The Principles

What is a computer file?

Dcpﬁnding on who you are and how you work, you will have your own

concepts of what a file comprises: to a solicitor, it could be all of the
correspondence and information related to an individual case; to an es-
tate agent it could be the information related to a particular property; to
aE accountant it could be the facts and figures related to a particular
chient.

Files of a similar nature or category will be grouped — perhaps in one
drawer or section of a filing cabinet. The estate agent, for example, may
keep together all the properties that are within a specific price band. The
objective, of course, is to make searching through the files for a particular
item easier.

A computer file used to store facts and figures can be likened in many
respects to a card index system, where all the information related to one
record is kept on one card. There is, however, a fundamental difference
between a computer file and a card-index system — a difference that gives
computer maintained files a clear advantage. (This is particularly true
where the Organiser is concerned). With a card-index system, the order
of the cards within the box is determined by the prime search require-
ment. To give a simple example, index cards used to keep names and
addresses are most likely to be maintained in alphabetical order, based
on the name: it's not much fun having to search through every single card
to find Joe Blogg’s address. With a computer such as the Organiser,
however, the order of the cards is almost irrelevant, since the time it takes
to search through every record is insignificant.

This difference is particularly important when other criteria determine
the search requirement. Taking the example of the alphabetically stored
name and address cards again, to search for people living in a specific
town takes the computer no longer than searching for people with the
same name. You will no doubt have experienced already the speed with
which your Organiser can locate information using the FIND command on
the built-in filing system. To all intents and purposes, the information you
require is located instantly,

1.1 The Principles

Computer files have ‘fields’

Let us take the card index box analogy a little further. If you were to use
cards to keep names, addresses and other relevant information about in-
dividuals or companies, you would undoubtedly organise each record
card so that the information it contained is displayed in a consistent way
— so that you know exactly where to look on the card for the particular
item of information you require. In a simple index card system for keep-
ing details of family and friends, for example, eachindividual record card
may be arranged like this:

BERME S o onvcwmivmmrmwwn e smone “ss
PHONE NUMBER:...iscu0ssss0usa
BIRTHDAY!..veeaansnsns sssenne
WEDDING ANNIVERSARY: .44
ADDRESS !t .iciessvseainis T

Fig 1.1 A simple index card record.

Each of these "lines’ is called, in computer terminology, a field. On cards,
you could add other fields to some of the records, if you wanted, to meet
particular needs. However, generally speaking everyrecord ina computer
file must have exactly the same number of fields, even if one (or more) of
the individual fields has no information recorded against.it.

Just as you can determine what fields you will have on each record of
a card index system, so you can determine what fields each record will
have when you prepare your own computer files. Also, just as you can
have several card-index boxes using the same individual record format,
s0 you can have several computer files using the same field format, and
managed by the same file-handling system.

How Organiser separates fields

On the ind=x card record shown in Fig 1.1, each field is written on a
separate line, You could, of course, have two fields on one line - the
Birthdate and Wedding Anniversary date could be on just one line, for
example. Visually, the fields are separated by their names, so as far as you
are concerned, putting more than one on a line doesn’t matter.

File Handling Theory

If the fields weren’t named, however, you would have to devise another
way to identify each field. You would probably use a system in which, for
example, the top line will always be the name, the next line will always be
the phone number, and so on. In effect, this is what you have to do when
you create your own filing system on Organiser: you have to decide the
order of the ficlds in the record, and you have to stick to that order for
every record in that file.

How does Organiser know where one field stops and another starts?
When a record is saved to memory, each field is terminated by a special
character — the *non-printing’ ASCII character 9. This is also known as
the ’tab’ character, since on printers and so on it produces a jump’ of a
set number of spaces along a line, to the next *tabulation mark’.

When arecord is displayed on the Organiser screen, each fieldis shown
on just one line: if there are more than 16 characters in the field, then,
when that line is selected (using the cursor keys), it will scroll across the
screen, so that you can read it all,

You don’t have to worry about how Organiser separates each of the
ficlds in your records - unless, by some flukey playing around, you include
a character 9 as one of the items of information within a field. (If you do,
then the field will terminate at that character - and the rest of the line will
appear as the next field. This can create all kinds of problem).

Organiser’s built-in filing system

With the "filing system’ built into Organiser - the one you use for the main
menu FIND and SAVE operations — you choose a new line to enter data in
a record by using the 'down’ cursor key. Organiser places the field ter-
minator at the end of the old line, so that when you recall the record, each
line will be displayed exactly as you wrote it.

The "Main’ file thus lets you write the entire record in *one go’. Every
line in the main file is of the same 'type’ - a string — and you can have a
maximum of 16 lines and 254 characters (a character is any letter, num-
ber, symbol or space). You can therefore arrange each record so that the
information - as shown if Fig. 1.1 - is on a separate line. Each line is a field
- and since you can have any number of lines up to 16 in a record, the Main
ﬁlc: in effect has a flexible or variable number of fields - all of them of the
string type.

When Organiser obeys a FIND command, it searches through an entire
record, not just a part of it. So if you keep birth dates in a similar format
— '10/May/60’ for example — you could find all friends and relatives with
birthdays in May by simply entering /May’ as the search clue. (Entering

1.1 The Principles

'May’ on its own could also find Auntiec May, and someone living in
Mayfield Avenue!).

Organiser’s built-in Main file is, therefore, extremely powerful for
general purposes. However, when you wish to operate on the information
contained within specific fields, it can be a disadvantage that there is not
a *fixed’ number of fields - the number can vary from record to record in
the Main file, remember. It is also a disadvantage to have all of the fields
as ’string’ types — which can store letters as well as numbers. Organiser
cannot perform mathematical operations on string fields directly: they
have to be converted to a numeric form that Organiser can understand
first. So if there are to be any mathematical operations on a field (such as
adding together monetary values), it is better that the field is defined as
a numeric field at the outset, capable of storing numbers only.

The need for a file-handling program

Take a file containing details of Club Members, each paying fees depend-
ing on their category of membership — Full, Part-time, and Junior. One
of the items of information contained in a record could be the member-
ship category. If you used the built-in Main file and you wanted to know
the total income due from 'Full’ members, you would have to check
through each record, identify and count the 'Full’ members, and then mul-
tiply the number so obtained by the relevant fee. Using the built-in file,
this would mean giving the Full membership information as the search
clue, then repeatedly pressing the EXE key and counting the number of
keypresses to obtain the required number, and finally multiplying that
number by the fee. This process would then have to be repeated for each
of the other membership categories.

By creating your own Club Membership program and Club Member-
ship file (rather than use the 'Main’ file), you can place the class of
membership into its own field, and Organiser can be told, by a short pro-
cedure, to look at that field for each record and to total the number of
members in each category: the same procedure could also evaluate the
total fees due from each of the member categories, and display the
answer, The answer would be available within one or two seconds — with
considerably less effort, and without errors.

This is, of course, a very simple example of the benefits of creating your
own file-handling program. The important thing to remember is that, if
you need to operate on a series of records, extracting information and
making calculations, you will gain considerably by creating a file-handling
program. If you don’t need to operate on the data contained within a

File Handling Theory

record — but merely need to find the information based on any criteria,
then the built-in system is perfect.

A file handling program can be written to analyse the built-in *Main’
file. However, there can be only one *Main’ file at each of the memory
locations (RAM or Datapaks), and it is highly unlikely that you will want
to use that file for just one purpose only. This means you will find it dif-
ficult, if not impossible, to ensure that each record has exactly the same
number of lines, and that each line carries the same type of information
fairly essential features for a successful *file-handling’ program, This
makes the 'Main’ file impractical for use with your own file-handling
programs: it is better that your programs create new files, with records
designed exactly as you want them. Amongst other things, this makes your
files easier to use, *process’ and analyse.

Where to keep your files

If you use Datapaks with your Organiser, one of the most important
aspects to consider is where you are going to store the file information. If
the information in a file is going to change frequently, for whatever reason,
then keeping the file on a Datapak can consume storage space at an
alarming rate.

The reason is that, when information is changed in a record kept on a
Datapak, the old information is not overwritten. Instead a completely new
record, containing the unchanged and the updated information, is added
to the end of the file, and the original record is locked from view’. The
process can be likened to using a notebook to write out the records.
Making a change to details in one record means crossing out the entire
record, and re-writing the record on a clean page at the end of all the
other records. Eventually the notebook will be filled up with crossed-out
records and *good’ records.

As you will appreciate, even with the large capacity Datapaks, it will
not be long before all available space has been used, even though the ’live’
or latest, most up-to-date records occupy only a fraction of the total space.
It would then be necessary to transfer the file - possibly to a new Datapak
- and to re-format the original so that it can be used again. (A Psion For-
matter is available for this purpose). If this procedure is acceptable, then
Datapaks provide the best, most permanent way to keep files,

Two alternatives are available. The first is to use the internal 'RAM’
of your Organiser (location A:"), which will limit the space available for
your Diary and so on, and the second is to use a Rampack. Rampacks
store information more or less the same way as information is stored in
the internal RAM of Organiser, and those currently available have a

1.1 The Principles

capacity of approximately 32,000 characters. They incorporate a battery
with a life estimated at around five years.

The advantage of using RAM or a Rampack to store files is that, when
a record is updated, the memory used by the original record is released
for re-use: with the card index box analogy, the original record card is
removed from the box, and the new record is added, so there is still the
same amount of space left in the box.

The disadvantage of using Organiser’s internal RAM is that the infor-
mation could be lost: removing the battery from Organiser for a few
minutes, for example, will mean a complete loss of all the information held
in RAM. Rampacks have the disadvantage of a limited life (albeit, five
years). There are, therefore, pros and cons for each method of storage,
and the method you choose depends on your own requirements and the
ancillary items you have available.

The ideal solution for those fortunate enough to have access to a PC
would be to maintain files in RAM or on a Rampack, and to regularly
copy them to PC disks using the Psion Comms link. That way you will have
a permanent 'back-up’ for your files, while maximising the space available
"on board’ your Organiser.

Where to keep your programs

The file-handling programs can of course be kept on Datapaks once they
have been tested and proved. You should always enter and develop
programs in RAM, and copy them to Datapaks only when you know they
are working perfectly to your complete satisfaction: changing programs
on a Datapak is like amending records - the entire program is re-written,
and the original is "locked up’.

Also, once you have the program working satisfactorily, you could
transfer just the object code to a Datapak - that is, the part that Organiser
uses toobey your instructions - and so save considerable space. The source
code - which is the instructions you write using Organiser’s programming
language, is not needed by Organiser once it has been converted to the
object code. You, however, will need the source code to make changes to
your programs: you cannot change the object code directly.

Again, the ideal solution is to save your source code onto PC disks using
Psion Comms Link, so that you can call them back should it ever become

necessary.

File Handling Theory

Developing programs on a PC

Having mentioned the ideal situation of using a PC as a means of back-
ing up Organiser files and programs, it should perhaps be mentioned that
Psion has produced software that will enable you to create (or enter)
programs on a PC, and to "download’ them once they have been tested
and proved. Called the "Psion Organiser Developer’, this software has
many advantages over creating programs on the Organiser itself — not
least of which is the large keyboard!

The Developer emulates practically all of the functions of Organiser II
(not just the programming facilities). It provides a boxed’ display on the
PC screen which simulates Organiser’s screen and shows the effects of
running programs on Organiser, The programs themselves, however, are
written using the larger screen area of the PC, so that much more of the
program can be seen at a time, The Developer also has powerful "de-
bugging’ facilities, which allow programs to be run step by step, variables
analysed and so ou, making the whole process of creating programs much
easier. It also enables complete 'Datapaks’ to be ’created’ and down-
loaded into Organiser Datapaks.

The only programs that cannot be run (sensibly) on the Developer are
those which ’peek’ and 'poke’ around in Organiser’s memory or which use
machine code, for obvious reasons. There are one or two other minor
'restrictions” Organiser’s top slot is not recognised by the emulator, and
the ksTar command doesn’t effect the PC keyboard when testing a
program on the PC.

Needless to say, virtually all of the programs appearing in this book
were developed and de-bugged using the PC Developer. They were
downloaded into an Organiser, to prove that they worked. Then they
were re-loaded back into the word-processor without change. So in
theory, they should all work perfectly...

1.2 Planning the Program

1.2 Planning the Program

The first steps
There are three stages to handling your own files on the Organiser II:

1.Create the file-handling program.
2.Create the file(s).
3.Use the program to perform the necessary file-handling tasks.

If you use Organiser’s built-in filing system, stages 1 and 2 have already
been done for you: all you have to do is enter and perhaps change the
data(stage 3). The FIND and SAVE menu options are effectively commands
from the built-in file handling program, allowing you to add, change and
delete records, and to search for particular records on any criteria you
choose. Organiser creates just one file in RAM, and one on each Datapak
or Rampack: as mentioned before, in each case this file is called "Main’.

To handle your own files, you have to create the specific file-handling
program only once. Having done that, (and proved it works) you can then
create as many files using that program as you wish — provided you have
incorporated 'file creation’ procedures in the program, of course! You
will give each file so created a different name, so that you can identify the
one you wish to use. For example, say that you use the 'Stock Control/Price
List’ program discussed later in this book. Once the program has been
entered, you can have as many separate Price List files as you want — per-
haps one for products, one for spares, one for items you have to purchase
yourself, and so on. You could also keep a separate Price List file for each
month if you so desired. Each file would have its own name.

How do you tell Organiser which file you wish to use? Consider the
card-index boxes again. To select a box for use, you would simply "open
it up’ so that the record cards are accessible. Strange as it may sound, you
have to do the same thing with the particular computer file you wish to
use - you have to open it. This action — performed by a special instruction
in Organiser’s programming language — tells Organiser to select and
prepare the particular file for use.

File Handling Theory

As you will see later on, you can 'open’ four files at a time on Organiser,
but only one of them can be worked on at a time, and you have to tell
Organiser which one that is. (Don’t panic - it’s not as complicated as it
sounds!).

The one file-handling program should be designed to look after all of
the files it creates (stage 3). Ifyou additionally want a program that will
handle a different type of file — your accounts, for example — then you will
need to create a separate file-handling program.

Everyone has their own requirements not just for the types of file they
want to keep, but also for they way that they wish to manage those files.
Some concepts are common to practically every type of file-handling
program (the three stages given above, for example), and it is these con-
cepts that are discussed in this part of the book: an understanding of the
concepts involved will help you to adapt the basic procedures, routines
and programs given later to your own specific needs. Thus, although we
will develop only two complete file-handling programs — for looking after
a Stock Control/Price List and for handling a Bank Account - by under-
standing the processes used to create the various procedures, and by
understanding the programs themselves, you should be able to adapt
them to provide any other file-handling program you want.

What do you want to do?

The first step when writing any program is to set down exactly what the
program is required to do. To demonstrate this, let us take as an example
the Stock Control/Price List file handling program. The information we
expect to get from the file may be as follows:

The item name (and stock number, perhaps).

How many (or much) of each item is in stock.

Which items need to be re-ordered because stock is getting low.
The price of each item (with or without VAT).

The stock value of each item.

The total value of all the stock.

b R LS b

This is the basic information the file must yield: you may have additional
requirements for such a program, such as the source of the stock for re-
ordering. You may also have access to a printer, and consequently want
to be able to print out the information. Whatever you want your program
to do, make sure it’s in the list.

In addition to what you want to get out of the file, the file handling
program must allow you to perform a number of other tasks:

10

1.2 Planning the Program

7 Add new items to the file.

8 Delete items from the file.

9 Change the information contained in each record (in the current
example - update the stock-holding, the price, the re-ordering
level, perhaps even the item name or reference).

10 Create a new file of data.

These are fairly standard requirements for any file handling program. It
all looks pretty obvious when set down on paper doesn’t it? Neverthe-
less, it is well worthwhile taking time to put everything down: if you know
all that the program has to achieve, you can plan it properly. It's always
easier to write your program to do everything that you want at the outset,
than it is to tack bits on afterwards.

The next step is examine just what each record must contain in order
to provide the information that is required from the file. In other words,
what fields must each record in the file have. Remember, even if we don’t
use every field for every record, it must still be available to every record.
The objective here is to keep the individual records as short as possible
— that is, with no more fields than are necessary.

Taking the current Stock Control/Price List example, it would seem
that the requirements 1 to 6 given earlier will each need a field on the
record. However, requirements 5 and 6 - the value of each item held in
stock and the total value of all the stock - can be obtained by calculation
whenever they are needed: the value of a stock item is simply the price
of the item multiplied by the quantity in stock. The total value is the sum
of all of these values. For this example, therefore, we need just four fields:

a) The item name (and possibly its reference number).
b) The quantity in stock.

¢) The price of each item.

d) The minimum level of stock.

Map out the program

We are now in a position to see exactly what the program has to contain:

A routine to create new files.

A routine to open a specific file.

Routines to add, delete, and modify records.

Routines to extract the information required, and possibly to print
the information as well as display it.

L B N

11

|

File Handling Theory

You'll find that practically every file-handling program will need the basic
elements just given, in one form or another, and so they give you a good
starting point for your own programs,

Knowing what fields each record in the file must have, and what
routines we need to handle our files, we are in an excellent position to
start planning and writing the program.

12

1.3 Handling Organiser Files

1.3 Handling Organiser Files

Creating and opening a file

Before you can work with a file, it has to be created. Organiser has to
be told the name of the file you want, and it has to be told where you
want the file kept — in RAM ("A:") or on a Datapak ('B:’ or ’C:"). This has
to be done just once: after that, you have only to gpen the file.

When you create a file, Organiser stores its name in memory, at the
specified location, together with a 'reference number’ unique to that file’s
name. This reference number lies in the range 145 to 254 inclusive (in
hexadecimal, 91H to FEH). Thus, you can create only 110 files of your
own at each location (more than enough!). As a matter of interest, your
Organiser uses other lower reference numbers for its own purposes — 144,
for example, is used for the file called "Main’, and 131 is used to identify
an OPL procedure.

Later, when you add records to the file, each of the records will also
be identified by the file’s reference number. The point is that when a
record is saved to memory, Organiser places it in the next available free
space. So, if you have several files in memory, the records for each will be
'mixed up’ with each other, along with program procedures and so on. In
other words, the records for one specific file are not necessarily stored in
consecutive locations in memory: Organiser IT knows which records are
associated with each specific file by the unique reference number.

How does Organiser know where one record stops and another starts?
Each record also contains information about its length — a number from
1to 254 (in hexadecimal, 1 to FEH). These numbers - the file reference
and the length — are each stored in one byte or memory cell, hence every
record has an overhead of two memory cells. The length information
comes first followed by the file’s identifying reference number. The end
of all the stored data is identified by the hexadecimal number FF (255),
which is the largest number that can be stored in one memory cell. The
largest number available, therefore, to show the length of a record is 254,
which is one reason why no record can be more than 254 memory cells in
length, or 254 characters or bytes.

13

File Handling Theory

All this is fairly academic: you don't have to worry at all about the
reference numbers, where your records are actually located in memory,
or how they are stored. Organiser sorts it all out for you.

When you create a file, Organiser assumes that you will want to use it
straight away. It therefore also opens the file. When a file is created or
opened, Organiser needs to be told the fields you wish to use in the file,
and, since you can work on four files at a time, it needs to know which of
the four this one is to be.

The fields determine how each complete record is going to be saved
or recalled: you will remember that each field is separated from the next
in the record by a special character — the ’tab’ character, which is a '9’ in
ASCIL.

Itisimportant that you specify the same number and type of fields when
you open a file for use as when you created the file, and that you do not
use the tab character in your records (CHR$(9)). Otherwise your records
will yield errors. This is because Organiser doesn’t keep a 'permanent’
record of the fields associated with a file, but rather sets up the fields on
a temporary basis when the file is opened or created.

The four files that can be worked with at a time are identified by a
single letter, from A to D. In your Organiser manual, these are referred
to as the logical file name, and they provide a short, easy way to identify
which of the four you wish to use for a specific operation.

The OPL words for creating or opening a file are creaTe and opew, and
the format is as follows:

CREATE filename,logical
filename,fieldl, field2...fieldl6

OPEN filename,logical
filename,fieldl , field2...fieldls

Notice how, apart from the OPL instruction, the format for each is the
same. CREATE, remember, records the file name in memory (as long as it
doesn’t already exist), while open searches for the file name in memory
and 'makes a note’ of the associated reference number (as long as the file
name exists) so that it can find the file’s records.

Let us examine the commands bit by bit. The filename must start with
anidentification of the place where the file records are stored, as follows:

A: Organiser's built in RAM.

B: A Datapak in the top slot.
C: A Datapak in the bottom slot.

14

1.3 Handling Organiser Files

So, if you wish to create your file on the Datapak in the top slot (location
'B’), the filename must start with 'B:".

The actual name of the file must be no more than eight characters long.
It must start with a letter, and as a general principle, it should contain only
letters and, if you wish, numerals 0 to 9. (Organiser will reject’ filenames
it doesn’t like!). It doesn’t matter whether you use capital letters or lower
case letters — in a filename, they are the same. Thus B:MYFILE and
B:Myfile both refer to the same file.

The logical filename must be one of the letters, A, B, C.or D. It doesn’t
matter which, so long as you stick to the same letter whenever you refer
to that particular file and its records in your subsequent file-handling
program (more about this later). Again, you can use a capital letter or a
lower case letter, it doesn’t matter,

The names you give to ficlds have to obey the same rules as variable
names:

1. Integer fields must end with '%’. (Integers are whole numbers only
with no decimal points anywhere in the number).

2. String fields must end with °$’. Unlike string variables, you don’t
have to specify how many characters will be in the string.
(Strings are sequences of any characters - letters, numbers and
symbols).

3. Floating point numbers have no terminating symbol.

4. The total length of the field name, including the type identifier (%
or $), must not be more than eight characters.

5. The field name must have only letters and numbers, apart from the
type identifier at the end.

(Please refer to your Organiser manual, or to "Using and Programming the
Psion Organiser 11"’ if you wish to know more about variables).

You can have any number of fields, up to a maximum of 16.

When a file is created or opened, an area is allocated temporarily in
RAM to hold the relevant field information. If four files are opened (with
logical filenames of A, B, C and D), then four areas are created in RAM
to hold the relevant field information for each of the four files.

Note that with earlier versions of Organiser, the end of the RAM area
when a file is created sometimes needs to be identified. To achieve this,
a program must assign a dummy value to the /ast named field, and the
entire record added to the file. Since you won’t want a dummy record in
your file, it can be erased immediately.

15

File Handling Theory

Thus, a typical set of "create’ instructions could be:

CREATE "A:TESTFILE",A,FIELD]1,FIELDZ, FIELDEND
FIELDEND=0

APPEND

ERASE

It must be pointed out again that this dummy assignment, appending and
erasing process is required only on some earlier versions of Organiser,
and is given in this book to avoid the possibility of errors occurring after
file creation. On later models, you can omit the assignment, append and
erase instructions without trouble.

Generally speaking, each file handling program that you write will require
its own type of file records, with a specific number and types of field. For
this reason, it is usually necessary to write a separate "create pr open’ seg-
ment for each type of file-handling program.

Also, with some kinds of file-handling program, you will only ever want
one file. The name of the file can, in such a case, be entered as part of the
program and, since you will only need to create the file once, the create
routine can be a separate procedure which, once run, can be erased. Here
is an example of such a procedure to create a simple, single file called
'A:EXPENSE’ in RAM :

MAKEFILE:

CREATE "A:EXPENSE",A,DETAILS,AMOUNT,DATES
DATES$=""

APPEND

ERASE

As mentioned earlier, you may choose to ignore the last three lines. Once
run, this procedure could be erased if you wish - the file that you need to
use to store the expense records will have been created. (In this instance,
in Organiser’s RAM).

The file-handling program, or at least the main part of it, will have to
open the A:AEXPENSE file with exactly the same types of field, although
you could if you wish change the actual names of the fields, Thus you could
open the file with an instruction in your file-handling program as follows:

OPEN "A:EXPENSE",A,INFO$,SPENT, WHENS

16

1.3 Handling Organiser Files

The important points to note are that the types of each field are the same
when the file is opened as when the file was created (in this case, string,
float, string) and that the name of the file,’A:EXPENSE’, is the same. When
you refer to the field names in your program, they must be the same as
those used when the file was opened, of course: in this case, A.INFOS,
ASPENT, and AWHENS. (The ’A.’ part tells Organiser that you're referring
to the file opened as logical file ’A’ - see *Adding Records’). However,
when opening a file it is better practice (and less confusing!) to stick to
the field names you used when the file was created.

In the programs given later in this book, it is assumed that you will want
to have more than one file — perhaps, in the example just given, you would
want an expense account file for each month. Consequently the programs
allow the user to create and use (almost) as many files as required. A
‘utility’ routine is developed to enable a file name to be entered from the
keyboard and checked that it is in the correct format.

Adding records

Without exception, it will be necessary for your file-handling program to
be able to add records, and in all but a very few instances, it will also need
to be able to delete records. The OPL word used for adding a record is
appeND, and for deleting a record it’s ERASE.

To add a record using the appenD instruction, you must assign a value
to each of the field variables. Those fields that do not have a value as-
signed will be given a 'null’ or zero value. A field is identified by the logical
file name — a letter from A to D - followed by a full point and the name
that you gave to the field when you created or opened the file. Thus, if
you opened a file with the logical file name of *A’, a string field that you
called 'FIRSTS’ would be identified as A.-FIRSTS. You assign a value to it in
the same way that you assign a value to any variable using OPL. One way
would be:

A.FIRSTS$="This is a field record"

However, in most instances, you will want to input the information from
the keyboard. You can do this with an instruction such as:

INPUT A.FIRSTS

17

File Handling Theory

When you assign values to field variables, Organiser stores the informa-
tion in the area it set aside for the fields of the appropriate logical file:
hence the importance of identifying which logical file is being referred to.
When all (or as many) of the fields have been assigned with the informa-
tion you wish to be stored in the record, you simply give the OPL
instruction ApreND. On meeting this command when a program is run-
ning, Organiser transfers the information temporarily stored in the area
set aside for the field information to the appropriate memory pack loca-
tion. A typical sequence of instructions for adding a record could be:

INPUT A.FIRSTS tREM Get a string input
INPUT A.INTEGER% :REM Get an integer input
INPUT A.FLOAT :REM Get a float input
APPEND tREM Add record to the file

However, when using the program, you would not find this sequence to
be very satisfactory: you would most likely forget what you are supposed
to be entering at the keyboard. You would want to give yourself a *clue’
to the information you need to input. This could be done using the prINT
instruction. Thus:

PRINT "Enter NAME"
INPUT A.FIRSTS

If you also wish to prevent the vertical "scrolling’ as each new line is
entered onto the screen, you could precede these two instructions with a
cLs (CLear Screen) instruction or an AT 1,1 instruction, which positions
the cursor in the top left hand corner. (Note that it is not necessary to use
AT 1,2 before the mwpurt instruction, since the cursor will automatically
jump tothe next line after the prInT instruction, provided itisn’t followed
by a comma or a semi-colon).

In the Utility functions given later in this book, you'll find a routine
'GL$ s (messaged type)’ which will allow you to have a message of any
length rolling along the top line, with your input (which can be a string,
an integer or a floating-point variable, as determined by fype) being
entered on the second line. This utility makes the display of a message
and entering information a simple one-line affair in your program, and
makes for a better display. It also means that your message needn’t be
restricted to 16 characters,

The other aspect to consider, having entered a record, is that you may
well wish to enter another one immediately. This can be achieved by

18

1.3 Handling Organiser Files

enclosing the input sequence of instructions within a loop. One typical
loop could be as follows:

DO

+«+. all the input instructions
APPEND
UNTIL MENU({"MORE,END")<>1

This particular loop doesn’t require any ’Local’ variables to control it, and
is economical on space, The menu function returns either a 0’ (if the
CLEAR/ON key is pressed), 1 (if "MORE’ is selected), or 2 (if 'END’ is
selected). The unTIL test ensures that the instructions in the loop are
repeated every time "MORE’ is selected: when wenvu returns 0 or 2, the
'UNTIL...<>1’ (not equal to 1) is true, and program processing continues
with the next instruction.

Changing records

With most (if not all) file-handling programs, you will want the means to
change some of the information held in a record. To do this, it will be
necessary to

Open the file.

Find the record (and view it).
Identify the field(s) to be amended.
Make the change(s).

Re-save the record.

h B b

Obvious? Perhaps. But setting it down makes it quite clear what has to
be done. In most file-handling programs — and certainly those in this book
— the first step will have been done right at the beginning: the file will
have been opened for business as the first step.

Find the record

The next step is to locate the record that needs changing. There are two
ways to go about this: you can arrange the program to step through every
record in the file until the required record is found, or you can arrange
for a search clue to be given for the required record. OPL has a number
of words to perform these operations:

19

File Handling Theory

FIRST, NEXT, BACK, LAST, POS, POSITION, FIND.

Most of these words are self explanatory: rirst, for example, selects the
first record in the active file, Next selects the next record, and so on. pos
returns the record number of the current record in the file, while the in-
struction posiTIion x makes record number 'x’ the current record. The
file-handling programs in this book incorporate both methods — stepping
through each record in a file, and searching for a match to a clue - in
order to provide complete flexibility of application.

Integral with locating a record is displaying it on the screen, and as you
know (or guessed), OPL has several ways of doing this. You can either
simply display a suitable field, using for example the view instruction, or
you can display the entire record using the p1se instruction.

The format for the view instruction is

VIEW(line%,string$)

Line% mustbe eithera’l’ ora’2), for the top or bottom line of the screen
respectively, and string$ is the string variable or information to be dis-
played. Thus, to display the ficld ’A.FIRST' on the top line of the screen,
the instruction would be

VIEW(1,A.FIRSTS)

The string A FIRSTS will be displayed on the screen and Organiser will wait
until a key - any key - is pressed before processing continues with the next
instruction in the program. Organiser "remembers’ this key as an ASCII
number and, if you wish, you can assign it to a variable. Thus

K$=VIEW(1,A.FIRSTS)

With this instruction, the ASCII value of whatever key was pressed to
allow Organiser to continue obeying program instructions is stored in K%,
So if "A’ is pressed, K® will be given the ASCII value of 'A’, which is 65.
This facility can be useful if you wish your program to act on the key
pressed. Consider the following, for example:

LR

KESTAT 1
LOOK::
K%=VIEW(1l, "AMEND "+A.FIRSTS$+" (Y OR N)")

20

1.3 Handling Organiser Files

IF K3%=%Y

++4. do the Amending routine
ELSEIF K%<>%N

GOTO LOOK::

ENDIF

+s+:+ £ind another record or finish

In this program segment concept, the view instruction displays the con-
tents of the field 'A FIRSTS' sandwiched between *’AMEND’ and (Y OR N)".
The user is being invited to press 'Y” to amend the record, ’N’ to continue.
If any other key is pressed, a jump is made back to the label 'Loox: :*. Note
the easy way of identifying the ASCII value for Y’ and "N’ - %Y and %N
respectively.

This is just one example of how a record can be identified for amend-
ment. You could have any field of a record displayed with the view
function, but it is important to remember that the second argument must
be a string. So if you wish to display a numeric field, it must be converted
to a string first, or converted within the view instruction itself. For ex-
ample, to display the field 'A SPENT’, which is a float type of field, we could
use OPL’s rrxs function as follows:

K$=VIEW(1.FIX$(A.SPENT,2,8))

The information in A.SPENT is restricted to two decimal places, and the
value is converted to a string with a maximum of eight characters, includ-
ing the decimal point, by the r1xs instruction. In this form, it can be
displayed using the view function. You can, of course, build up a string
message — by concatenating — as in the previous example. (Further dis-
cussion on the OPL words for converting numeric values to strings is not
within the scope of this book: please refer to your Organiser manual).

Viewing an entire record
You may wish to view an entire record, before deciding whether or not
you wish to amend (or delete) it. (You will probably also want to view

the entire record as part of your file-handling operation). Does this mean
a separate view statement for each field? No. There is an OPL function
- prse - which will display all of the current record. This function can be

21

File Handling Theory

used in three different ways: to display a record that has been selected
and made ’current’, the format is

DISP(-1,"")

As with VIEW, Organiser waits until a key is pressed before proceeding
with the next instruction: the ASCII value of the pressed key can be as-
signed to an integer variable.

The slight snag with the p1se function is that it although it displays all
the fields, each on its own line, it doesn't state what the fields are. In many
instances, this won’t matter, but if you have records with several numeric
fields, all you'll see is a series of numbers, each on its own line, and you'll
have to remember what they refer to. If you wish to have the name of the
ficld on display (or any other descriptive message), you can build up one
complete string which combines each of the field values (converted first
to strings) along with an identifying message, and separated by the tab’
character ASCII 9. This string can be displayed, as a complete record,
using p1sp as follows:

DISP(1l,string$)

To demonstrate how the string can be built up, take as an example just
two fields, 'A.STOCK%' and *A.PRICE". The program segment could be on
the following lines:

.

S$="STOCK: "+NUMS$(A.STOCKS%,8)+CHRS(9)
S§$=S$+"PRICE: "+FIX$(A.PRICE,2,8)
DISP(1,5$)

Notice the use of the tab character to separate the fields, This technique
provides a clear display of a record, thus:

STOCK: 23
PRICE: 14.23

rather than

1.3 Handling Organiser Files

23
14.23

The programs developed in this book use the ’captioning’ technique to
display an entire record.

If the viewing routines are written as a separate function, they can be
called not just when you wish to amend or delete a record, but also when
you wish to examine the contents in the normal course of events.

Identify the fields to amend

Having located the record to be amended, the next step is to identify
which field or fields you wish to change. You could arrange the program
so that the entire record is re-entered, but this could be tedious if only a
small change is required. In any event, if you wished to change informa-
tion in all of the fields of a record, it would be just as easy to delete the
record and add a new one: in the end the effect would be exactly the same.

Probably the easiest way to select field(s) is to use the uenu function.
The uewv list would, of course, be your own guide to the fields. It would
be practical to place the uenu function in a loop, so that more than one
field can be changed without having to go through the whole process of
selecting the 'amend’ routine from a main menu for each field. A typical
program segment could be as follows:

Do

C%=MENU{"DETAILS, AMOUNT,DATE,END")
IF C%=1

+ss. Edit the rDetails’ field

ELSEIF Cc%=2
.+2+. BEdit the rAmount' field
ELSEIF C%=3

s+ Edit the rDate’ field
ELSE C%=0

ENDIF

UNTIL C%=0

CRCIE

23

File Handling Theory

This loop is fairly self-explanatory: if ’END’ is selected from the menu,
C% is assigned the value 4, then re-assigned the value '0’ by the eLse
statement. *0" will be assigned to C% by the Organiser if the CLEAR/ON
key is pressed while the menu is being displayed. Hence, the loop will
allow changes to be made until it is deliberately terminated.

You may wonder why the ’END’ option is included in the menu string:
why not just use the CLEAR/ON key method of exiting the loop? It would
certainly cut programming space - since the menu string would be shorter,
and the ’eLse ct=0’ line would not be required. The answer is - there is
no strong reason: indeed, if you are sure you will always remember how
to exit the loop, then the ’END’ option is quite superfluous. But for those
occasions when a program is used by other people, or after a long lapse
(long enough to ’forget’ what you're supposed to do next), you can’t beat

spelling it out!

Make the change(s)

Having identified the record and the field to be changed, the next step
your program must tackle is the re-entry of information, Naturally, OPL
has an instruction that allows you to do this - eozr. The format is

EDIT string$

Notice that ep1T requires a string argument. That means in order to edit
a number, it must first be converted to a string, using one of OPL’s various
'number-to-string conversion’ functions (FI1X$(), GEN$(), NUMS$(), and
sc1$()). Also, where numbers are concerned, a check should be made
that the edited string contains only valid number characters - that is, 0 to
9, -’ and, in the case of floating point numbers, a decimal point - before
it is re-converted back to a numeric value.
Thus, the process to edit a numeric value would be

a) Convert the number to a string.

b) Edit the string.

¢) Check the string is a valid number.

d) Convert the string back to a numeric value.

One could write a short(ish) procedure to check that a string contains
only acceptable numeric characters. Here is a typical example:

24

1.3 Handling Organiser Files

CHKS%: (5%)
LOCAL C%,V$%
Cci=1
IF LEN(S55)=0
RETURN 0
ENDIF
WHILE C%<=LEN(S3)
V§=ASC(MIDS(S55,C%,1)) 3
IF(V¥=%.) OR (V%=%-) OR ((V¥>47) AND (V%<58))
C¥=C%+1
ELSE
RETURN 0
ENDIF
ENDWH
RETURN 1

The string to be checked is passed to the procedure within brackets - thus
CHKS%:("123a.4*) or CHKS%(NS). Each character in the string is checked
until one is found that is not equal to ', *-', or to one of the digits 0 to 9.
In this circumstance, the procedure returns ’0°. If all is well, then the pro-
cedure returns a 1, so a simple test on the return value can ascertain
whether or not the string contains a pure numeric value - for example "IF
CHKS%:(1234)" will be *true’ since CHKS% will return a*1’

This kind of procedure could be used to check for any characters in a
given string. However, there is a neater and shorter way to check whether
strings contain only a numeric value - and that is to rely on Organiser to
use its own error-checking routines, If step (c) in the editing process
(given a few paragraphs earlier) is ignored, an error will occur if an at-
tempt is made to convert a non-numeric string to a number. This error
can be trapped by using the onerr instruction. Here is a typical example
of the last part of an "Edit’ procedure:

AG::

KSTAT 3

EDIT IS

KSTAT 1

ONERR NN::
RETURN VAL(IS)

NN::
{comtinues overleaf)

25

File Handling Theory

ONERR OFF

CLs

PRINT "NUMBERS OMLY..."
GET

GOTO AG::

The number to be edited is converted (before this procedure segment)
to the string I$. The ksTaT3 instruction sets the keyboard to numeric
values, to reduce the chance of non-numeric characters being entered.
Once the edit has been done the keyboard is reset to capital letters.

Then comes the error-trapping part of the procedure: the oNerr KN: :
instruction tells Organiser that if it encounters an error it must jump to
the instructions following the label mn::. The next instruction (RETURN
vaL(1$)) tells Organiser to return the value of the string I$. If a non-
numeric character is present in the string, then normally vaL(1s) would
produce a sTr To wum ERR, but since errors are being trapped at this
point, a jump is made to ww::. The error trapping is switched off and the
message "NUMBERS ONLY’ is displayed (to remind the user that other
characters aren’t allowed), and a jump is made back so that the string can
be re-edited.

One may now ask “Supposing an integer number is edited so that it
contains a decimal point?”, This won’t be found by the error-trapping
routine. However, by assigning the returned value to an integer type of
variable, the value will be ’truncated’ automatically to an integer value,
and the decimal point and all that follows it will be lost. This simple tech-
nique is usually adequate. However, a different kind of error can occur
with integer numbers. As you are probably aware, on Organiser (and most
computers) integer numbers must lie within the range -32768 to +32767.
If a number outside this range is assigned to an integer variable, Organiser
will stop running the program with an INTEGER OVERFLOW €rrOr message.
This can be trapped using the onerr technique within an integer editing
procedure. This process is demonstrated in the Utility procedure ’E1%’
given later in this book.

Re-save the record

Once the required changes have been made to the selected fields, all that
remains is to re-save the entire record. This is achieved with the OPL in-
struction uppaTe, This instruction writes a completely new record to the
file, using the information currently held in all of the field name variables
(the unchanged fields and the edited ficlds). The original record is
deleted from the file.

26

1.3 Handling Organiser Files

It is quite important to be aware of this operation: it means that the
prde.r of the records in the file will change every time a record is updated
in any way.

guppusing, for example, that a file contains records in the following
order:

RECORD 1
RECORD 2
RECORD 3
RECORD 4

and that RECORD 2is amended. After the amendments have been made,
and the record re-saved (using veoate), the order of records in the file
will be changed:

RECORD 1
RECORD 3
RECORD 4
RECORD 2

Normally the order of records doesn’t make an iota of difference: the
Organiser can find any specific record instantly. Remember, too, that a
record deleted from a Datapak is in effect only 'crossed out’ — it is "tagged’
so that Organiser will ignore it, but it still occupies memory space. In
Organiser’s RAM or on a Rampak, however, the space occupied by the
record is released for further use. Consequently if records are going to
be changed frequently (as may be the case with a Stock control file or a
Price list), the record files are probably best kept in RAM or on a Ram-
pack,

It is useful to contain the entire record-amending sequence within a
loop, so that amendments can be made to several records without having
to continually select 'AMEND’ (for example) from a main menu, The
"AMEND’ sequence could look something like this:

DO

+++. find the record

+++s identify the fields to change (a loop)
+++. make the change

UPDATE

UNTIL ("ANOTHER,END")<>1

27

File Handling Theory

As you might imagine, this can result in a very long procedure - which
would be difficult to follow and to *de-bug’. It is therefore advisable to
break the program up into smaller procedures, which are ’called’ as and
when required: remember that variables can be made 'global’ and that
information can be passed to and received from a called procedure.

Deleting a record
The process for deleting a record from a file is fairly straightforward:

a) Open the file,

b) Find the record.

c¢) Double-check it is to be deleted.
d) Deleteit.

The first step, opening the file, will usually have been done at the outset.
The next step, finding the record, has already been discussed under
’Changing the Record’. Indeed, if this operation has already been written
as a separate procedure (or a set of procedures), all that is necessary here
is to call that procedure. That’s why it makes sense to break a program
down into lots of small procedures.

Once the record has been found, it will be current, ready for further
work. In this instance, the further work is potentially to delete it.

The next step is to double check that the record is to be deleted: it is
very easy to remove a record in error by careless key-tapping. It is not so
easy to restore a record. Once the deletion is confirmed, the OPL word
for removing the record is erasE.

A typical delete sequence could be as follows,

«+ss Find the record
KSTAT 1
DL::
C%=VIEW(1l, "DELETE "+A.Strfield$+" - Y or N")
IF C%=3%Y
ERASE
ELSEIF CR%<>%N
GOTO DL::
ENDIF

28

1.3 Handling Organiser Files

The xsTaT 1 instruction sets the keyboard for capital letters. The string
displayed by the view instruction is a concatenation (an adding together)
to enclose a string field from your file (represented here by A Strfields’)
within the message 'DELETE... Y or N. If Y’ is pressed, then the deletion
is made. If*N’ is pressed, processing continues without the deletion being
made. Any other key causes a jump back to the label DL::.

Analysing records

Being able to add, view, amend and delete records really only covers the
basic operations of file handling. For a simple file such as an address list,
these operations could well be enough. But the chances are you will want
your program to do far more. If you have a Stock Control file, for example,
you may wish to know the current value of the entire stock being held. Or
you may wish to know which items need re-ordering, ’at a glance’.

Most analytical requirements involve the examination of each of the
file records in turn, or at least selected fields of each record, and acting
on the information found. Provided the precise requirements are known,
Organiser can be programmed to do the analysis for you. A simple 'loop’
in which this can be achieved might be as follows:

FIRST
Do

«+s+ examine a field

«+... act according to its contents
NEXT
UNTIL EOF

The rimsrt instruction makes sure that the first record on the file is the
current record. Then comes the loop, where the required field or fields
are examined to see whether or not the required conditions are met, or
to make the required calculations. To get the total value of stock being
held, for example, the field containing the number of items would be mul-
tiplied by the cost per item, and the result added into a running total. To
sec whether an item needed to be re-ordered, a ’current stock level’ field
would be compared with a *minimum stock level’ field and, if lower, the
fact that the item needs re-ordering would be displayed.

File Handling Theory

Once a record has been ’processed’, the nexT instruction moves the
file pointer onto the next record, and the whole process is repeated until
the end of the file is reached.

In the case of the "total values’ analysis, the running total would then
be displayed, along with any message you deemed suitable.

The benefit of having specific fields to a file should now be even more

apparent: accessing numeric values within Organiser’s built-in ‘Main’
file is not an easy task, which makes any form of numeric analysis on
'Main’ extremely difficult.
Generally speaking, it is advisable to keep any analytical routines as
separate procedures, and to call them from the program’s main control-
ling menu. In this way, it would be easy(er) to write a procedure to
perform a once-only task as and when it may be required. The procedure
containing the main controlling menu would then be amended to include
the new procedure as one of the options.

Using more than one file

For most file handling programs, it will probably be sufficient to use just
one file to meet the requirements. There may be occasions, however,
when to perform the tasks you want you will need two or more files open
at a time. One example of this is contained in this book - a 'Banking’
program. In this program, one file is used to record every transaction —
cheques paid out, cheques paid in, standing orders, and so on — and the
other file is used to store information about the standing orders. Using
this technique, Organiser can be programmed to examine the standing
order file whenever the program is used, and to automatically 'pay’ any
standing orders that may be due (by creating a new 'transaction’ record),
so that the bank balance held’ in the Organiser is always accurate and
up-to-date.

It is important when you have two or more files open at a time that any
procedures operating on the files correctly identify the file to be used, and
that the correct record is made current. The appropriate file can be
selected with the OPL word vse. A common mistake is to think that, be-
cause a file has just been used in one procedure, the use instruction
needn’t be used in another procedure called immediately after. Your
program may call on the second procedure from yet another procedure
elsewhere, after another file had been made current,

Similarly, it would be wrong to think that if record four (say) were cur-
rent when a file was last used, it would necessarily be current on return
to that file. Other routines may have changed it. The safe way to avoid
hidden problems is to ensure that, each time it is necessary to call a file,

30

1.3 Handling Organiser Files

that file is made current by the vse command, and that the correct record
in that file is selected and made current.

When afile has been made current and a record has been selected, the
field information for that record is contained in the temporary area of
RAM set aside by Organiser. That information is still available if another
file is opened and made current, and a record in that file selected: the
field information for the second file is also held in the temporary area of
RAM, separate from the information for the first file.

This means once specific records have been selected, information can be
passed between them. The assignment of a value held in one field vari-
able to a field variable of a different file takes the expected format:

A.filel=B.file2

The A and B parts of the field variables identify the logical file names you
gave to the files when you opened or created them, not to RAM or slot
locations. As with any variables, the types (integer, float or string) must
be the same, unless you specifically want to force a float to an integer:

A.filel¥=B.file2

In this instance, the float value held in variable ’B . file2’ will be con-
verted to an integer value for storing in A.file1%. The original float
value will, of course, stillbe heldinB. file2.

As with any variables, mathematical operations can also be performed
using field variables.

It must be remembered that any changes made to a field will not be
’permanent’ - that is, recorded back into the file itself — until an vPDATE
or an AppeND command is given. If it is required to save the information
from both sets of field variables, the two files must each be made current
in turn. A typical sequence of events may therefore involve a program
embracing the following types of instruction:

OPEN "A,.STOCK",A,ITEMS$,QUANTS,PRICE
OPEN "A.PROFIT",B,GROUFPS, MARKUP

USE A

«ss: Belect a record from file A
USE B

-».. 3galect a record from file B
COST=A.PRICE*A.QUANTS

RETAIL=COST*B .MARKUP

31

File Handling Theory

A.QUANTS®=0

B.MARKUP=B.MARKUP*.75

USE B

UPDATE

USE A

UPDATE

This is an example of segments from a complete program - which would

normally comprise a host of separate procedures. The action of this ex-

ample is to open a stock file (A.STOCK) as logical file 'A’, and a 'mark-up’

file (A.PROFIT) as logical file B: both files are held in RAM (determined

by the *A.’ part of each file name). The STOCK file is then selected by the

usk Ainstructiontolocate a particular item, and the PROFIT file is selected

(use B) to find the *mark-up’ category (we're assuming that items have

different degrees of mark-up for the purposes of this exercise). Then

come the calculations to evaluate the cost price of the item for the quan-

tity held, and to evaluate the "retail’ price. The quantity is reduced to zero

(they've just been sold), and just for demonstration purposes, the mark-

up is reduced to 75% of its original value. The important point to note is

that before each record is re-saved, the appropriate file is made current.
Organiser allows you to have up to four files open at a time, but do

remember that only one of them is current at a time for input and output

operations.

That concludes our introduction to the theory of file-handling. We will
now develop some utility routines, to help make the task of writing file-
handling programs easier.

32

CHAPTER 2

File Handling Utilities

File Handling Utilities

2.1 Adding To The Language

Who needs more functions?

Since. Organiser’s programming language OPL already contains a very
extensive range of commands and functions, you may wonder why one

would want to extend it further. The fact of the matter is, OPL has been

specifically devised to enable you to *add’ to the functions it provides to

make your own life easier when writing programs. This is one of the

beauties of OPL.

The functions described in this Chapter enable a program to be broken
down into smaller segments. This action can enable longer programs to
run on Organiser. The reason lies in the way Organiser runs a program,
Briefly, what happens is this.

When you 'run’ a program, either from the PROGram menu or from the
main menu, Organiser loads the object code for the program into its RAM
area. Control of the Organiser is then passed to the program, and the in-
structions it contains arc obeyed. If the program is all in one — that is, just
one procedure - the whole program will be loaded into RAM. If however
the program comprises a number of routines or functions which it *calls’
as required, the shorter, main part of the program is loaded into RAM,
and the individual functions are loaded only as and when they're needed.

The point is that when the instructions in a separate procedure are
completed, that procedure is effectively 'removed’ from memory, releas-
ing the space for another to be loaded when required. If a routine is
"called’ 30 times by the main program, it will be loaded and ’cleared’ 30
times from RAM memory. If the same routine were written 'in-line’ — that
is, written out in full in the main program wherever it is needed, it would
require 30 times more memory space than the separate routine.

It is therefore advantageous in terms of memory alone to break a
program down into discrete parts: a program that takes up more than
24kbytes of memory (and stored on a Datapak) can, if carefully planned,
run on a 16k or even an 8k machine. Question: doesn’t all the loading and
clearing of separate functions make the operation of the program slower?
Answer: yes. But we're talking here of thousandths of a second: you will
rarely, if ever, spot the difference.

34

2.1 Adding To The Language

There are other benefits to building a program from short routines and
functions, It is far easier to test that a short routine works properly. Also,
once a routine has been written and tested, it can be used in any program.
You won't have to write that routine again.

So, in this Part of the book, we are going to develop a few routines which
will add some handy functions for use in other programs, particularly file
handling programs.

The routines given here can be adapted and changed to suit your own
requirements, of course. They can also give you ideas for creating your
own functions. However, it must be pointed out that most of the routines
given here are used in the programs given later, and so all the inputs and
outputs to these routines must be retained if you intend to enter the other
programs. So that you can fully understand the routines and make use of
them in your own programs, each is described under headings as follows:

What it does

Under this heading, you’ll find a discussion of the purpose of the routine
—why it is useful, what it does in detail, perhaps how "calling’ it can save
time and/or space in other programs.

Space required

It can be useful to know just how much space a procedure or a complete
program is going to take up in your Organiser or on a Datapak. There are
three ways to save a procedure:

a) Before it is TRANSlated. When saved this way — usually during the
development of a procedure or when a break is made during entering the
entire routine — only the source code is saved. That’s the’code’ that you
actually enter, the OPL commands and statements.

b) After it has been TRANSlated. When saved this way, both the source
code and the object code are saved. The object code is the one Organiser
actually uses when it 'runs’ the procedure. Both source code and object
code are saved together under the one ’heading’ — the name you give to
the procedure. Organiser knows where one stops and the other starts, so
you don’t have to worry about it.

¢) When copying the procedure to another location. If opsecT onLy’
is selected then only the object code is saved at the new location. This
means that the source code is missing from the procedure (at the new
location), so it occupies less space, but you will be unable to make chan-
ges to the procedure at that location. You are advised, therefore to "back
up’ your routines or to copy source and object code if you think you may
wish to adapt or change them at a later date.

File Handling Utilities

Whichever way you save a procedure, there is an 'overhead’ of some 15
bytes, used by Organiser to "organise’ itself.

Under the heading *Space required’ you'll find an evaluation of how
much space is occupied by the procedure:

a) By the object code with the overhead
b) By the object code and the source code, with the overhead.

But please note that the figures given are for procedures as written but
without all the leading spaces shown in the listings, and without any of the
reMarks that may be included. The leading spaces are included in the list-
ings to help you to identify the matching 1F...ENDIF, DO...UNTIL and
WHILE. . .ENDWE sections of the code. They are not required for the proce-
dures to run, and they are unnecessarily space consuming.

It should also be pointed out that the space figures quoted are for
guidance only: they have been derived by examination of the procedure
in Organiser’s memory. Obviously any changes you make to a procedure
will affect the space requirement.

How it works

So that you can understand better the concepts used when developing a
procedure, a description of how it works is given. In some instances, the
operation of the procedure will be fairly self explanatory— and easy to un-
derstand from the description given under the heading "What it does’. In
these circumstances, only the briefest description is given.

Examples of use

One or more examples of how the routine is *called’ by other programs is
given, so that you will be able to understand how to use it in your own
programs,

Inputs and Returns

As previously mentioned, many of the routines given in this section of the
book are used by the two main file-handling programs: should you choose
to modify the routines to suit your own requirements, it is important that
the input requirements and the type of information returned is exactly as
given under these headings.

Non-OPL functions called

In some instances, the routines will themselves "call’ other routines — the
whole secret of structured programming, remember, is to break the
programs up into the smallest possible chunks. Under this heading will
be given the names of the other non-OPL functions that are called: these

2.1 Adding To The Language

functions must be entered into the Organiser for the routine being
detailed to operate.

Globals needed

It is often handy to have Global variables in a program - that is, variables
that can be used by any procedure called after the variable has been
"declared’. One such variable, for example, could be used to *hold’ the
question-mark symbol ’?”: it is easier to write —and remember —say ’Q$’
than CHR$(63). Also, sometimes it can be more suitable to use Global
variables which can be accessed directly by all procedures and routines,
rather than using Local variables and passing information back and forth
to other procedures by arguments and return values. If a routine needs
Global variables to have been declared before it is called, you will be told
so under this heading. The Global variables listed must, of course, be
declared in a program calling the routine.

Variables used

In order to keep the source code for the procedures as short as possible,
abbreviated rather than explicit variable names have been used: thus S$
rather than STRINGS. This is fine for saving space (to say nothing of the
time and effort taken to enter a procedure into Organiser), but can make
some procedures and routines very difficult to follow. For example, in a
program listing, it would be easier to understand

TOTALSUM=UNITCOST*QUANTITY

than

T=U*Q

However, the explicit version is nearly two dozen characters longer, and
that’s in just one line of code. Also there are less chances to make mis-
takes when entering the shortened variable names, and for these reasons,
abbreviated variable names have been used. Under this heading you will
find details of what the variable names used in the procedure stand for,
or their purpose.

You will find that some variable names — C%, for example - are used
by a number of procedures. This causes no problems provided that they
are Local variables: the Local variables used in one procedure are quite
independent of Local variables used in other procedures, remember, so
they can have the same name.

37

File Handling Utilities

Customizing

In a number of instances, you may well prefer that a function handles
things somewhat differently to the way it is written here. Under this head-
ing you'll find some general notes on how the function can be customized
to suit your own purposes. However, do remember that the types of input
and return values should be retained if you intend to enter any programs
in this book that call the procedure you customize.

The Listing
This is the routine that you will enter into your Organiser (or modify, as
the case may be). Please note the following points:

1. Program lines are indented for loops and 1F type instructions, to
make it easier for you to understand the operation of the program. The
leading spaces do not have to be entered. However, if you are new to
programming, you may find it better to enter the leading spaces initially
and to test that the procedure works without errors: the spaces can help
you to locate missing ENDIF or ENDWE statements, Once the program
TRANslates and runs satisfactorily, the spaces can be deleted and the
program re-saved, to minimise the space required.

2. The :rem construction is used occasionally to help explain the pur-
pose of a particular line in the procedure. This too can be ignored: it plays
no part whatsoever in the running of the program, and will only take up
unnecessary space.

3. The procedures have all been downloaded from an Organiser,
without any change whatsoever: if a procedure doesn’t run or you get
error messages during the TRANslation process, please check your entry
against the listing very carefully, paying particular attention to variable
names, and make sure you have included all the other procedures that are
necessary for the program’s operation.

Test program

By their very nature, most of the functions are not 'stand-alone’ programs.
In other words, you will have to test them by calling them from another
program: often this is best achieved by writing a simple test routine that
can be erased once all is known to be well. Using this method, you will
know that the component "parts’ of a larger program work as planned,
and you shouldn’t have to search through all the individual procedures
and functions to find the 'bugs’. Where practical, a typical Test Program
is given.

38

2.2 How To Enter a Program

2.2 How To Enter a Program

The Basic Principles

This short section is for those who have yet to experience the joys of
entering a program and who may therefore be a little uncertain or
hesitant about how to go about it. The programming menu (selected by
choosing PROG from the menu that appears when the Organiser is first
switched on) offers a number of options:

EDIT LIST DIR
NEW RUN ERASE
COPY

These options are described in this Chapter to guide the newcomer
through all the processes involved in entering, editing and manipulating
program procedures and functions.

NEW

(To enter a new routine)

This is the option you will choose when you first enter a new procedure
or function — that is, one that you haven’t entered either in full or in part
before. When the option is selected, the screen display will clear and the
word new will appear followed by a letter denoting the location Organiser
proposes to eventually save the routine that you enter. Thus ’new a:’
denotes that your routine will be saved at location ’A’, Organiser’s built-
in RAM. Repeatedly pressing the MODE key will cycle the *save’ location
through RAM and Datapaks B and C, always provided that Datapaks are
fitted to the upper and lower slots, of course.

When entering and editing programs, it is strongly recommended that
you select either the *A’ location or, if you have a RAMpack, the location
at which the RAMpack is fitted. Saving routines to a Datapak during their
development can use up the potential space available on the Datapak very
quickly. Once a routine has been written, thoroughly tested and proved,

39

File Handling Utilities

it can be copied or re-saved to a Datapak, should you so wish, thus making
it 'more’ permanent.

Your first entry, after the prompt 'New A:* must be the name of the
routine that precedes the colon only: if the routine is a function that has
brackets following it, you do not enter the colon or bracket part of the
name at this stage. Thus, if the function is called "MSG:(string3)’, after
the 'vew a:’ prompt you enter "MSG’ and then press the EXE key. (Or-
ganiser won't let you enter more than eight characters — the maximum
allowed in a function or procedure name - and if you do happen to enter
the colon and bracket part by mistake, Organiser will tell you that you
have a sap proc maxe). If the name you enter already exists, Organiser
will tell you with the message

FILE EXISTS
press space key

Pressing the space key will return you to the PROG menu. You will then
have to either select NEW again, this time choosing another name, or sel=ct
EDIT to edit the previously entered routine. Having entered an acceptable
name, press the EXE key and the screen will clear and then display the
name of your routine, followed by a colon. This is the point where you
enter the bracket part of the routine, if there is one, followed by pressing
the EXE key: using the current’'MSG’ example, you would enter *(string$)’
and press EXE .

Thus, to make this as clear as possible, let us go through the sequence
to enter the new routine called "MSG:(string$)’ again. First you select the
NEW option from the PROGramming menu. Organiser will then display:

NEW A:

(the location letter may be B: or C:, depending on how Organiser hasbeen
used previously). You select the appropriate location by pressing the
MODE key, then enter the first part of the routine’s name, ‘MSG’:

NEW A:MSG

2.2 How To Enter a Program

You then press EXE. (Note that you will get an opportunity to change the
location where the procedure is saved when you actually save it).
Organiser will now display the name of your procedure:

MSG:

This is the point where you must enter the *bracket’ part of the procedure
(if there is one) as shown in bold below

MsG: (string$)

followed by EXE again. If there is no bracket part to the name of the
routine you are about to enter, you simply press the EXE key. Either way,
the "cursor’ — or flashing symbol — will move to the extreme left of the
second line, ready for you to enter the program.

You can now enter your routine, line by line. At the end of each line,
you press the EXE key — just as you would press the carriage return key
on a typewriter. The cursor, which indicates where your next entry will
be, will move to the start of the next line.

While entering a routine, you can use the ‘arrow’ keys to move the cur-
sor up or down or along any of the lines entered so far, and you can use
the DELete key to remove the character to the left of the cursor, or the
SHIFT and DELete keys together to remove the character at the cursor
position. Pressing the CLEAR/ON key will clear everything entered on the
current line or, if the line is blank, it will remove the line completely. You
can thus clear any mistakes you may have made, and re-enter the correct
information.

As mentioned previously, the listings in this book use leading spaces
on some lines to help make routines easier to understand: you donot have
to enter these leading spaces. Nor do you have to enter *:ren’ or anything
that follows it on a line: rew stands for 'remark’, and is used only to help
in understanding how a routine works.

When you have completely entered the routine, or if you wish to stop
entering the routine for the time being, press the MODE key. The screen
will clear, and you will be presented with a further *mini’ menu with three
options,

41

File Handling Utilities

TRAN SAVE QUIT

The options offered by this menu are as follows.

42

TRAN This option should be selected only if you have finished
entering all of the routine. It tells Organiser to "translate’ the lines of
"source’ code that you have entered into a different kind of code
(called "object’ code), which Organiser uses to actually run the pro-
cedure. If there are any mistakes in the way that you have entered
the code, Organiser will tell you with an ’error’ message: you'll find
an explanation of these messages in your handbook. In most cases,
when you press the keys as instructed by the messages, you will be
returned to a point in the procedure where Organiser believes you
have made the mistake. The error(s) must be put right before the
routine can be translated and used.

After a successful TRANslation, the screen will clear and the word
save followed by the location letter and the procedure name will be
displayed. If you wish to change the location, you can use the MODE
key, asbefore. When you are happy that the correct location has been
selected, press EXE, and both the *source’ code and the ’object’ code
for the routine will be saved.

SAVE If you have entered only part of a routine and wish to take a
break, simply select the SAVE option: the ’source’ code you have
entered will be saved, as it stands, for further development at a later
time. The routine will not be translated into the ’object’ code that
Organiser uses when running programs, and therefore it cannot be
used yet.

QUIT If you wish to abandon what you are doing, select this option:
everything that you have entered during the current session will be
lost. This option is most often selected when you ’edit’ a previously
entered routine, and are just looking through it without making any
changes, or if you make changes that you decide to abandon. The
original routine, as previously saved, will still be in memory.

2.2 How To Enter a Program

EDIT
(To change or inspect a routine)

You should choose this option from the PROGramming menu when you
wish to make changes to the 'source’ code of a routine, or when you just
want to inspect it. The screen will clear and display ’ep1T A, You use
the MODE key to select the location where the routine was saved, and enter
only the name part of the routine, not the colon or any 'bracket’ par:.
Provided that you have correctly selected the location where the routine
can be found, and provided you have also entered its name correctly, the
screen will again clear and the start of your routine will be displayed. You
can then use the ’arrow’ keys to move around the routine, editing it as you
choose. (See also under 'NEW’).

When you have finished editing, press the MODE key, and the 'TRAN,
SAVE, QUIT’ menu will appear: you now have the option of (re)translating
the source code into object code (TRAN option), of simply saving the
source code for further development later on (SAVE option), or of aban-
doning any changes that may have been made to the source code during
the current session (QUIT option).

It is worth repeating that you are strongly advised to save the routines
you edit in Organiser’s RAM ("A:") or on a RAMpack until you have
thoroughly tested and proved them, and you are absolutely sure you do
not wish to make further changes.

RUN

(To run a translated procedure)

This option enables you to 'run’ a translated program, provided it isn't a
function, Functions are those procedures which need an input "argument’,
indicated by a bracketed part following the name (as in "MSG:(string$)’
for example). When RUN is selected, the screen will clear and the word
run followed by a location letter will be displayed: you enter just the name
of the program or procedure you wish to run, and use the MODE key to
select the location at which it has been saved.

Note that the program you run can ’call’ procedures and functions at
other locations: Organiser will search throughall of the available memory
to find them,

If there are any 'run-time’ errors in a procedure, or in any of the pro-
cedures that make up a complete program, Organiser will stop running
to report the error, and will give you the option of editing the offending
routine in order to correct it. The most common errors you'll come across
are MISSING EXTERMAL and MISSING PRoc

File Handling Utilities

MI85ING EXTERMAL means the procedure has a variable name in it that
Organiser cannot find among any of the "Local’ or 'Global’ declarations.
Organiser will display the name of the ’external’ it cannot find on the
second line of the screen. Pressing the SPACE key will reveal the name of
the procedure where the error occured: this could be the routine you
named when you selected 'RUN’, or it could be one of the procedures
called by that routine. Pressing the SPACE key again will give you the op-
tion of editing the offending procedure: if you select 'Yes', then the
procedure will be listed in the ’Edit’ mode, and in most instances, the cur-
sor will be positioned at the point where Organiser spotted the error.

The chances are you have mis-spelt the variable name when entering
it, or the variable has an incorrect 'type’ identifier, or it is not meant to be
a variable at all but a procedure name that is missing the ’colon’. Check
spellings carefully. Check that it has been declared as a "Local’ variable.
Alternatively, if the variable is one known to be *Global’ (that is, declared
in a calling routine rather than the routine in which the error has occured),
check that the calling routine is present in Organiser.

MissinG proc means a procedure has been called which Organiser
cannot find anywhere. The name of the missing procedure will be dis-
played on the second line of the screen. Pressing the SPACE key reveals
the name of the procedure in which the error occured, and pressing it again
gives you the option to edit that procedure.

Check that you have spelt the name of the procedure correctly (with
the identifying tag), and that the procedure has been entered, translated
and saved satisfactorily. If the procedure is on a Datapak, check that the
Datapak has in fact been plugged into the Organiser!

For details of all the error messages, please refer to your handbook, or
'Using and Programming the Psion Organiser IT".

ERASE

(To remove unwanted procedures)

Select this option to remove both the 'object’ and the "source’ code of a
procedure from memory. As with the NEW and EDIT options, at the prompt
you select the location of the procedure using the MODE key, and then
enter the procedure’s name. Organiser will ask you to confirm that you
do wish to erase the procedure from memory (just to make sure).

Note that when a procedure has been saved in RAM or on a RAMpack,
the space it occupied is released for further use on erasure. The space
occupied by procedures on a Datapak is not released for further use on
erasure: consequently frequent changes to procedures on a Datapak will
soon consume all available memory.

2.2 How To Enter a Program

DIR

(To see a list of procedures)

With this option, you can view a list of all the procedures that have been
saved at a particular location. Having selected the option, use the MODE
key to select the location you wish to examine, then press the EXE key
repeatedly to view the list of procedures. To stop at any time, press the
CLEAR/ON key. You will be returned to the PROG menu.

COPY

(To copy procedures)

This option enables you to copy procedures from one location to another.
The destination location must be different from the source location.
When the option is selected, you will be asked whether you wish to copy
the object code only: choosing *Yes’ enables you to conserve space when
copying a provenroutine to a Datapak. However, if you then subsequently
erase the procedure at the original location, you will not be able to edit it
any further, since the source code must be present for editing purposes.

Note too that the copying process places an extra drain on the battery
supply: make sure you have a fresh battery in position before starting, or
use the mains lead that is available (a most invaluable optional extra).
Once you have ascertained whether or not you wish to copy both source
and object code or just the object code, Organiser will display the mes-
sage 'FroM’. You must then enter the location of the procedure from the
keyboard (A, B or C) followed by a colon and, for just one procedure, the
name of that procedure.

If you wish to copy all of the procedures from one location to another,
the.n the location letter and the colon are all that need be entered at this
point,

The screen will then display 'o’, and again you enter the destination
location letter followed by a colon. It is not necessary to re-enter the name
of the procedure unless you wish to re-name it at the new location. But
be careful if you do this, especially if the procedure is one that is called
by other procedures - for its name will have to be changed in those too.

Once all has been entered, pressing EXE will set the copying process in
motion. The time taken to copy from one location to another depends on
how much is being copied: you will hear ’clicks’ during the copying
process. Copying a number of procedures can take a comparatively long
time.

File Handling Utilities

LIST

(To list a procedure to a printer)

If you have a printer connected to your Organiser through an RS232 link
(or Comms Link), you can choose this option to obtain a print-out of any
procedure. Once LIST has been selected, use the MODE key to select the
location of the procedure if necessary, then enter its name and press EXE.

2.3 Briefly Display a Message

2.3 Briefly Display a Message
MSG:()

What it does

tis often extremely useful to display a message on the screen for a brief

period, as a reminder of what to do next, perhaps. This short function
does just that: as given here, it clears the screen, provides a short *bleep’,
displays the message for a timed period, then gives another short *bleep’
before control is passed back to the calling routine. This reduces the five
lines required for the routine to just one in the ’calling’ program, and
would need to be called only two or three times in a program to make a
saving in memory space. It can also make the *calling’ program easier to
understand.

Space required
As listed, but without leading spaces or 'REMarks’ (see Chapter
2.1).
Source + object code: 113 bytes
Object code only: 58 bytes

How it works

The procedure uses the OPL prinT statement to display the mes-
sage, and hence if there are more than 16 characters to the line, the
overflow will appear on the second line. If there are more than 32
characters in the message, the top line will dissappear from the
screen. The alternative — having the message scrolling on just one
line - would entail the use of the view function, which in turn requires
a key to be pressed before the message is cleared.

Examples of use
The following three program lines show how the usc function can be
called from a procedure.

a) MSG: ("Watch me")
b) MSG: (MS+NS)
c) MSG: (MS+"pots"+NS$S+CHRS (63))

47

File Handling Utilities

Examples b) and c) require that M$ and N$ bave been properly
declared and assigned a string value, of course (i.e. M$="WOW").

Inputs
The message string must be enclosed within the argument brackets
in the calling routine. This can be an actual string (example a)), or
a combination of one or more string variables (example b)), or a
combination of string variables, actual strings and string functions
(example c)).

Returns
Nothing.
Other non-OPL functions called

None

Globals needed

None.

Variables used
8% = String$, This is the procedure’s ’argument’: it automatically
takes the "value’ of the string in the ’calling’ instruction, and doesn’t
need to be declared as a Local variable. It cannot be amended by the
MSG:() function.

Customizing

There are many ways this procedure can be adapted to suit your own
particular requirements. You can remove completely either or both
of the BeEP instructions, or simply change the note or its length. You
can alter the display period by changing the value in the pavse in-
struction: the measure is in twentieths of a second, remember, so the
delay is currently set at 1 second. If you want a higher delay period,
by making the value also negative you can ensure that a key press will
terminate the routine. Thus pavse -100 will provide a delay of 5
seconds or until a key is pressed, whichever occurs first,

This procedure is used in File programs listed elsewhere: be care-
ful, therefore, about changing its general structure.

The Listing
MSG: (55)
cLs

BEEP 50,500
PRINT S$
PAUSE 20
BEEP 50,500

48

2.3 Briefly Display a Message

Test programs
Either (or both) of the following short programs can be entered,
translated, saved and run to test the MSG:() function. Once proven,
the test program(s) should be erased from memory.

1)

TESTMSG:
MSG: ("THIS IS A TEST")

2)

TESTMSG2 :

LOCAL M$(16),NS5(16)
MS$="THE.TOP.LINE...."
N$="THE.BOTTOM.LINE"
MSG: (MS+N$)

49

File Handling Utilities

2.4 Yes or No Test
YORN%:

What it does

Onc of the most frequent requirements when running an inter-active
program is to obtain a "Yes’ or "No’ answer from the keyboard, and
to act according to that answer. This short procedure provides a routine
that handles the task in a neat way: if the answer is "Yes’, a’1’ isreturned,
while if the answer is’No’, a zero is returned. No other answer is accepted.
The calling routine can therefore be as simple as

IF YORN%:

. do the ‘Yes' routine
ELSE

. do the 'No' routine if required
ENDIF
Asyou can see, the complete test is undertaken in the calling program by
the one, simple instruction ’1¢ yorns:'. The instruction following this
statement is obeyed if the statement is true — that is, if Yorns: returns a
non-zero result.

Note that two approaches are available should it be necessary to test
only for a’No’ answer:

1)

IF YORN%:
ELSE

..

. do the 'No’ routine

ENDIF

2.4 Yes or No Test

2)
IF YORN%&:=0

... do the 'No’' routine

ENDIF

In terms of the source code, the second method is slightly shorter, and
probably easier to understand.

Space required
As listed, but without leading spaces or 'REMarks’ (see Chapter
2.1).

Source + object code: 206 bytes
Object code only: 94 bytes

How it works
The function displays the message on the second line of the screen
(always), by using the OPL word view. This allows for a question to
be displayed on the top line by the calling program - the message
should, of course, be less than 16 characters to avoid scrolling.

view displays the message “(Y)es or (N)o” until a key is pressed.
The ASCII value of the pressed key is *returned’: we want to know
whether the 'Y’ or a "N’ key has been pressed, and so a simple test
of whether the returned value is the ASCII for "Y’ or "N’ is peformed.

It is possible that the keyboard may have been set to lower case
characters or numerals, and so the xsTaT command is used to make
sure the keyboard is first set to capital letters. It would be possible,
once the Yorn®: routine is running, to over-ride the ksTatr command
by pressing (for example) the SHIFT and NUM keys. No provision is
made to trap this type of (rare?) event.

Examples of use
Examples of how this procedure is called from another procedure
or function have been outlined in previous paragraphs. Overleaf you
will find a summary.

51

File Handling Utilities

a) To act on Yes and No answers

CLS
PRINT "query message”
IF YORN%:

...do Yes routine
ELSE
«+..do No routine
ENDIF

b) To act on a Yes answer only
CLs

PRINT "query message”
IF YORN%:

.+..do Yes routine
ENDIF

c) To act on a No answer only
CLS

PRINT "guery message"
IF YORN%:=0

.+s.do No routine
ENDIF

Inputs
None: but it is expected that the top line of the screen will be used
to display a message of up to 16 characters (maximum). If between
17 and 32 characters are used, they will be lost on the'second line:
any more than 32 will cause scrolling.

Returns
1 if the answer is "Yes'
0 if the answer is "No'.

Other non-OPL functions called
None

Globals needed

None

52

2.4 Yes or No Test

Variables used
A% = Answer Used to hold the result of the keypress. Note the use
of an integer variable (the identifying *%’ symbol).

Customizing
This procedure is used in File programs listed elsewhere: be care-
ful, therefore, about changing its general structure if you wish to
enter those programs,

For your own programs, you could re-write the YORN% function,
calling it, for example, "YORNWM%:(M$)’, so that it will print the
message as well as returning an answer. (The "WM’ in the name
stands for "With Message’). Such a function could be created using
the listing given for yorws:, by simply adding the following two lines
immediately before the ksTaT 1 instruction:

CLs
PRINT M$

It will be necessary when calling the modified routine to place your
message (maximum 16 characters) in brackets after the function
name thus:

IF YORNWMS%:("Repeat.test"+CHRS(63))
... do 'Yes' routines
etec.

Note that this modification to the routine clears the screen before
the message is displayed. It is not used in any of the programs listed
later.

The Llsting

YORN%:

LOCAL A%

KSTAT 1

8T::

AR=VIEW(Z,"(Y)es or (N)o")

IF A%=%Y

RETURN 1

ELSEIF A%=%N
RETURN 0

ENDIF

GOTO ST::

File Handling Utilities

Test programs
Here is a simple routine to test voans:, To use it (once entered,
TRANslated and SAVEd), run the routine twice, first pressing Y and
then N and noting the result: YES or NO should appear at the left
of the top line according to the keypress. Note that only the keys Y
or Nshould have any effect. Press any key to exit the test routine each
time, Erase the test routine once you are happy yorne: works,

YTEST:
PRINT "IS THIS 0O.K"
IF YORN%:
PRINT "YES"
ELSE
PRINT "HNO"
ENDIF
GET

54

2.5 Get an input

2.5 Get an input
GI$:()

What it does

Practicaﬂy every program requires some kind of keyboard input from
the user, We have already dealt with a simple *Yes or No’ type of input,
but what about inputs of information? Most programs — particularly
those involved in file-handling — require a considerable amount of dif-
ferent kinds of information to be keyed in, and each time it is necessary
for the program to print a suitable message, then obtain the input. This
function, although it looks fairly long, makes it easy to write the program
lines that get information from the keyboard, and of course, it can be used
for as many different programs as you wish. In other words, it provides
an extremely useful function to add to those already in the OPL language.
The function copes with any type of input requirement — floating point,
integer or string — and to make it even more useful, it is arranged so that
a long (and sensible) message can be displayed to explain what input is
required.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 521 bytes
Object code only: 208 bytes

How it works
When called, the function is given two arguments: the message (M$)
related to the required input, and a tag (T%) to identify the type of
input being requested. The tag must have a value of 0, 1 or 2, for
floating point, integer or string inputs respectively.

The screenis cleared, and the keyboard is set to suit the type of input

required — either numbers only or numbers and letters — using the
xstat command. The message is then displayed on the top line using

55

File Handling Utilities

OPL’s view function, so that messages longer than 16 characters will
be scrolled. As you are know, view waits for a key to be pressed
before it allows processing to continue with the next instruction. This
can present a problem: it means a key has to be pressed before the
actual input can be accepted. To get round this, the ASCII value of
the pressed key is saved (in C%), and displayed as the first input
characterat the beginning of the second line (PRINT cER$ (ct);): the
semi-colon after this instruction ensures that the rest of the input will
be displayed immediately after the first character, so that from a
user’s point of view, only one input is being made.

The rest of the input is obtained in the usual way using OPL’s 1vpuT
command, and then the "first’ character is added to the beginning of
it, so that the input string variable represents the total input. There
is a minor snag to this technique: all but the very first character can
be 'edited’ during the input. That is to say, if an error is made during
entry, all but the very first character can be corrected in the usual
way using the cursor and DELete key. It is felt, however, that this is
preferable to the alternative of having to press a key before making
the actual input — which can easily lead to errors and frustration.

Obtaining a single character through the view function enables us to
test for animmediate "abort’. It may be that the user changes his mind
about making an input — and simply presses EXE. Consequently, im-
mediately following view a simple test is made to see'whether the
EXE key has been pressed (by checking whether the ASCII value of
the key-press is 13). If it has been pressed, we need to return a value
according to the type of input required: a’0’ for integer or floating
point requirements, or an empty string for string requirements.

Having obtained the input, we need to test that it conforms exactly
to the requirements of the calling program. For example, if a float-
ing point number is required as an input - and the calling program
is all geared up to accept a floating point pumber - it would create
an error if anything other that a floating point number is returned.
We must therefore test that no alphabetic characters are present in
the returned string. We can use the fact that Organiser will detect
errors of this kind, by building in an error-trapping routine,

Thus, before the string representing the input is returned to the call-
ing routine, a simple oNERR test is made by extracting temporarily the
value of the input according to the calling routine’s requirement. If

2.5 Get an input

there is an error, processing jumps to the sn: : labelled part of the
function. This displays a message briefly (using the MSG:() function
given in this section of the book), before going back to the start to
receive a new input. Note that this error-trapping routine will also
detect integer values outside the permitted range -32768 to +32767.

You may ask “Why not return the value exactly as requested by the
calling routine, instead of a string each time?” The reason is OPL
won’t let us do that from a single routine: you will recall that when
a function returns a value, its name requires an identifier to indicate
the type of value being returned: no identifier for floating point num-
bers, %’ for integer numbers, and '$’ for strings. A function can have
only one identifier, and while numbers can be represented as strings,
strings cannot be represented by numbers (sensibly). Hence, this is
a string function. It is up to the calling routine to make the simple
conversion required to turn the string into a numeric value.

Please note that no test is made to ensure that the value of T% is
within the range 0 to 2: it is encumbent on programmers using the
routine for their own purposes to ensure that T% does indeed lie
within this range. The additional programming lines required to per-
form such tests are quite unjustified.

Examples of use

The function can be called by a program to obtain a floating point,
integer or string input from the keyboard. Examples of each are given
below: note that the message is not restricted to 16 characters, and
that the value of the second argument in the brackets is vital to the
type of input being requested (sce under "How it works’). Note too
that this function returns a string, which must be converted to a num-

ber, by the calling program.

a) Floating point inputs

Format: Vv = VAL(GIS:(M$,0))
i) V=VAL(GI$:("Enter the cost",0))
ii) V=VAL(GIS$:(M$+NS,0))

b) Integer inputs

Format: V% = VAL(GIS$:(M$,1))
i} V¥=VAL(GIS:("How many books"+CHRS$(63),0))
i) V&=VAL(GIS$: (M$+NS$,1)

57

File Handling Utilities

Note that the assignment to an integer variable will force the string’s
value to an integer, even if a floating point number has been entered.

c) String inputs
Format: v$=GI$: (M$,2)
i) V$=GI$("What is your name",2)
i) VS$=GI$(MS+CHRS(63),2)
Note that the string variable being assigned must have been declared
with sufficient space to receive the input string (i.e. Local V§(32))

Inputs
Two input arguments are required within the brackets: the request
message as a string or string variable, followed by the appropriate
tag in the range O to 2:
0 = to get a floating point input
1 = to get an integer input
2 = to get a string input

Returns
A string representing the keyboard input. Note that all but the very
first character can be edited during input. The calling routine must
convert the string to a numeric value, if required.

Non-OPL functions called
MSG:().

Globals needed

None

Variables used
MS$ = Message The input string argument.
T% = Tag The input-type identifying tag.
S$ = String Holds the information entered from the keyboard.
C% = Character Holds the ASCII value of the first character input
from the keyboard, and used to test for a true integer value.
V = Variable Used to test for a true floating point value.

58

2.5 Get an input

Customizing
This function is used extensively in the File Handling programs listed
later: customization is not recommended.

The Listing

GI$: (M5, T%)
LOCAL S55(32),C%,V
ST::
CLS
IF T&=2
ESTAT 1
ELSE
KSTAT 3
ENDIF
CR=VIEW(1,M$)
IF C%=13
IF T%=2
RETURN "*
ELSE
RETURN "0O"
ENDIF
ENDIF
AT 1,2
PRINT CHR$(C%); tREM NOTE SEMICOLON
INPUT sS
S5=CHR$ (C%)+S5
ONERR BN::
IF T&=0
V=VAL(S5%)
ELSEIF T%=1
C%=VAL(55)
ENDIF
RETURN sS$%

BN::

CLs

ONERR OFF

MSG: ("BAD NUMBER")
GOTO ST::

File Handling Utilities

Test Program
The following routine can be entered to test the three uses of GI$:().
It may seem a little long, but is well worth the effort — and it will help
you to understand the function. In use, press any key after each re-
display of your inputs. Try entering 'wrong’ information, to see what
happens. Once all is 0.k., erase the routine from memory.

TESTGI:
LOCAL F,V%,55(32)

F=VAL(GI$:("ENTER FLOAT VALUE",0))
V&=VAL(GI$:("ENTER WHOLE NUMBER",1))
S$=GI$: ("ENTER YOUR NAME",2)

PRINT “HI THERE"

PRINT S$

GET

PRINT "YOUR FLOAT:"

PRINT F

GET

PRINT "YOUR NUMBER:"

PRINT V%

GET

2.6 Get Pack Location

2.6 Get Pack Location
GLS:, ULS:

What they do

When you use Organiser’s FIND and SAVE functions (for example), you
can select the location — A: (for the internal RAM), B: or C: (for a
Datapak) by pressing the MODE key. A similar function can be useful for
your own programs, particularly as file names must include the location
letter and a colon. The two short routines offered here provide a simple
way to select the location by pressing the MODE key. The first procedure,
GLS$:, displays a message

Pack? Now=A:

and accepts presses of the MODE key to cycle the location letter through
B: and C: (even if Datapaks aren’t fitted to the slots!). Any other key-press
will return the currently displayed location letter followed bya colon. The
routine can therefore be used by the calling routine to complete a file
name. The actual work of cycling the location letter is done in the short
routine ULS$:. Needless to say, both routines must be present in the Or-
ganiser: note that, as listed here, both also need Global variables declared
in the calling routine.

Space required
The space required for the procedures, as listed, but without lead-
ing spaces or 'REMarks’ (see Chapter 2.1) is:
GLS%: Source + object code: 194 bytes
GLS: Object code only: 95 bytes
ULS: Source + object code: 132 bytes
ULS: Object code only: 80 bytes

61

File Handling Utilities

How they work
The two routines depend on the calling program declaring a Global
integer variable — L% — in order to retain the location information.
This information is stored in a simple way: 1 to 3 for the locations A
to C respectively. A question mark is used in the GLS$: routing, and
this too must be declared as a Global and assigned in the calling
routine.

The operation of GLS: is fairly straightforward. The screen s cleared
and the entire message is displayed on the top line, using the semi-
colon technique to 'assemble’ the various parts of the message.
Notice how the last part of this message line (effectively PrRIFT ULS$1)
calls the uLs : routine - to set L% — and prints the return string value.
Having set the Global variable L%, all that remains to be done is to
return the letter corresponding to its value, which is achieved by
simply adding 64 to the value of L% and converting the result to a
character.

The urs: procedure may need a little explaining for those not used
to programming. Essentially what we need to do is add 1to L% each
time the routine is called (it starts by being initialised to zero), If
adding 1 to L% results in its value becoming 3, then we must sub-
tract 2 to cycle it back to 1 again, All this could be achieved by a series
of program lines: however, OPL’s powerful logical operating system
allows us to do the whole thing in one line.

The two tests "if L% is less than 3’ and "if L% is greater than 2’ are
performed within the bracket parts of the line. If the first test is "true’,
it results in -1’ (Organiser’s way of representing 'truz’) and one is
added to L%. Ultimately, adding one to L% will give it the value 3:
the first bracketed test will then not be true (resulting in a zero), while
the second test will be true, so the bracket part will resolve to -1, and
since +2 multiplied by -1 is -2, two will be deducted from the value
of L%. Too complicated? Don't worry about it. It works.

Example of use
A procedure using this pair of functions could have the following
lines in it:

INPUT F$
F$=LEFT$(F$,8)
F$=GL§:+F$

2.8 Get Pack Location

This example gets an input (a file name without any location letter),
strips it down to eight characters (the maximum allowed in a file
name), then tacks on the location letter at the beginning by calling
crs: (note the use of the colon after crs:. Without it, you will get a
MISBING EXTERMAL CITOT).

Inputs

None

Returns
urs: adjusts the value of L%, and returns L% converted to a loca-
tion string to crs:. In turn, cL$: returns a location string to the
calling routine,

Non-OPL functions called
GLs: calls vrs: .

Globals needed
Both need L% declared in a calling routine, Additionally, as written
here, 6L$: needs QF to have been declared as a Global and assigned
CHRS(63) in a calling routine.

Variables used
None apart from the Globals mentioned above.

Customizing
These routines have been specifically developed for use in the File
bandling programs given later, They undoubtedly represent just one
of many ways to tackle the problem of obtaining a location letter in
a cyclic manner. To avoid the dependence of external Global vari-
ables, CHR$(63) can be used instead of Q$ in the cL$: procedure.

File Handling Utilities

The Listings
Enter, translate and save the two procedures separately.

a) The 'Get Location’ routine
GLS:
ST::
CcLS
PRINT"Pack";Q$," Now=";UL$:
IF GET=2
GOTO ST::
ENDIF
RETURN CHRS(L%+64)+":"

b) The 'Update Location’ routine
ULS:

L%=L%=1#%(L%<3)+2* (L¥>2)
RETURN CHRS(64+L%)+":"

Test Program
Enter the following short routine if you wish to test out the opera-
tion of r$: and vrs:. When using this routine, enter a name from
onc to cight characters, then you will be able to select a location (even
if you don’t have Datapaks fitted) by simply pressing the MODE key.
You will then be shown the name you entered turned into a file name
for the selected location.

TESTL:
GLOBAL L%,0Q5$(1),F$(10)

PRINT "ENTER 8 LETTERS:"

INPUT F$

F5=GLS:+F5S :REM COLON VITAL
PRINT "FILE NAME ="

PRINT F$

GET

2.7 Get a File Name

2.7 Get a File Name
GFNS$:()

What it does

Fﬂe-handliug programs will need to operate on at least one data file.

The name of the data file could be written into the program as a per-
manent feature. However, this would obviate the possibility of creating
separate, individual files from the program as and when the need arises:
you may wish to have a separate 'expenses file’ for each month of the year,
for example. Entering a file-name on request is a simple enough matter
(what could be easier than vpuT P$?).

However, in order to eliminate most, if not all, of the potential errors
that can occur (and which would stop the program from running), a num-
ber of tests need to be made. If more than one file needs to be called up
in a program (or you have more than one file handling program), it makes
sense Lo create a routine specifically to get in the file name and check it
out at least for ’syntax’,

This is just such a function. It allows a message to be displayed on the
top line to tell the user what input is expected. It checks that a location
has been specified: Organiser needs to be told where the file can be found
(or where it is to be created). If the location has been missed from the file
name, the user is prompted to give a location by simply pressing the MODE
key, and the location is added to the file name. Finally a check is made to
see that the user isn’t trying to specify a location which doesn’t have a
Datapak fitted. (Tut tut!). All these are potential program stoppers if left
unchecked.

Space required
The space required for the procedure, as listed, but without leading
spaces or'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called:

Source + object code: 464 bytes
Object code only: 207 bytes

File Handling Utilities 2.7 Get a File Name

How it works) b) Global variables
The function uses the utility c15:) to display a helpful message and L% = Location Holds the pack location information.
to get in the actual input. This is tested to see if the user has a colon Q$ = Question Holds the question mark character.
in the second character position — indicating that a location letter ¢) Local variables
has been entered. If no colon is present, the 6Ls: (and hence vr$:) F$ = Filename Holds the file name in this routine.
routines are called, and the location added to the file name (having C$ = Check Used to check the location letter.

first made sure it is not overlength). Then comes a simple test to see

whether the selected location actually exists: an attempt is made to L

open the *Main’ file at the location, (A "Main’ file is created for you The l_-|5“"9

on every Datapak). Any errors that may occur are trapped, and GFHS: (MS)

processing jumps back to the start. Otherwise, 'Main’ is closed and GLOBAL L#%,0Q%(1)

the accepted file name is passed back to the calling routine. LOCAL F§({10),C5({1)

QF=CHRS§ (63)
ST
Examples of use CLS
The returned File-name can be assigned to a string variable, or used F$=GI$:(M5,2)
in a command, as shown by the following two examples. Notice that IF MIDS$(F5,2,1l)<>":"
the message can be any length (up to 255 characters), IF LEN(F$)>8
F$=LEFT$ (F$, 8)
a) FN$=GFN$: ("ENTER THE FILE NAME") ENDIF
b) CREATE GFN$:("ENTER NEW FILE NAME"),A,A$ F$=GLS:+F$
ENDIF
Inputs C$=LEFT$ (F$, 13)
T:he message to be displayed must be enclosed within the brackets :?AEREPEN CHETIMATH™ A, A8
either as a string or a string variable. MSG: ("NO PACK "+C§)
GOTO ST::
Returns ELSE
A File-name, with location identifying letter, scrubbed nice and CLOSE
clean, ENDIF
RETURN F$
Non-OPL functions called
GIs:()
GLS: Test Program
The following simple routine will test the gens: () function. When
Globals needed entered, run it several times trying different types of entry.
None TESTG:
PRINT GFN$:("ENTER A FILE NAME NOW")
Variables used GRS

a) Input argument
MS$ = Message The message input for passing on to GI$:()

File Handling Utilities

2.8 Edit Functions
EF:(), El%:(), ES$:()

What they do

PL has an instruction ’eprT’ which allows you to edit a string.

However, when it comes to file handling, you will undoubtedly wish
to edit entries which are alsn of a numeric nature — and these can be either
floating point or integers. It is easy enough to convert such numbers to
strings, edit them, and convert them back to the required type. However,
the conversions back to a number should be tested to make sure that they
still conform to type: if a numeric variable is edited to contain an al-
phabetic character, a program-stopping error can occur.

Since editing can represent an important and frequently used part of
working with files, it makes sense to create the editing facilities as separate
functions. At the same time, it is useful (particularly when holding money
values) to add in a facility to the floating-point edit function to enable the
number of decimal places that will be displayed to be specified.

Space required
The space required for these procedures, as listed, but without lead-
ing spaces or 'REMarks’ (see Chapter 2.1) and excluding space
required by any of the non-OPL routines called, is:

EF: Source + object code: 286 bytes
EF: Object code only: 114 bytes
El%: Source + object code:173 bytes
El%: Object code only: 63 bytes
ESS$: Source + object code: 110 bytes
ESS$: Object code only: 64 bytes

How they work
The floating point function, £F: () requires two inputs: the floating
point value to be edited, and the number of decimal places to be dis-
played. It converts the input value to a string (truncated to the
requested number of places) using OPL's r1xs function, clears the
screen, displays an edit message and sets the keyboard for numeric

2.8 Edit Functions

inputs ready for the edit. After editing, the keyboard is set back to
‘alphanumeric inputs, and an "attempt’ made to return the value of
the edited input. If there is an error— because a non-numeric charac-
ter has been included in the edit - the error trapping routine is
invoked and processing jumps back to allow the user to re-edit.

The integer editing function, ex%: (), takes an integer input and in
one short line, attempts to return the integer result of a floating point
edit — with no decimal places — by calling eF: (). The integer value is
converted to a floating point value for gF: () using the OPL 1nTF()
function. The floating point routine £F: () will trap any non-numeric
characters: the ex%: () routine traps any integers outside of the per-
mitted range -32768 to + 32767, giving an appropriate message and
allowing a re-edit.

The ess: () function completes the suite and is a straight use of the
edit function, with the added flavour of an instructive message. Note
that it is necessary to create an independent string: Organiser won't
let an input variable be edited.

Examples of use
The most common use for these functions will be to edit the value or

data held in an existing variable. Thus:

1) Declared variables
a) v =EF:(V,2)
b) I%=EI%:(I%)
C) S5=ES$:(8%5)
2) File field variables
a) A.COST=EF:(A.COST,2)
b) A.QTY®=EI%:(A.QTY%)
c) A.NAME$=ES$:(A.NAMES)
Notice how only one variable is needed in each case.

Inputs
EF: (F,D%) needs a floating point value (F) and an integer value (D%)
representing the desired number of displayed decimal places.
EI%:(I%) needs an integer value (1%)
Es$: (5%) needs a string (55).
In all instances, the values can be actual values or a variable of the

appropriate type.

File Handling Utilities

Returns
The edited input value or string, conforming to input type.

Non-OPL functions called
EI%:() calls EF%:()
MSG:()

= Globals needed

None

Variables used

1) By EF()
V = Variable The floating point input value
N% = Number of decimal places to be displayed
I$ = Input The string of the input value

2) By E1%:()
V% = Variable The integer input value

3) By ESS$:()
§$ = String The input string
I$ = Input String for editing.

Customizing
These functions are used in the File Handling programs listed later.

The Listings

Enter and save the three procedures separately.

1) Edit a floating point value
EF:(V,N%)

LOCAL I$(12)
IS=FIXS$(V,N%,12)
CLS

PRINT "EDIT NUMBER"
AG::

KSTAT 3

EDIT IS

KSTAT 1

70

2.8 Edit Functions

ONERR HNN::

RETURN VAL(IS)

NN::

ONERR OFF

CLS

MSG: ("NUMBERS ONLY")
GOTO AG::

2) Edit an integer value
EI%: (V%)

AG::

ONERR BI::

RETURN EF: (INTF(V%),0)
BI::

M5G: ("NUMBER TOO BIG")
GOTO AG::

3) Edit a string

ES5:(58%)

LOCAL I$(32)

I1$=5%

PRINT"EDIT DATA"
EDIT IS

RETURN IS

Test Program
The following test program allows you to test all three functions. Run
it several times: try entering characters when editing a number, and
so on, to see the effects. Clear the test program when all is well.

TESTE:

LOCAL V,V%,55(32)
Vv=1234.5678
Vi=4444
S$="TESTING"
V=EF:(V,1)
VE=EI%: (V%)
S$=E5§:(5%)
PRINT"V NOW",V
GET

PRINT"VE® MNOW" ,V%
GET

PRINT"S$ NOW",S$
GET

71

File Handling Utilities

2.9 Show a Record
SR%:()

What it does

w1:|e,n handling files, one of the things you will undoubtedly want to do
will be to inspect the individual records. As you would expect, there
is an instruction in OPL to handle this requirement — p1se — which comes
in three *flavours’. When displaying a complete record using the form
DISP(-1,55), the 'S is ignored and the current record is displayed one
field to a line. This is fine unless you have several numeric fields and aren’t
quite sure what each one represents.

The solution is to create a string which adds a name to each field, and
separates each name + field part with a "tab’ character — ASCII 9. The
version pIsp(1,s$) can then be used to display the string so produced -
ss. Producing such a string must depend entirely on the specific program
requirements — and cannot be ’generalised’.

An example of how a string can be produced is given in the routine
called "srec:’, in the 'BANKER'’ file handling program. Having created
such a string, one could then quite simply use the pxse() function as
described. However, one will also want to be able to step backwards and
forwards through the records of a file. If more than one file is being used
(as in the 'BANKER’ program given later), it can save space to combine
the routines for stepping backwards and fowards together with the record
display routines.

The srs: () function does just this: it displays a prepared string, moves
to the next selected record and returns the ASCII value of the key pressed
so that a new string can be prepared, or the examination sequence ter-
minated.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) is:
Source + object code: 253 bytes
Object code only: 110 bytes

72

2.9 Show a Record

How it works
The listing should be fairly self-explanatory. A string prepared for
the current record by the calling routine is passed as an argument to
this function, which then sets the keyboard to capital letters (to avoid
input problems as far as possible), and displays the string using the
p1se() function.

prsp() allows the cursor keys to be used to examine each line of the
record, Like view, it requires a character key to be pressed before
processing can continue with the next instruction. The key press is
used to reset the record pointer as follows:

N selects the next record,

B selects the previous record
F selects the first record

L selects the last record

Note that if the end of the file is reached, the last record is re-dis-
played. Whatever key is pressed, its ASCII value is returned, so that
the calling program can also act accordingly to either terminate
record viewing, or prepare a new string for viewing based on the new
current record,

Example of use
A typical part of a routine using sre: () could be as follows. It is as-
sumed that 'S$’ is a string prepared from the current record.

Do

C&=SR%:(55)

UNTIL (C%=13) OR (C%=%5) OR (C%=l)
Record viewing will terminate when EXE, CLEAR/ON or the letter S is
pressed.

Inputs
The concatenated string, built from names given to record fields and
the actual ficlds, with tab characters separating the name-and-field
combinations.

73

File Handling Utilities

Returns
The ASCII value of a key pressed during the record viewing,

Non-OPL functions called
None

Globals needed

None

Variables used
S$ = String The input string to be displayed.
C% = Check The ASCII value of a pressed key

Customizing

This function is used in the File Handling programs listed later,

The Listing

SR%: (§%)
LOCAL C%
KSTAT 1
C%=DISP(1,5%)
IF C%=%N
NEXT
IF EOF
LAST
ENDIF
ELSEIF C%=%B
BACK
ELSEIF C%=%F
FIRST
ELSEIF C3%=3%L
LAST
ENDIF
RETURN C%

74

2.9 Show a Record

Test Program

TES

The srs1¢) function requires a file of records to be present, and
necessitates the preparation of a string based on the file’s records.
A full test program would therefore be extremely long and quite im-
practical. The following, however, should check the.function works
in principle. Notice how the up and down cursor keys allow you to
move up and down through your record, and that long lines will scroll
under the control of the horizontal cursor keys.

Warning; you will get an error message if you press any of the keys
B, N, L, F, since these will cause the sr%: () function to try to select
a new record in a non-existent file.

TS3

LOCAL S$(64),C%,TS(1)
T$=CHR$ (9) :REM TAB CHARACTER
S$="NUMBER: "+NUMS (5, 2)+T$

58=
85=
Ci=
PRI
GET

SS$+"NAME: "+"JOE BLOGGS"+TS
S5+"HIDDEN: "+"1234"
SR%:({5$)

NT"YOU PRESSED",CHRS(C%)

75

File Handling Utilities

2.10 Month Name Selector

Globals needed
None
2.10 Month Name Selector
MNS$:() Variables used

M% = Month The input month number

Customizing

What it does

iven a month number as an input, this function returns the first three
characters of the month’s name. Thus, MN$:(4) will return "APR’.
That’s it, folks!

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) is:
Source + object code: 160 bytes
Object code only: 87 bytes

The principle behind this one-line function can be used for a variety
of similar routines — perhaps to 'decode’ file record entries, Your
records could have a field which contains a simple numerical integer,
for example, which can be expanded by one short routine to give an
appropriate name, just as this routine expands a month number into
a name. All the *names’ or entries in the string would have to be the
same length, of course, but you could use spaces to ’pad out’ the
shorter names. A considerable saving on file memory space can be
achicved by this technique, particularly where standard names are
used frequently.

The Listing
MN$: (M%)
How it works _ RETURN MIDS ("JANFEBMARAPRMAYJUNJUL
The appropriate mid-section is returned from a prepared string, by (ine continued) =~ AUGSEPOCTNOVDEC™, (M$*3)-2, 3)

multiplying the month number by three (three characters to a name)
and subtracting two from the result to get back to the first letter of
the name,

Examples of use

Test Program

a) MS=MNS: (6) TESTM:
b) PRINT "THIS IS",MN$:(MONTH) PRINT "IT IS ";MN$:(MONTH)
GET
Inputs

The month number, as a number or an integer variable.

Returns

The first three characters of the month’s name,

Non-OPL functions called
None

76

77

File Handling Utilities

2.11 Truncate a number
DN:()

What it does

This short function trims a floating point number down to a specified
number of decimal places. Such facility is useful, for example, for
reducing floating point numbers down to two decimal places for monetary
displays, and so on. A similar facility — called *FIX’ — is available in the
CALCulator mode of Organiser, but this resets the whole Organiser to the
required number of decimal places, until it’s reset. There is also a 'F1xs’
function in Organiser’s programming language: to avoid confusion with
these two functions, this routine is named 'DN’, for 'Decimal Number’,

Space required
The space required for the procedure, as listed, but without leading
spaces (see Chapter 2,1) is;
Source + object code: 84 bytes
Object code only: 40 bytes

How it works
Quite simply, the input value is converted to a string 'fixed’ to the re-
quired number of decimal places, and the resulting value of the string
returned. All in one line.

Examples of use
a) V=DN:(4.2345,2) tREM V will hold 4.23
b) PRINT DN:(V,DP%)

Inputs
The number to be truncated (V) as a floating point value or a vari-
able, and the required number of decimal places (DP%) as an
integer value or variable.

78

2.11 Truncate a number

Returns
The pruned foating point value (as a floating point number — not as
an integer, even if zero decimal places are requested).

Non-OPL functions called

None

Globals needed

None

Variables used
Input arguments
¥V = Variable The floating point number to be truncated
DP% = Decimal Places The number of decimal places required in
the answer.

The Listing
DN:(V,DP%)
RETURN VAL(FIXS(V,DP%,12))

Test Program

A test program would be umpteen times longer than the function.
You can, however, test it by switching Organiser to the CALCulator
mode and entering the function (as shown in bold) in the following
example (press EXE to get the result). Also use your own values to
experiment with the results (note that the *1nt()’ is important for
entering an integer when using the CALCulator, since in this mode all
numbers are otherwise considered to be floating point values):

CALC:DN:(1.24789,INT(2))
=1.25

79

File Handling Utilities

2.12 Pad out a String
FIL$:()

What it does

uite often you will need to space displays out on your Organiser and
on a printer, if you have one. Organiser has functions that allow
numeric values to be converted to strings — and padded’ or truncated to
a specific length, but there’s no similar function for strings. This routine
fills the gap (pardon the pun). Alternatively, it can be used to truncate a

string to a given length.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) is:
Source + object code: 183 bytes
Object code only: 83 bytes

How it works
First of all a string "holding’ array is declared, and it is assigned a
number of characters from the start of the input string, depending
on the requested length. If the length of the "holding’ string is equal
to the specified length, the result is returned without any more ado.
If the *holding’ string is short of the specified length, it is padded out
using the OPL repTs () function.

Example of use
If°S$’ holds "This string”, then after
a) S$=FILS:(S$,4) , 'S$ will hold "This’,
b)S$=FILS$: (5%, 14), 'S$ will hold "Thisstring” followed by four
spaces.

Note: The assigned string, (S$ in these examples) must have been
declared of sufficient length to accept any extra spaces.

2.12 Pad out a String

Inputs
The string to be padded or truncated (MS), and the required length
for the string (L%).

Returns
The truncated or padded string.

Non-OPL functions called
None.

Globals needed
None,

Variables used

a) Input arguments
M$ = Message The input string
L% = Length The required length for the returned string.

b) Local variables
8% = String An array to hold the truncating or padding operation,
ready for return (it is not possible to change the input argument, M$,
directly).

Customizing
You may like to have a similar routine that pads or truncates at the
start, rather than the end. If so, simply use R16ET$ () instead of LEFTS,
and add 'S$’ at the end of the repTs () function instead of at the start.

Note that the routine, as listed here, is used in the Stock Control and
Banker programs, to create a neat output on a printer,

The Listing
FILS: (M$,L%)
LOCAL S§5(36)
S$=LEFT$ (M$,L%)
IF LEN(S$)<L%
S5=S$+REPTS (" ",L¥-LEN(S$))
ENDIF
RETURN S$

81

File Handling Utilities

Test Program
The following routine can be entered to test the F1vs: () function.
The angled brackets in the view statement will help you to identify
the beginning and end of the string — you wouldn’t know where the
spaces ended otherwise!. Delete the test routine when you're satis-

fied Firs:() works.

TESTF:
LOCAL S$(32),Vs
Do
PRINT"ENTER STRING"
INPUT S$§
PRINT"LENGTH"
INPUT V%
VIEW(2,">"+FILS: (S5,Ve)+"<")
UNTIL MENU("MORE,END")<>1

2.13 What's the Remainder?

2.13 What’s the Remainder?
MOD:()

What it does

This short routine gives the remainder that’s left after one number has

been divided by another. It’s a function found in many other program-
ming languages - but not in OPL. No problem — we can create it. There
are a number of occasions when one wishes to know — or test — the
remainder resulting from a division, rather than the actual answer. Togive
just one example, supposing you wanted to know whether a specific year
is a leap year. If it is exactly divisible by 4 (or 400, for the ’century years')
—s0 there is no 'remainder’ - then as you know, it is a leap year. Thus 1988
divided by four gives no remainder, so it is a !cap year. 1989 divided by
four gives a remainder of ’1’, so it isn’t a leap year,

This routine makes the test simple by returning just the remainder (or
'modulus’) of a division.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) is:
Source + object code: 84 bytes
Object code only: 52 bytes

How it works
Consider how the remainder can be found by taking an example —
17 divided by 5, for instance. 5 goes into’ 17 three times, with a
remainder of 2. The remainder can be deduced by multiplying the
whole part of the answer by the divisor (3 multiplied by 5), and
deducting the result from the original number, 17. Thus
17-(3x5) = 2
We can get the whole part of the answer by taking the integer of the
division, thus
Remainder from 17/5 = 17<(INT(17/5)x5)
This is how the function works.

File Handling Utilities

Examples of use
a) R=MOD:(21,6)
b) R=MOD: (N,D)

b) IF MOD:(YEAR,4)
PRINT "NOT A LEAP YEAR"
ENDIF
Inputs

Two input arguments are required: the number to be divided (N)
and the divisor (D).

Note: Both of the input arguments must be floating point values.
Returns

The remainder resulting from the division, as a floating point value.
Non-OPL functions called

None

Globals needed
None

Variables used
Input arguments

N = Number The floating point value to be divided.
D = Divisor The dividing value (floating point).
Customizing

This routine is called by other programs given in this book.
The Listing

MOD: (N,D)
RETURN N-(INT(N/D)*D)

Test Program

The easiest way to test this function is in the CALCulator mode of your
Organiser. In this mode, enter the function as indicated below in
bold, and press EXE. Test the function using your own values.

CALC:MOD: (1988, 4)
=0

CHAPTER 3

V Stock Control/Prices Program \

Stock Control/Prices Program

3.1 Taking Stock

...or keeping track

Thc program described in this part of the book has been designed to
give you the rudiments of a Stock Control/Price List program. But it
could equally well become a Cataloguing program, a Club Membership
program, or any similar file-handling program, by suitably adding or
changing the fields, and the analytical routines.

The basic elements of a file-handling program were discussed earlier
in Chapterl. To refresh your memory (and save you from searching back
through the pages), every file-handling program, with few exceptions,
must have procedures to:

Create a new file and open an existing file.
Add new records to the file.

Amend existing records in the file.

Delete records from the file.

Print out the file records.

s L b g

These procedures give the basic rudiments for handling a straightforward
*data base’ of records. However, we can do more than this. We can add
analytical routines to provide us with some pretty quick answers to our
questions. For example, (as we are looking at a Stock Control program),
we can answer questions such as “Which items need re-ordering?”,
“What is the value of the stock for each item?”, “How much VAT has to
be added to each item, to the total stock for each item, and to all the
stock?” and “What is the total value of the stock held?”. No doubt you
will have different analytical requirements, but these are the questions
our program will answer to show you *how it is done’.

To give us the required information, each record must contain data as
follows:

The name or identification of the item.

How many (or much) of the item is held in stock.
The cost (or selling price) of each item,

The minimum stock level.

3.1 Taking Stock

This program assumes we are dealing with specific quantities of items —
Gaggle-pin Widgets, Dickery-dock Gaskets, and so on. Equally, though,
it could handle weights or volumes. For example, if you wanted a stock
control program to handle groceries, you would be more interested in
how many pounds of apples you had, rather than how many apples. No
problem: the price would be per pound, the stock level and the minimum
stock level would be related to the number of pounds, and the pricing
would be 'per pound’,

Adapting the program

You may now be asking, how can the program described here be con-
verted to handle your own needs, which may be nothing to do with stock
control? Let us look at the possible requirements of a Golf Club Mem-
bership list, to demonstrate. First of all, the basic elements (as listed in 1
to 5 at the start of this Chapter) remain unchanged. So the routines given
later will provide guidance on how to tackle these elements. The next step
is to set down what you want to obtain from each record and from the file
as a whole. The list may look like this:

Member’s name, address and telephone number.
Member's handicap.

Member’s ’category’ (and hence annual fee, perhaps)
List of members who haven't paid their dues.

Total amount of fees due.

Total amount of fees outstanding,.

And so on. If you compare these requirements with those for the Stock
Control program, you’ll find similarities — enough, hopefully, for you to
be able to adapt the procedures given in this section to a Club Member-
ship program, if that's what you want, and to create any additional
requirements you may have. For example, to meet the above require-
ments, each record could contain the following information (or ficlds):

Member’s name.

Member’s address and phone number
Member’s handicap

Membership category

Paid/not paid indicator.

To find the sum outstanding through unpaid fees, you would write a pro-
cedure to check through every 'Paid/not paid indicator’ field to identify

a7

Stock Control/Prices Program

the members who have not paid: the category field can then be used to
obtain the appropriate fee — and that fee added into a grand accumulator,
so at the end you will have a figure relating to the fees outstanding.

Youwould need a routine which (perhaps on a specific date), reversed
all of the paid-up tags’ to 'unpaid tags’, and which 'doubled up’ on any
'unpaid tags’ still remaining, to show that those members 'now’ owe two
lots of fees.

In the Stock Control program, you'll find a technique for searching
through a specific field of all the records and acting according to the in-
formation contained each time. In the Banker program given later, you'll
find a routine that updates information held in records on a specific
‘anniversary’. One of the beauties of Organiser is that it contains a real-
time calendar which can be accessed from your programs.

Patently, it is impossible to write a generic program to handle every
likely file-handling need. Hopefully, you will get all the information you
need to tailor a program to satisfy your own particular requirements by
following the methods used in the programs and routines that follow, and
by studying the explanations given for each of the individual routines.

Entering the program

All of the routines listed in this Chapter of the book must be entered for
the STOCK program to run: you will also have to enter most of the utility
functions (listed in Chapter 2) as well. You will notice that some of the
utility functions are called by several of the procedures that go to make
up the STOCK program: you have only to enter the required utilities once,
of course.

The information about each of the procedures that go to make up the
entire STOCK program follows the general format for the procedures
given in Chapter 2, to help you understand what it’s all about.

Note: It is recommended that you enter the routines in Organiser’s
RAM ("A:") or on a RAMpack during the development, saving them to a
Datapak only when you are completely satisfied they work the way you
want. It is also recommended that you save the actual files in Organiser’s
RAM or on a RAMpack.

Space required

Assuming all the routines are entered as listed, but without leading spaces
or REMarks (see Chapter 2.1), the total amount of space required for the
Stock Control program is as follows

3.1 Taking Stock

Utility procedures called:
Source + object code: 2652 bytes
Object code only: 1176 bytes

Stock Control procedures
Source + object code: 4748 bytes
Object code only: 2287 bytes

Combined space needed
Source + Object code: 7400 bytes
Object Code only: 3463 bytes

As you can see, there can be a considerable saving in space by copying
just the object code of proven procedures, and deleting the ’originals’.
But do bear in mind that you cannot edit or change object-code-only
routines.

Stock Control/Prices Program

3.2 The main Stock Control routine
STOCK:

What it does

This is the main controlling routine for the entire STOCK program.
When run, it asks for the name of the Stock Control/Price list file,
automatically requesting the pack location if it is omitted from the name.
Ifit cannot find the file at the specified location, you will be asked whether
you wish to create a new file: you may have made a mistake when select-
ing the location (or simply not fitted the correct Datapak), and so0 you
have the option of saying no — and leaving the program altogether. Other-
wise a new file will be created at the specified location.

If the named file is found, it will be ‘opened’ and you will be presented
with a menu of options, from which you make your choice just as you
would on the main menu on your Organiser. The options offered by the

program are

ViewRec Totals
Update AddRec
Printout Del End

enabling you to

View records.

Obtain Total value of stock, or a list of low-stock items.
Update a record (i.e. change the field data).

Add a new record.

Print out the file.

Delete a record.

End the file-handling.

3.2 The main Stock Control routine

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called, is:
Source + object code: 1040 bytes
Object code only: 450 bytes

How it works
The operation of the routine is fairly straightforward, and should be
readily understood. Once a file has been opened (by calling on the
utility functions of Chapter 2), the routine keeps looping round the
MENU, offering the range of options until ’END’ is selected or the
CLEAR/ON key is pressed. When this occurs, the file is closed.

When an option is selected, the appropriate procedure is called’.
Note that some of the procedures called will themselves call other
procedures: all the procedures must be entered for STOCK to run.
Note that no error trapping is incorporated for the file creation or
file opening segments of the program.

Non-OPL functions called

The following non-OPL procedures are called directly by this pro-
cedure. These, and any procedures that they call, must be entered
for STOCK to run.

a) Ulilities
GFNS$:()
YORN%:
MSG:()

b) Stock Control specific routines
SCFR:
SCTV:
SCUD:
SCANTI:
SCPR:
SCDR:

Globals needed

None

Variables used

a) Field variables
Note that the variables are given here as they are used when creat-
ing or opening a file. When subsequently using the variables for
assignments and so on, they must be prefixed by the logical-file let-

N

Stock Control/Prices Program

ter and a full point. Thus, if the file is opened as logical file A’ the
variable 'I$’ is referenced as "A.I$".

I$ = Item A string holding the name and/or reference of the stock
ilem.

Q% = Quantity An integer holding the quantity of items in stock.
PE = Price-Each The cost or price of each individual item.,
ROL% = Re-Order Level The minimum permitted stock before re-
ordering is required.

b) Global variables

F$ = Filename The name of the file to be opened or created: this
is Global since it is referenced by other routines called by STOCK.
Q% = Question A handy way to hold the question mark for all the
routines in the STOCK suite.

c) Local variables

C% = Check Keeps check of the selected option.

Customizing

92

Customizing the STOCK program has been dealt with in general
terms in Chapter 3.1. To give an idea of the scope, ficld names can
be changed - in name and variable type, to suit your own require-
ments: but be sure to make the same changes to all of the routines
that make up the entire STOCK program. For example, if you decide
you want another field - perhaps to give the source of the stock item
in the record (calling the field *S$’, say), that field must be added to
all routines that make use of a/! the field names.

If you wish to add another routine - for a different kind of analysis,
perhaps, simply add it into the MENU listing separated by commas
and add a "call’ to the procedure handling the selected option, fol-
lowing the style of the other calls’. For example, to add an option to
show the most expensive stock item — which you might call 'Dearest’
- you would add 'Dearest’ to the menu list, separated by commas
from the other options in the list. If 'Dearest’ were the first option
(i.e. on selection, C% =1), then under ’1r c%=1" you would name
the procedure performing the analysis, The '1F ci=x’statements for
all the other options would have to be renumbered, of course.

Similarly, if you wish to delete one of the options — "Printout’, for
example - simply exclude it from the menu listing, exclude the
'ELSEIF ct=5'instructions (toscpr:), and renumber’1r cy=6'toread
'IF C¥=5",

3.2 The main Stock Control routine

The Listing

STOCK:
GLOBAL F$(10),Q5(1)
LOCAL C%
Q$=CHR$(63)
ST::
F$=GFN$: ("Stock FileName"+Q$)
IF EXIST (F$)
OPEN F$,A,IS$,0%,PE,ROL%
ELSE
CLS
PRINT "Create New File"™
IF YORN%:=0

STOP

ELSE
CREATE F$,A,TI$,0%,PE,ROL%
A.ROL%=0 :REM Early Organisers
APPEND :REM Early oOrganisers
ERASE :REM Early oOrganisers

ENDIF

ENDIF

Do
C®=MENU{"View,Totals,Update,Add,Print,Del,End")
IF c%=1

SCFR:
ELSEIF C%=2
SCTV:
ELSEIF C%=3
SCUD:
ELSEIF C%=4
SCANI:
ELSEIF C%=5
VIEW ("Press a key when Printer ready")
SCPR:
ELSEIF C%=6
SCDR:
ELSE cC&=0
ENDIF
UNTIL C%=0
CLOSE

Stock Control/Prices Program

3.3 Adding a Stock record
SCANI:

What it does

This routine enables a new record to be added to the opened Stock
Control/Price List file. Although it is specific to the STOCK program,
it demonstrates a process that can be readily adapted to your own require-
ments. The routine allows any number of new records to be added without
returning to the main controlling menu. You can stop entering records by
selecting 'END’ from the menu given after a record has been entered, or
by pressing EXE instead of the first piece of information to be entered for
the record.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 535 bytes
Object code only: 278 bytes

How it works
The addition of a new record is controlled within a po...uNTIL
loop, enabling you to keep adding records without having to return
to the program’s main controlling menu each time.

The option not to add any more records is given in the 'unNTIL
MENU ("MORE , END)<>1’ line: if "MORE' is selected, a '1’ will be returned
by the statement and processing will jump back to the 'po’ statement.
Provision is made to cancel the addition of a new record at Lhe start:
if the first entry to be made is simply an EXE, the continue command
causes a return to the controlling program.

Notice how the information for each field is assigned using the GI3:()

utility developed in Chapter 2 — and how this utility simplifies the
routine.

94

3.3 Adding a Stock record

Notice too that there are no Local (or Global) variables declared in
the routine - as you can see, it is not always necessary to assign the
result of the mewu function to a variable in erder to test it.

Inputs
When creating a routine to suit your own needs, note that the file
must have been opened, and the field names must tally with those
used when the file was created and opened.

Returns
The routine adds a new record (or records) to the file, based on the
latest entered field information.

Non-OPL functions called
GIf:()

Globals needed
Aswritten here, the procedure needs Q$ to have been declared as a
Global and assigned CHR$(63) — a question mark — by the calling
routine.

Variables used

Field variables
A.I$ = Item A string holding the item name.
A.Q% = Quantity An integer holding the Quantity held in stock.
A.PE = Price-Each A float holding the Price of Each item.
A.ROL% = Re-Order Level An integer holding the minimum per-
mitted stock level.

Customizing
Obviously if you are using this routine as a basis for a routine of your
own, you will use the appropriate field names.

The messages to be displayed (through the GI$:() utility function)
can of course be anything you wish. But do remember it is better to
make the messages clear rather than unduly short.

Stock Control/Prices Program

The Listing

SCANI:
DO
CcLsS
A.IS=GIS$:("Name of Item"+Q%$,2)
IF A.I§=""
CONTINUE
ENDIF
A.Q%=VAL(GI$: ("Current Stock Level"+Q$,1))
A.PE=VAL(GI$:("Price of each item"+Q$,0))
A.ROL%=VAL(GIS$:("Minimum Stock Level"+Q$,1))
APPEND
UNTIL MENU("MORE,END")<>1

3.4 Find a Stock Record

3.4 Find a Stock Record
SCFR:

What it does

his routine allows you to find a record in the opened file in one of two
ways — just like FIND on the main menu that appears when you switch
on your Organiser.

The first method is to enter a ’search clue’, which can be related to any
field in a record (for example, you could search for a particular price, if
you wished). Repeatedly pressing EXE will find all records matching the
search clue until the end of the file is met, when the last matching record
will be re-displayed. Even though a search clue has been entered, you can
still use keys (detailed below) to step backwards and forwards through
each record in the file, or to jump to the first or last record in the file.
Pressing EXE at any time if a search clue has been entered will take you
to the next record that matches the clue.

Instead of entering a search clue, you can just press EXE, in which case
you will be able to step through every record in turn by repeated presses
of EXE. Keys have also been assigned as below, to enable you to step
backwards and forwards:

Pressing...
N will display the next record: if the end of the file is reached, the
last record will be displayed.
B will display the previous record.
F will display the first record in the file.
L will display the last record in the file.

In addition, since this routine is also used to locate a record that may need
changing or deleting:

8 or CLEAR/ON will make the record on display the current record for
further file operations, and return to the calling routine.

Thus two ways to leave the record-examination routine are provided.

a7

Stock Control/Prices Program

When a record is being displayed, the cursor keys (with the little arrows
on) will allow you to move around the record to view it all. The informa-
tion contained in each field of a record is prefixed by an informative 'title”;
however, please note that this routine controls another routine (SCSEE:)
to actually prepare the current record for display. This routine also keeps
track of the last matching record in a specified search. The *SCSEE!’
routine uses one of the utilities to actually display the record. Hence three
procedures are used to complete the display of a record.

It is important to realise that, if you have amended any records in your
file, the order of the records will NOT be the same as the order in which
you entered them. This is of no consequence in the majority of instances,
since Organiser is capable of finding any record in a flash, if given a clue.

Space required
The space required for the procedure, as listed, but without leading
spaces or'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 728 bytes
Object code only: 329 bytes

How it works
The keyboard is set to receive capital-letter inputs, the very first
record in the file is made the current record, and then the utility
GI3:() is used to assign a search clue to the variable S$. A message
is then given, to remind you of the keys to press, and the *search’
begins using the *waire rino’ technique.

Ifthere is nosearch clue, this will resultin a step through every record
each time the EXE key is pressed. If there is a search clue, the next
record with a match for the clue will be found.

When (and if) a record has been found, the position of that record
in the file is saved (by the line 'ct=pos’), and the 'SCSEE: ' routine
is called to prepare and display the record. 'SCSEE:" will return a
value depending on the key pressed during inspection of the record.
If the key pressed is S or CLEAR/ON (which has an ASCII value of 1),
then this routine terminates and processing returns to the calling
routine. Otherwise, the next record (in the file, or matching the
search clue) is made current.

98

3.4 Find a Stock Record

'SCSEE?’ - and the utility function it calls, SR %:() —will control the
backwards and forwards movement through the records based on
the key presses: the SCFR: routine controls the movement to the next
record as a result of pressing the EXE key.

Whenthe end of the file has been reached, the warLe FIND()..ENDWR
loop ends, and a test is made to see if there has been a search clue.
If there has (17 ss$<>=-), and also provided that a record has been
found (1r cs), a message is displayed briefly, indicating that the end
of the file has been reachedi, and that the last matching record is to
be re-displayed. The last matching record is then made current, and
processing jumps back to the loop again. If a search clue was given
but no match was found (i.e C% =0, and so ’1r c%’ gives a not-true
answer), then an appropriate message is displayed and, this time
(since there is no point searching the file again), processing jumps
back to the start to receive another potential search clue.

If no search clue was given, then the "TEOF:Last record =’ message
is displayed briefly, the last record in the file is made current, and a
jump is made back to the loop.

Thus, you will be made quite aware of the situation when you reach
the end of the file, and can act accordingly.

Incidentally, if when you examine the procedure you wonder about
the names given to the labels - 'GC::” and 'RS:?’ - these stand for 'Get
Clue’ and "Repeat Search’ respectively. It is very helpful when creat-
ing your own procedures to use meaningful (to you) mnemonics.

Inputs
None. But naturally, the file must have been opened.

Returns
The selected record is made current, for further work (such as
amending field-data or deleting) if necessary

Non-OPL functions called
The following non-OPL procedures are called directly by this pro-
cedure. These, and any procedures that they call must be entered
for STOCK to run.

Stock Control/Prices Program

a) Uhilities
GIS:()
MSG:()

b) Stock Control specific routines
SCSEE:

Globals needed
None. (But you can, if you wish, include the declared and assigned
Global "Q$’ for a question mark).

Variables used
C% = Check Holds the record number for the most recently found
record in a ’clued’ search.
T% = Terminate Holds the value returned by 'SCSEE!’, to test for
a procedure-terminating keypress.
5% = String Holds the details for a search clue.

Customizing
Provided that this routine is used when a file has been opened, and
provided the routines it calls are available in one form or another, it
can be used almost as it stands for any of your own file-handling
programs. You will have to name the "called’ routines appropriate-
ly, of course, since these routines will be different for your own
program to those given in this Chapter.

In fact it is because the called routines must be "program specific’
that it is difficult to turn SCFR: into a general purpose routine: you
will find a very similar routine in the BANKER program suite, 5o you
can compare the two to see the subtle differences necessary to suit
a specific program.

You may wish to abbreviate the (rather lengthy) scrolling messages
- indeed, you may consider the message about which keys to press
during a search to be superfluous or unnecessarily long. It can be
removed from the procedure, or shortened as you wish, but do
remember that it is easy to forget which keys you must press when
using a program after even a short period of time.

100

3.4 Find a Stock Record

The Listing

SCFR:
LOCAL C%,T%,S$(16)
KSTAT 1
GC::
FIRST
85=GI$:("Enter clue(or EXE to stepthru)",2)
VIEW(1l,"USE EXE=findnext,<N>ext,ack,
[above line continued] <F>irst,<Least,<S>earchover")
RS::
WHILE FIND(S$S)
C%=F05
T%=SCSEE:
IF (T%=%5) OR (T%=1)
RETURN
ELSL
NEXT
ENDIF
ENDWH
IF sg<>""
IF C%
MSG: ("EOF:Last match=")
POSITION C%
ELSE
MSG: (*NO MATCH FOUND")
GOTO GC1z1:
ENDIF
ELSE
MSG: ("EOF:Last record=")
LAST
ENDIF
GOTO RS::

101

Stock Control/Prices Program

3.5 Caption a Stock Record
SCSEE:

What it does

T]:u's procedure puts meaningful "captions’ to each of the fields of a

record when it is to be displayed on the screen. As you are aware,
OPL’s p1sp(-1,s$) function simply displays cach field on its own line,
which can cause confusion as to which field is which where numbers are
concerned. By adding suitable captions, the contents of the file will be
more readily understood. (See also under 'SR%:’ in Chapter 2).

In addition to the fields actually contained on each Stock record, new
"fields’ are generated to display the total stock value, the total VAT to be
added to the stock, and the VAT on each individual item: these are in-
cluded to demonstrate how the information contained on each record can
be expanded to give other information you may wish to have available *at
aglance’. You will no doubt wish to modify these elements to produce the
information that you want. !

The captions given to each field by this routine are as follows:

ITEM: The name or reference for the stock item.

QTY: The quantity currently held in stock.

P/E: The price of each individual item.

SVAL: The value of the stock held for this item.

TVAT: The Total VAT to be added to the stock (based simply on
cost price +15%).

IVAT: The VAT to be added to an individual item of stock.

REOL: The re-ordering level,

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 835 bytes
Object code only: 413 bytes

102

3.5 Caption a Stock Record

How it works
A large string array is declared, to hold the all of the caption + field
information. Variables are also declared to hold the tab-character
(necessary to separate each field for display on its own line), and to
hold the calculated stock value.

The stock value is calculated, by multiplying the quantity by the price
peritem, and then the overall string is built up in easy to follow stages.
Notice that numerical values must be converted to strings, using
OPL’snums(), GEN$() and FIX$() functions. (You'll find informa-
tion about how to use these functions in your handbook). Notice too
that the last line of the record doesn’t need to have a tab character.

To keep the final display as neat as possible, and to minimise any
possible scrolling of each line, the *captions’ are kept to four charac-
ters each, followed by a colon.

Once the string is prepared, a call is made to the utility function
SR%:(), to actually display the record. This is described in Chapter
2, but to remind you, SR%:() allows you to use cursor keys to move
around the record, and it allows you to use the N, B, F, and L keys
to move around the file. SR%:() will actually make a new record the
‘current’ record if one of these keys is pressed. Whatever key is
pressed during the inspection of the record, the ASCII value of that
key is returned to this procedure. A test is made to see whether a
’terminating’ key has been pressed - S or CLEAR/ON (for Stop), or
EXE (to continue with the search or move to the next record, depend-
ing on whether or not a search clue was given). If a terminating key
has been pressed, then the ASCII value of the pressed keyis returned
from this routine to the calling routine SCFR:() for further ap-
propriate action,

If a terminating key has not been pressed, it is assumed that a new
record has been made current, and a jump is made back to the begin-
ning of this routine to prepare the new record for display, as before.
If a key other than N, B, F or L has been pressed, you'll examine the
same record again. In other words, only the keys mentioned have any
effect. So don’t forget them! (Hence the reminder in the SCFR:
routine).

103

Stock Control/Prices Program

Inputs
When preparing a routine to handle your own requirements, the file
must be opened, and you must use the same field names here as when
you created and opened the file.

Returns
The ASCII value of the S, CLEAR/ON or EXE key, whichever was
pressed.

Non-OPL functions called
File handling utility
SR%:()

Globals needed
None specifically, but the ficld variables are, in effect 'Global’
provided the file has been opened.

Variables used

a) Field variables
These hold information about the current record, as follows:
A.lI$ = Item A string holding the item name.
A.Q% = Quantity An integer holding the Quantity held in stock.
A.PE = Price-Each A float holding the Price of Each item.
A.ROL%% = Re-Order Level An integer holding the minimum per-
mitted stock level.

b) Local variables
8$ = String Holds all of the captions, fields, and tab information.
T$ = Tab Holds the 'tab’ character, CHR$(9), which forces a new
line in the p1se(1,ss) function.
SV = Stock Value A floating point variable to hold the calculated
Stock Value for the record under inspection.
C% = Check Holds the return value from the SR%:() utility func-
tion.

Customizing
Here’s where you can really tailor your program to do what you want.
As you can see from this routine, in addition to the information that
is actually stored for each record, you can calculate other details that
you may need to see when the record is displayed. The listing here,
for example, calculates the stock value, the amount of VAT to be
added to the stock value, and the VAT to be added to each item.
These calculations are purely for demonstration. You can make
similar calculations to suit your own needs, bearing in mind only that

104

3.5 Caption a Stock Record

the field information must be available to make the calculations.
(You can also, of course, change the order of displayed lines)

To give another example, supposing you wished to know "up front’
(i.e., within the first two lines of the display) if the stock is below the
minimum level, and if so, how much it would cost to bring it up to
the minimum level + 1. Immediately after the ’ss==1TEM: *+A.I$+TS’
line you would add a test to check the quantity in stock against the
re-order level, and if it is low, you would signal the fact, then add in
the cost. So the extra lines would look something like this:

IF A.Q%<A.ROLS%
S$=sS$+"LOW: "
S$=S$+FIXS$ (A.PE*((A.ROL%-A.QTY)+1),2,9)
5$=85+"T0 RESTOCK"+T$
ENDIF

As you can see, numeric values must be converted to strings before
they are 'tacked’ onto the end of S8. This example, together with
those written into the procedure, should help you to prepare arecord
display that gives you exactly the information you want from your
records.

The Listing
SCSEE:

LOCAL S§(250),T$(1),5V,C%

TS$=CHR$(9)

AG::

SV=A.Q%*A.PE

S$="ITEM:"+A.IS+TS

S5=S$+"QTY:"+GENS (A.Q%,7)+T$

55=8$%+"P/E:"+GENS (A.PE, 7)+T$

5$=8$+"SVAL: "+GENS$ (5V, 7)+T$

S$=S$+"TVAT: "+FIX$(SV*.15,2,9)+T$

S$=8$+"IVAT:"+FIX$(A.PE*.15,2,9)+TS

S5$=5$+"REOL: "+NUMS (A.ROL%, 7)

C%=5R%:(S$)

IF (C%=13) OR (C%=%8) OR (C%=1)
RETURN C%

ENDIF

GOTO AG::

105

Stock Control/Prices Program

3.6 Update a Stock Record
SCUD:

What it does

This short routine enables you to amend any field in any record of the

opened Stock Control file. In practice, you would select the option to
'Update’ from the main menu and then select the record to be changed
(via the SCFR: routine described previously). The record having been
selected, you are then offered a menu which identifies the fields of the
record. You can continue selecting fields to change until you choose to
end - either by pressing the EXE key, or by selecting 'END’ from the menu.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 517 bytes
Object code only: 269 bytes

How it works

This routine is fairly straightforward. It contains two po. ..UNTIL
loops, one nested within the other. The first or outer loop allows you
to continue selecting records to change, until you choose *FINISH’
from the associated menu. The second or inner loop allows you to
continue selecting record fields to edit until you choose 'END’ from
the inner loop menu. Once the choice of a record and a field has
been made, the selected field is re-assigned by a call to the relevant
editing utility (described in detail in Chapter 2). These utilities won't
allow an incorrect entry — if you enter alphabetic letters while edit-
ing a number, you will have to re-edit that number. If you insert a
decimal point in an integer field’s number, the relevant utility will
simply chop out all the decimal places.

Whenall the changes to a particular record have been made the OPL
uppATE command is used to re-write the record to the file.

106

3.6 Update a Stock Record

It has been mentioned before, but it is important tou understand that
what actually happens is the original record is erased, and the new,
amended record is written to the end of the file. In other words,
changing records also changes their order in the file.

Inputs
The file must be opened with the fields declared as used within the
routine.

Returns
None. The selected record or records are updated.

Non-OPL functions called
Fite handling utilities

ES$:()

El%:()

EF:()

Globals needed
None specifically, but the field variables are, in effect *Global’
provided the file has been opened.

Variables used

a) Field variables
These hold information about the current record, as follows:
A.I$ = Item A string holding the item name.
A.Q% = Quantity An integer holding the Quantity held in stock.
A.PE = Price-Each A float holding the Price of Each item.
A.ROL% = Re-Order Level An integer holding the minimum per-
mitted stock level.

b) Local variables
C% = Check Holds the result of the record field selection.

Customizing
This routine can be a ’prototype’ for an updating routine in any of
your own programs. Whatever field names you use when you create
and open the file, those field names must be used here. Equally, you
will want the menu options to reflect the content of those fields. You

107

Stock Control/Prices Program

will, of course, need a routine similar to 'SCFR:’ in order to select
the record to be updated, and you will need to call that routine in
place of SCFR.:,

The Listing
SCUD:
LOCAL C%
Do :REM oOuter record-selecting loop
SCFR:
DO tREM Inner field-selecting lcop
C%=MENU("Item,Stock,Price,Min-level,End")
IF Cc%=1

A.I$=ES%:(A.IS)
ELSEIF C%=2
A.Q%=EI%: (A.Q%)
ELSEIF C%=3
A.PE=EF: (A.PE, 2)
ELSEIF C%=4
A.ROL%=EI%:(A.ROL%)
ELSE Cc%=0
ENDIF
UNTIL C%=0
UPDATE
UNTIL MENU("ANOTHER,FINISH")<>1

108

3.7 Delete a Stock Record

3.7 Delete a Stock Record
SCDR:

What it does

Thjs very short routine is called when you wish to delete a record from

your opened file. To make sure that you really do want to delete the
record, a check is made first, Having confirmed the deletion, the record
is duly erased from the file, never to be seen again.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 150 bytes
Object code only: 85 bytes

How it works

A call is made to the scFr: Stock control routine, to find the record
you wish to erase. When chosen, the record becomes the "current’
record. You are then asked to confirm the deletion: the first six
characters of the record’s item field are displayed to remind you of
the selected record. The confirmation (or otherwise) is obtained by
a call to the file-handling utility yorns:. If the result of this call is a
"1’ (signifying yes), the record is erased. Otherwise, the record is left
in the file and a return made to the main Stock control menu. Note
how simple the test for *Yes’ is: it is not necessary to do anything on
selection of 'No’ except leave this routine.

inputs
None.

Returns
None.

109

Stock Control/Prices Program

Non-OPL functions called
a) File-handling utility
YORN%:

b) Specific to the Stock Control program
SCFR:

Globals needed
Q$ must have been declared and assigned Lo the question mark
character CHRS$(63).

Variables used
Field variable
A.I$ = Item Used to identify the item to be deleted.

Customizing _
This procedure is easy to adapt to your own programs: You will, of
course, have to appropriately name the call to your 'find-a-record’
routine (here called SCFR:), and the field used toidentify the record.

The Listing

SCDR: :REM This is the name of the routine
SCFR: :REM This is a 'call’ to SCFR:
PRINT"Delete” ,LEFTS(A.IS,6);08%
IF YORN%:

ERASE
ENDIF

110

3.8 Analyse Stock File

3.8 Analyse Stock File
SCTV:

What it does

This routine provides the answer two specific questions about the Stock
Control file:

What is the total value of the stock held?
Which items are below the re-order level?

This is the routine selected when *TOTALS' is chosen from the main Stock
Control menu. It immediately offers a further menu with the options
'STOCK-VALUE’, "LOW-STOCKS’ and 'END’, and will return to the main
Stock Control Menu when 'END' is selected or the CLEAR/ON key is
pressed.

The 'STOCK-VALUE’ option inspects every record in turn, calculates the
total value of the stock item, and adds that total to an ’accumulator’. That
total is then displayed. The "LOW-STOCKS’ option inspects each record in
turn, and displays the name of those items that have a stock lower than or
equal to the re-order level, together with the number of items needed to
take the stock level above the re-order level. The information for each
low stock is displayed until a key is pressed.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 563 bytes
Object code only: 259 bytes

How it works
The two analytical routines in this procedure are contained within a
Do. . .UNTIL loop, so that both analyses can be undertaken without
having to return 1o the Stock Control menu.

111

Stock Control/Prices Program

For the 'Total Stock Value’ analysis, the variable holding the ac-
cumulation of the value (TV) is first ‘cleared’ by assigning a zero to
it. This is necessary to prevent a repeated analysis giving a false
answer: any value already in TV will be added in *next time round’.
The file is set to the first record, then for each record in turn (until
the end-of-file) the stock value for the item is calculated and added
into TV. The total value is then displayed with a suitable message
until a key is pressed. (CHR$(237) is a close approximation of the

'pound’ sign).

The "Low Stocks’ analysis follows a similar process. The file is set to
the first record, then each record is examined in turn to see whether
the stock quantity (A.Q%) is less than or equal to the re-order level
(AROL%). If it is, a suitable message is assembled, naming the item
and giving the quantity needed to restore the stock to the minimum
permitted level + 1, This is displayed on a scrolling line using OPL's
view function, so that it remains on display until a key is pressed.

Inputs

None. But the file must be opened.

Returns

None.

Non-OPL functions called

None.

Globals needed

None.

Variables used
a) Field variables

112

A.I$ = Item The name or reference of the item in the current record.
A.Q% = Quantity The quantity of item in stock for the current
record.

A.PE = Price Each The cost of the item for the current record.
A.ROL% = Re-order level The re-order level of the item in the cur-
rent record.

3.8 Analyse Stock File

b) Local variables

TV = Total Value Holds the accumulating total value for all the

stock items.
C% = Check Holds the result of the menu selection.

Customizing

This routine demonstrates how to obtain analyses of the overall file,
and can provide a basis for your own routines. You add the required
option name(s) in the menu string, then "call’ appropriate routine(s)

written to act on selection of the option(s).

Note that the hyphens between menu words are important to avoid

problems when selecting from the menu.

The Listing

SCTV:
LOCAL TV,C$%
DO
C®=MENU("STOCK-VALUE , LOW-STOCKS , END")
IF C%=1
TV=0
FIRST
DO
TV=TV+(A.Q%*A.PE)
NEXT
UNTIL EOF
PRINT "TOTAL VALUE:"
PRINT CHRS(237);TV
GET
ELSEIF C%=2
FIRST
DO
IF A.Q%<=A.ROL%
VIEW(1,A.IS+"low by"+NUMS$ (A.ROL%+1-A.Q%,5))
ENDIF
NEXT
UNTIL EOF
ELSE C#=0
ENDIF
UNTIL C%=0

113

Stock Control/Prices Program

3.9 Printout Stock Records
SCPR:

What it does

This routine provides a formatted print-out of the information that’s
contained in each record in the Stock file, together with a calculated
’item stock value’, all under suitable headings. The total stock value is then
printed out. Obviously you will need to have a printer connected to your
Organiser, properly set up using Psion's Comms Link. If you don't have
a printer, you can ignore this routine (and delete the option from the main
Stock control menu, also deleting the *eLserr c¥=5" line and re-writing
the line "ct=6’ to read 'C% =5, in sTocK:).

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 678 bytes
Object code only: 318 bytes

How it works
A’tab’ character is defined, to help make spacing and positioning of
the print-out easier. The first record in the file is made current, then
the headings are printed out on one line. Then comes a po. . .UNTIL
loop, to print out the data from each record until the end-of-the-file.

Prior to the print-out of each record, the item value is calculated,
and the resulting sum added into an accumulator (for the total-stock-
value print-out at the end). To ensure proper spacing of each record,
the Frvs:) utility is called for the item name string, and the P1xs$()
and nums () functions are used in their 'right-justifying’ form, Notice
the use of semi-colons in the LpRINT statements to keep the printout
of each record on one line.

114

3.9 Printout Stock Records

inputs
None. But the file must be open.

Returns
None,

Non-OPL functions called
FIL3:()

Globals needed
None,

Variables used

a) Field variables
A.I$ = Item The name or reference of the item in the current record.
A.Q%d= Quantity The quantity of item in stock for the current
record.
A.PE = Price Each The cost of the item for the current record.
A.ROL%: = Re-order level The re-order level of the item in the cur-
rent record,

b) Local variables
T$ = Tab The ’tab’ character for aligning the print-out display.
IV = Item Value Holds the total value of the stock for the current
record.
TV = Total Value Holds the running total of all the total item values.

Customizing
This procedure has been prepared to show you *how it is done’. If
you have a printer, it is probably best to enter the routine as it is here
so that you can see the print-out obtained, before adjusting it to suit
your own requirements,

When writing a similar routine for your own program(s), the main
point to note is that you must (obviously) use the same field names
that you used when the file was created and opened. Getting the
figures to line up nicely can take a little juggling’ — adjusting the tabs
and the justifying factors in the number-to-string conversions. You
could choose to ignore these conversions - but the print-out will then

115

Stock Control/Prices Program

look quite a mess and be difficult to read, with nothing lining up at
all. Also, by using the r1xs() function, you can ensure that calcula-
tions do not result in more than two decimal places being printed
out.

You can, of course, add your own analytical requirements to the
print-out, not just for each record (within the po. . .urr1z EoF loop),
but also for the file as a whole at the end. If you know the codes your
printer needs for *bold’ characters and so on, you could enter these
too as characters (CHR$(ASCII)), or by building up a string.

The Listing

SCPR:
LOCAL T$(1),TV, IV
T$=CHRS(9) :REM 'Tab’ character
FIRST
LPRINT"ITEM"; T$;TS; c
LPRINT“QTY";T$;TS; HAPTEH 4
LPRINT"RE-OL"; T$;T$;
LPRINT " I/COST";T$;T$;
LPRINT"I/VALUE"
LPRINT
DO
IV=A.Q%*A.PE
TV=TV+IV - e
LPRIN™ FILS:(A.IS$,7);TS$;T$;
LPRINT NUMS(A.Q%,-5);T$;T$; Bank Account Handler Program
LPRINT NUMS(A.ROL%,-5);T$;T$;
LPRINT FIX$(A.PE,2,-9);T$;T$; .
LPRINT FIX$(IV,2,-9) :REM no semi-colon here
NEXT
UNTIL EOF
LPRINT

LPRINT"TOTAL STOCK VALUE (Ex VAT)";
LPRINT CHRS$(23);FIXS(TV,2,9)

116 117

Bank Account Handler Program

4.1 Keeping Your Balance

...without losing your head

This program has been developed specifically to demonstrate how two
(or more) files can be handled at the same time on Organiser, and,
perhaps more pertinently, to look after your personal finances. The basic
requirements for the program are essentially the same as those given in
Chapters 1 and 3— we need to be able create and open files, to add records
and so on. Before we go any further, let us have a look at what a typical
’Bank Account’ handling program should do - the "specification’.

The purpose of the program is to keep track of all expenditures and
income. To do this, we will need perform the following operations.

1. Record every transaction. This involves being able to:
a) debit the account for payments made by cheque.

b) debit the account for withdrawals from 'Autobanks’ or *Cash tills’,

¢) debit the account for Standing Orders — autornatically.
d) credit the account.
For all of these, the transaction record should contain the following details:
i) An identifying reference (Cheque number, AUTo-bank etc.)
ii) The amount paid out or paid in.
iif) Brief details of the transaction.
iv) The date of the transaction.

2. For Standing Orders, it must be possible to
a) add new Standing Orders or delete paid-up Standing Orders.
b) amend the amounts paid - or the period of payments (consider
your mortgage, for example).
For these, the Standing Order records need to contain details about:
i) Who the payment is to (for identification)
ii) The amount to be paid
iii) The total number of monthly payments due.

3. For Bank Statement verification, it is necessary to know which debits

and credits have not yet reached the bank, so that an adjustment can be
made to the figure on the Statement for comparison purposes.

118

4.1 Keeping Your Balance

4, It must be possible to examine or browse through the transaction
records, and ideally to observe the state of the bank balance after each
transaction. It must be possible to examine the *Standing Orders’, to see
how many payments are still to be made, for example. If you have a
printer, you would also want to be able to print out the transaction and
Standing Order records.

Quite a specification. The program given in this Chapter demonstrates
just one way to meet all of these requirements.

Where does the money go?

It is probably obvious that at least two files are needed: one to hold the

transaction records, and one to hold details of the Standing Orders. Now,

what about the current bank balance. Where should we store this value?
Three options are available. We can:

a) Store the current balance in a third file.
b) Store a’current’ balance with each transaction record.
¢) Calculate the current balance when it is needed.

Let us examine each of these options in turn. Storing the current balance
in a third file (option (a)) would mean that you couldn’t examine an in-
dividual record to see what the balance was ’at that time”. It would also
mean that, when verifying statements, it would be difficult to locate the
point where things go wrong (if they do) as a result of an incorrect entry:
only the final figure could be checked against the bank statement.

Storing the current balance along with each transaction (option (b))
has the advantage that the 'state of affairs’ can be examined from one
transaction to the next. There is, however, a disadvantage: if any of the
details in a transaction record are changed, it will affect the order of all
the records following it — Organiser changes the order of records when
they're updated remember. If the cash details are changed, it will be dif-
ficult to 'run’ the change of balance through the records, without using up
a considerable amount of memory space.

The fact that Organiser changes the order of records that have been
updated creates problems for the third option (c) too — especially if one
wants to check the balance after each record. Ensuring that the records
are examined or operated on in a set sequence irrespective of their actual
order in Organiser would entail having a ’sequencing’ field for each
record, so each record has a fixed record number. If a record is deleted,

119

Bank Account Handler Program

it would be a simple matter to re-number all those that follow it: the record
number would, of course, need to be hidden from view so that it couldn’t
be edited. However, if one is going to add a field to each record, one may
as well use that field to hold the actual bank balance resulting from the
associated transaction — and not waste time (and space) with all the sort-
ing and ancillary routines that would be required.

The BANKER program consequently uses option (b) — storing the cur-
rent balance in the associated transaction record. It means that, once
entered, a transaction record must not be changed or deleted. This
shouldn’t present a problem: you can't alter cheques and so on once they
have been paid, and it is an easy matter to correct a wrong monetary entry,
by entering a *"dummy’ transaction. Thus there is no provision in the
BANKER program to amend a transaction record — and to maintain
program accuracy, you shouldn’t add a transaction-amending routine
without a host of other routines to maintain the records in their correct
order!

Entering the program

The BANKER program has been written as a dozen or so short(ish)
routines, so that, when running, it doesn’t occupy too much space at a
time. Organiser loads procedures from where they are saved into its RAM
area for 'running’ only as they are "called’.

With BANKER, there will rarely be more than three procedures in
RAM at a time. The alternative of having fewer but longer routines would
mean considerably more *running space’ is required ~ leaving less space
for your files (and Diary).

Practicallyall of the routines are dependent on files being opened, and
on other procedures being present in Organiser. This makes it almost im-
possible (as with the Stock Control program) to provide sensible "Test
Programs’ to check each procedure as it is entered.

A recommended approach would be to first enter the main BANKER
procedure along with 'BRD:’, 'BNSO:’ and 'BUSO:’ (together with the
file-handling utilities they require from Chapter 2), and to test the 'create
or open a file’ options by creating for yourself a’dummy’ file. Then as you
add all the routines necessary to perform a specific option, that option
can be tested to ensure that there are no errors. Once you have proved
the program and perhaps tailored it to your own needs, you can erase the
*dummy’ file.

120

4.1 Keeping Your Balance

Space required

Assuming all the routines are entered as listed, but without leading spaces
or REMarks (see Chapter 2.1), the amount of space needed to save the
BANKER program — and all of the utility routines called by BANKER —
is as follows (give or take a byte or two).

Utility routines called by BANKER:
Source + object code: 2812 bytes
Object code only: 1263 bytes

BANKER specific routines:
Source + object code: 6600 bytes
Object code only: 3218 bytes

Combined space required:
Source + object code: 9412 bytes
Object code only: 4481 bytes

Note that once the utility routines have been entered, they can be used
for any file handling program as ’extra’ OPL words. Thus, the amount of
space required for both of the STOCK CONTROL and BANKER
programs (say), would be the total space required for all of the program-
specific routines, plus the space required for the utilities called: both
programs use the same utility routines, remember.

121

Bank Account Handler Program

4.2 Using the Banker Program

Setting up a file
ANKER is a fairly comprehensive program suite, and while the
"instructions for its use’ will become apparent as and when you enter
each of the individual procedures (and when you run it), it can be useful
to have an idea of how it operates before you start.

When you run BANKER, the screen will clear and you will be asked
to enter the file name for your transactions. If you have already created a
file, you simply enter its name (if you forget to enter the location where
the file has been saved, you will be prompted for it).

If you haven't created a file, or you wish to create another file (for
another year, perhaps), or if Organiser can’t find the file name you
entered, you will be asked if you wish to create a new file with the name
you entered. Choose 'no’, and the program terminates, Choose "yes’, and
the necessary files are created (yes, files: but as far as you are concerned,
they are referenced by the name you entered).

When creating a new file, you will be asked for the Current Bank
Balance. This will be the opening balance for all of your transactions to
follow. This balance must include alf credits and debits that may not have
reached the bank yet: in other words, the amount you consider the balance
to be, not what is on the Bank Statement. An ’opening balance’ record
will be created, with the current date automatically included.

You will then be asked if there are any Standing Orders. Answering
"yes’ will take you through a series of questions about the Standing Or-
ders: for each one you will be asked to enter the recipient, the amount,
the number of monthly payments — and whether a payment is due in the
current month. This last question is important because the program will
automatically update all Standing Orders on the first day of the month.
So if a payment is due in the current month, it will be missed if the file is
created on, say, the second day of the month.

Note that the program presented here does not cater for quarterly or
annual standing orders.

122

4.2 Using the Banker Program

When you see the main menu...

If you are using the program for the first time in a month — or perhaps
after a number of months, all the Standing Order payments will be made
automatically (for every month from the month of the last payment to the
current month). A ’transaction’ record will be created with a reference
'5/0’. The total payments made will be entered as the ’transaction’, along
with details "S/Orders to ..." followed by the name of the current month.
The date that payments were actually made (by the Organiser) is also
recorded.

The Standing Order file record will also be updated automatically: the
'number of payments due’ is reduced by one for each month payments
have been made (so you will always be able to see how many payments
are left), and the month of the payment is recorded (this information is
needed by the Organiser so it can tell whether payments are due).

You will then be presented with a ‘'menu’ of options:

SEE TRANSACT
CHANGE~S50 VERIFY
PRINTOUT END

The function of these options is described in the following paragraphs.

The SEE option
Selecting SEE takes you to a further menu

RECORDS S/ORDERS

from which you can choose to look at your transaction records or Stand-
ing Orders. You can then browse back and forth through the chosen file,
examining each record, or you can find specific entries based on a search
clue. During this process, the keys are pre-defined as follows

N takes you to the next record in the file. If you're already at the last
record, it will be re-displayed.

L takes you back to the previous record in the file. If you are at the
first record, it will be re-displayed.

123

Bank Account Handler Program

F takes you straight to the first record in the file (with the Standing
Order file, this won’t necessarily be the first you entered — if you
have made amendments).

L takesyou to the last record in the file.

S or CLEAR/ON will terminate the examination of the file.

EXE will take you to the next record in the file (like N) if a search clue
was not given: if a search clue was given, it will take you to the
next record that has a match for the clue. If no more records
match the clue, the last matching record will be re-displayed. If
no records matching the clue are found, you will be able to enter
another search clue or simply dive straight in and browse.

The TRANSACT option
This will be your choice when you wish to make a Debit or Credit entry.
You make your selection from a further menu:

DEBIT CREDIT END

You will then be prompted to enter information, as follows:

Reference: This is your reference for the transaction. The suggestion
is you enter meaningful *codes’ — the last three digits of a cheque for
withdrawals, ’AUT" for a cash-till payment, 'SAL’ for when you pay
in your salary, and so on. If at this point you choose not to make an
entry after all, pressing EXE will return you to the ’DEBIT, CREDIT,
END’ menu, from which you can return to the main BANKER menu,

Amount to Credit (or Debit) The display will indicate ‘Credit’ or
"Debit’ according to your initial choice: if you have made a mistake
in your choice, simply press EXE and you will be returned to the
"DEBIT, CREDIT, END’ menu. Otherwise, you simply enter the amount
involved as a decimal number.

Brief Details This is where you enter a short reminder of what the

transaction is all about - 'NEW DATAPAK’, 'GAS BILL’, 'SOLD
CAR’, for example.

124

4.2 Using the Banker Program

Once these are entered, the current date and the resulting balance are
both entered into the record automatically by the program, and the record
is appended to the transaction file. You are then returned to the ’DEBIT,
CREDIT, END’ menu so that you can make another transaction, or finish
by selecting 'END’ or pressing the CLEAR/ON key.

The CHANGE-SO option
This takes you to another menu:

ADD CHANGE
DELETE END

These options allow you to manipulate the records in the Standing Order
file, as follows.

ADD takes you through the process described earlier for creating a
Standing Order entry. You will be asked the name of the recipient,
the sum due per month, the number of monthly payments to be made,
and whether payment is due in the current month. The record is then
added to the Standing Order file.

CHANGE allows you to give a search clue or browse through the
Standing Order records, to select the one that needs changing. (The
process is as described under the heading 'SEE’, on page 123). Once
the record has been chosen, another menu appears:

NAME AMOUNT
MONTHS-LEFT END

Fromthis menu you can choose at will to make changes to the various
fields of the record. When you have finished, select ’END’ or press
the CLEAR/ON key to return to the main BANKER menu.

DELETE is similar to 'CHANGE’: you give a search clue or browse
through the Standing Order files to select the record to delete. You
will then be asked to confirm the deletion, and if you confirm, it will
be deleted.,

125

Bank Account Handler Program

The VERIFY option

This option helps you to compare the bottom line on your Bank State-
ment with the balance in the last record of your transaction file. To do
this, the procedure is as follows:

a) First select *SEE’ from the main BANKER menu, and go through your
transaction file, record by record, ticking off each transaction on the Bank
Statement. Make a list of all the debits and a list of all the credits that
don’t appear on the Bank statement as you go.

b) When this has been done, select the VERIFY option from the main
BANKER menu. You will be asked to enter all the DEBITS (the cash
sums only) from your list, one by one — entering a *0’ to finish. You will
then be asked to enter all the CREDITS on your list, ending again by
entering a '(’. Thus you will have entered all the amounts for the transac-
tions that do not appear on the Bank statement.

¢) You will then be asked to enter the Bank balance at the bottom of your
Bank Statement.

The program will then make the necessary adjustments and compare the
figures saved in your file with the Bank statement figures, and report the
result with a suitable message — hopefully "Records show BALANCE
with Bank statement”. If there is an error, you will be told the amount of
difference, and whether your figures are greater than or less than those
on the Bank statement.

The PRINTOUT option

This option is for those with a printer. It first prints out a table of all the
Standing Order information, under the headings NAME, AMOUNT, NOF
(number of payments left), and LAST PAID. It then prints out a table of
transaction records, under headings DATE, REF, AMOUNT, DETAILS and
BALANCE.

A final word

As you will appreciate, BANKER is quite an extensive program« with a
reasonable amount of flexibility for customizing. Each of the procedures
that go to make up the program is described in detail, so that its opera-
tion can be understood and emulated in programs of your own. At the
same time, it provides a useful facility that makes looking after the Bank
account straightforward.

126

4.3 The Main Banker Routine

4.3 The Main Banker Routine
BANKER:

What it does

This is the main controlling routine for the BANKER program. It in-
corporates the routines to’create’ and ’open’ a file, and once a file has
been opened, it checks to see whether it is time to deduct Standing Order
payments. It then allows repeated choice from a menu of options, until
'END’ is selected from the menu, or the CLEAR/ON key is pressed.
Details of how to use the BANKER program are given in Chapter 4.2.

Space required
The space required for the procedure, as listed, but without leading
spaces or'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 1364 bytes
Object code only: 658 bytes

How it works
If you compare this routine with the main controlling routine for the
Stock Control program (Chapter 3.2), you will notice they both fol-
low a basic format: the same format can be used for your own
file-handling programs. For the BANKER program, however, we
need two files to be created and opened, one to hold the transaction
records, and one to hold the Standing Order records.

To save you from having to enter both of the file names, (which must
obviously be different), the name entered when asked for the 'Bank
Filename’ is used to generate the name for the associated Standing
Order file. The last two characters of the entered file name are
replaced by the letters 'SO’. This operation is performed whether
the files exist or not: if they don’t exist, you are asked if you wish to
create a new file. If "yes’, both files are created, with the transaction
file as logical file A’, and the Standing Order file as logical file 'B’.

127

Bank Account Handler Program

These logical file letters are used to identify the files throughout the
rest of the program.

When creating the files, it is necessary to set up the ’starting points’.
For the transaction file, this means entering the 'Current Bank
Balance’, The first record is then created as the 'Opening Balance’,
tagged with the reference "CR’ (for a ’credit’) and the current date
(through the srp: procedure), derived from Organiser’s built in sys-
tem. The program then asks for the Standing Order details, cach of
which is added to the Standing Order file as a separate record. The
Standing Orders are entered by a call to the *enso:’ procedure.

If the files already exist, they are opened in the same way as when
they were created. Note that a check is made to see that both files
exist: if for some reason only one of the files is present in Organiser,
an attempt will be made to create both files and, since one already
exists, an error will occur. This has not been error-trapped. In fact
the only error-trapping undertaken in the *create or open’ routines
is that provided by the utility cFns:. It is assumed that you will enter
a correct file name using only the permitted characters (see your
Handbook).

Once the create or open routine has been completed, a call is made
to the *suso:’ procedure, which checks through each of the Standing
Orders in turn to see whether any should be ’paid’ (you may have
added a new one the last time you used the program). You'll find
further details about this routine in Chapter4.6.

The BANKER routine then enters a po. . .unr1sloop, allowing you
to choose from a menu of options until either ’END’ is selected or the
CLEAR/ON key is pressed. Both files are then closed. (Technically,
this isn't necessary, since all files are automatically closed when a
program terminates. But it is a good habit to get into).

Non-OPL functions called
All of these functions and routines must be entered.

a) File Handling utilities

128

GFNS:()
GIS:()
YORN%:

4.3 The Main Banker Routine

b) Banker specific routines
RD;

BNSO:
BUSO:
BSEE;:

BUPD:
BASO:
BCBS:

BPRO:

Globals needed
None.

Variables used
a) Global
These are available to the entire program
Q% = Question Used to hold the question mark character.
F$ = Filename Holds the main transaction file name.
B$ = Bank file Used to hold the program-generated name for the
Standing Orders file.

b) Local variables
C% = Check Used to hold the selected menu option.

c) Transaction file record field-names

Note: These will all be prefixed by ’A.” when used as variables by the
various routines in the BANKER program

R$ = Reference Holds the reference for a transaction — the cheque
number, or a suitable code.

D$ = Details Holds brief details about the transaction.

S = Sum Holds the amount of the transaction — either a credit or a
debit,

B = Balance Holds the latest balance, taking into account the cur-
rent transaction.

DY% = Day Holds the day-of-the-month information.

MN¢% = Month Holds the month number.

YR% = Year Holds the year.

129

Bank Account Handler Program

d) Standing Order file record field-names

Note: These will all be prefixed with 'B.” when used by the various
routines of the BANKER program.

I$ = Identity Holds the name of the recipient for the Standing
Order.

A = Amount Holds the monthly sum due for the Standing Order.
NOP% = Number Of Payments Holds the number of monthly pay-
ments due on the Standing Order.

PM% = Paid month Holds as a number the month that the last pay-
ment was made.

Customizing

Anyroutines that you wish to add to the program — for analytical pur-
poses, perhaps — should be ’called’ in the final loop. As an example,
you may wish to have a routine that searches through all of the trans-
action records, totalling the amounts paid for electricity and fuel.
You could add a series of such routines, selected from their own
menu. The routine holding that menu - and providing the ’calls to
the analytical routines, could be called ’sann:’ (Banker Analysis).
You could then add ANALYSIS’ to the BANKER menu, between
PRINTOUT and END say, with the call 'ELsSEIF ct=6 :BARA:.

You may wish to be given the current bank balance before being
presented with the main menu of options. To do this, simply add a
few lines immediately before the menu po loop - making the last
record of the’A’ file current, and displaying the balance (field'A.B’).
Thus, you could have something like:

USE A

LAST

PRINT"CURRENT BALANCE"
PRINT A.B

GET

130

You will appreciate that everyone has their own ideas regarding the
information they wish to obtain from a file of records, and it would
be impossible for any book to satisfy them all. The TBANKER’
program gives you the basis on which to work, not just for further
development of this program, but for the creation of a similar
program to meet your own needs. It could be adapted, for example,

4.3 The Main Banker Routine

to handle the accounts of a small business. Similarly the techniques
used for handling two files can be used to develop other types of
program altogether — a small pay-roll, perhaps, where employee
details are held in one file, and tax details in another,

The Listlng {continues ovarleaf)

BANKER:

GLOBAL Q$(1),F$(10),BS$(10)
LOCAL C%

Q$=CHRS$(63)

F$=GFN$: ("Bank Filename"+Q$)
BS=LEFT$ (F$,8)+"s0o"

IF EXIST (F$) AND EXIST (B$)

OPEN F$,A,R$,DS$,S,B,DY%,MN%, YRS
OPEN B$,B,I$,A,NOPS,PM%

ELSE
CLS
PRINT"Create New File"
IF YORN%:=0
STOP
ELSE

CREATE F$,A,R%,DS$,5,B,DY%, MN%, YRS
A.B=VAL(GIS$: ("Current Bank Balance”,0))
A.D$="Opening Balance"

A.RS="CR"

BRD:

APPEND

CREATE BS,B,IS,A,NOP%,PM%

CLs

PRINT"Any s/orders";Qs$

IF YORN%:

BHNSO:

ELSE :REM These lines
B.PM%=0 tREM are for the
APPEND :REM earlier models
ERASE :REM of Organiser

ENDIF

ENDIF
ENDIF
BUSO:

DO

131

Bank Account Handler Program

C%=MENU("SEE, TRANSACT, CHANGE-S/0,VERIFY,
[line continued] PRINTOUT,END")
IF c%=1
BSEE:
ELSEIF C3%=2
BUPD:
ELSEIF C%=3
BASO:
ELSEIF C%=4
BCB5:
ELSEIF C%=5
PRINT"Press key wnen Printer ready"
GET
BPRO:
ELSE Cc3%=0
ENDIF
UNTIL C%=0
CLOSE
CLOSE

132

4.4 Add Date to a Banker Record

4.4 Add Date to a Banker Record
BRD:

What it does

In three different places in the Banker program, the current date needs
to be added to a record being created for the transaction file. It makes
sense, therefore, to perform the operation as a short procedure. This is
it.

Space required
The space required for the procedure as listed, is:
Source + object code: 106 bytes
Object code only: 62 bytes

How it works
The transaction file is made current, and the appropriate fields are
assigned from Organiser’s built in date functions. The full record is
added to the file by the calling routine.

Inputs

None,

Returns
The appropriate record fields assigned with the current date.

Non-OPL functions called
None.

Globals needed
None,

133

Bank Account Handler Program

Variables used
Transaction file field-names

A.DY% = Day Holds the day-of-the-month information.

A.MN% = Month Holds the month number.
A.YR% = Year Holds the year.

The Listing

BRD:

USE A
A.DY%=DAY

A .MN%=MONTH
A.YR%=YEAR

134

4.5 Add a Standing Order

4.5 Add a Standing Order
BNSO:

What it does

Thi.s is a typical routine for adding a new record to a file: specifically,
it adds details of a new Standing Order to the Standing Order file for
the BANKER program. It allows an immediate return to the calling
routine should the first entry — the recipient for the Standing Order — be
blank (as a result of pressing the EXE key). The routine continues to "loop’
until the user selects ’END’ or presses the CLEAR/ON key after entering all
the details for one Standing Order record, thus enabling a number of
Standing Orders to be entered without having to return to the main menu.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 644 bytes
Object code only: 309 bytes

How it works
The Standing Order file, opened as the logical ‘B’ file by the main
Banker routine, is made current. The record-entering loop uses the
GI$: () utility to display suitable messages and to obtain the required
inputs for each of the fields of the record.

A test is made to check whether there has been an input for the first
field: if no input has been made, a return is made to the calling
routine. This allows the user to correct an inadvertent selection of
the routine either from the main Banker menu or by choosing
'ANOTHER' after one record has been completed.

For the Standing Orders to be made "automatically’ the first time

Banker is used in any given month, one of the fields holds the last
month that a payment has been made. When creating the record, if

135

Bank Account Handler Program

no payment is required during the current month, then the 'last
month of payment’ is the current month, derived from Organiser’s
MonTs command, If payment is required during the current month,
then this field is set to the previous month. The next time the program
is run, the payment will then be made.

Returns
The routine adds a record or records to the Standing Order file.

Non-OPL functions called
GI$:()

Globals needed
QS This will have been declared and assigned the question mark
character (CHR$(63)) by the main Banker program.

Variables used

a) Field variables
B.I$ = Item The name of the recipient for the Standing Order.
B.A = Amount The monthly sum to be paid out.
B.NOP% = Number of Payments The number of monthly payments
that have to be made.
B.PM% = Paid to Month The Month that the 'last payment’ was
made. When creating the record, this will either be the current month
or the "previous month’ - to indicate that a payment is due.

b) Local variable
C% = Check Holds the response to the question - 'Payment this
month?".

Customizing

The messages to be displayed on the screen are deliberately quite
explicit and long. You may feel that they are unnecessarily long, and
that you will be able to follow shorter messages. Cutting a message
down by 10 bytes will actually save 30 bytes in the Organiser when
the program is run - 10 in the source file, 10 in the object file, and 10
when the object file is reloaded into RAM for running. So it is well
worth pruning messages — but not to the point where, when using the
program, you can't work out what you're supposed to be entering!

136

4.5 Add a Standing Order

The Listing

BNSO:
LOCAL C%
USE B
DO
B.I$=GI$:("Payment to"+0$,2)
IF B.Ig=""
RETURN
ENDIF
B.A=VAL({GIS: ("Monthly Amount”,0))
B.NOP%=VAL(GI$: ("Number of MONTHLY payments",l))
KSTAT 1
TM:z::
C%=VIEW(2,"Is a payment to be made THIS
[line continued] month (Y or N)")
IF C%=%Y
B.PM%=MONTH-1
ELSEIF C%=%N
B.PM%=MONTH
ELSE GOTO TM::
ENDIF
APPEND
UNTIL MENU("ANOTHER,END")<>1

137

Bank Account Handler Program

4.6 Pay Standing Orders
BUSO:

What it does

This is the routine that creates a transaction record, when appropriate,
to show the deduction of Standing Order payments. The routine is
called at the start whenever the BANKER program is run — since new
Standing Orders may have been added during the current or previous
month. It also checks to see whether more than one month’s payments
are due: you may not have run the program for several months. The Stand-
ing Order records are also updated by the routine.

Space required

The space required for the procedure, as listed, but without leading
spaces or "REMarks’ (see Chapter 2.1) is:

Source + object code: 528 bytes

Object code only: 251 bytes

How it works

138

This routine demonstrates how Organiser’s built in date (or time)
functions can be used to automatically update records. The routine
first makes the Stock Control file current (opened as logical file 'B’),
and then selects the first record of the file.

Then, each record in the Standing Order file is examined in turn,
First of all, the Number-of-Payments field is examined: if it is zero,
then no more Standing Order payments are needed (hooray!), and
there’s no more to be done for that record. The next record is
selected for examination.

If there are still payments to be made, then the *Month Last-Paid’
field, B.PM%, is compared with the current month in Organiser’s
built-in calendar. If it isn’t the same — meaning that a payment is due
— then ’one’ is added to the Month-Last-Paid’ field, the amount to
be paid (derived from the "B.A’ field) is added to an accumulating

4.6 Pay Standing Orders

total, and ’one’ is deducted from the 'Number-of-Payments’. Note
the technique used for adding one to the Month-Last-Paid field. This
complex-looking line simply adds one to the current number as long
as it is less than 13. When it is equal to 12, then ong is added, and
the second part of the line immediately deducts 12 - bringing the
month number back to one. The month numbers are thus cycled
through the numbers 1 to 12.

The Standing Order record is then updated — and the record pointer
isset back to the first record again! This is something you must watch
when writing similar routines: updating a record means ’erasing’ it
and re-writing a new record at the end of the file. So the record we
have been working on is no longer first: it is now last. What was the
second record has now become the first record. Hence the reason
for re-setting the pointer to 'FIRST'.

The process then continues with the next record. If payments haven't
been made for several months, then the entire loop is repeated for
each month, until all of the "Month-Last-Paid’ fields show the cur-
rent month, When this happens, the second test '1F B.pHt<>MONTE’
fails, so the wext record is selected, until the End-Of-File is reached.

Once all of the Stock Control records have been brought up-to-date,
the variable "TP’ will either be holding the total sum due to make all
of the necessary payments, or it will be zero — because no payments
are due. If it is not zero, the transaction file is made current, and the
last record in that file is made current. That's because the latest
balance is held in the last record (we have arranged, remember, that
there will be no updating of the transaction records, so they will
remain in the order they were entered).

A new record is then automatically created: the reference is 'S/0O’,
and the transaction sum, a Debit, is the accumulated value held in
TP. So that you know what has happened when you examine the
records, the details are added: 'S/Orders to ...", with-the three letter
name of the month derived from Organiser’s monTs function and the
utility uns: () developed in Chapter 2. The bank balance is evaluated
and entered into the "latest bank balance’ field, and to complete the
transaction record, a call is made to Bro: to add the current date.
The transaction record is then appended to the file.

139

Bank Account Handler Program

As far as you are concerned when running the BANKER program,
there will be a momentary pause between selecting the file name and
seeing the main Banker menu - even if there are sixmonths payments
to catch up on!

Inputs
Both files must have been opened - this is achieved by the main
Banker program.

Returns
The Standing Order file and the transaction file are updated if there
are any Standing Order payments to be made when switching on,

Non-OPL functions called
MNS$:()

Globals needed

None.

Variables used

a) Standing Order file fields
B.NOP% = Number of Payments The number of monthly payments
left to be made.
B.PM% = Paid Month The last month, as a number, in which Stand-
ing Order payments were made for the record.

b) Transaction file fields
A.R$ = Reference The code to identify the transaction.
A.S = Sum The amount involved in the transaction,
A.D$ = Details A brief note about the transaction.
A.B = Balance The bank balance after the transaction has been
made.

c) Local varigbles

TP = Total payment The variable holding the accumulation of all
the Standing Order payments to be made.

140

4.6 Pay Standing Orders

Customizing
You may wish to change the messages entered into the ficlds of the
transaction file. When using similar routines in your own programs,
do be careful about the way Organiser handles updated records: the
results can be very confusing if the right record isn’t made current!.

The Listing
BUSO:

LOCAL TP
USE B
FIRST
Do
IF B.NOP%<>0
IF B.PM%<>MONTH
B.PM3=B.PM%-1*(B.PM3<13)+12*(B.PM%>=12)
TP=TP+B.A
B.NOP%=B.NOP%-1
UPDATE
FIRST
ELSE NEXT
ENDIF
ELSE NEXT
ENDIF
UNTIL EOF
IF TP
USE A
LAST
A.R$="5/0"
A.S5=TP
A.D$="s/Orders to "+MNS:(MONTH)
A.B=A.B-A.S
BRD:
APPEND
ENDIF

141

Bank Account Handler Program

4.7 Locate a Record
BLAR:()

What it does

Wc now come to the routine which locates a record: it follows the for-
mat and concept of the Stock Control procedure 'scrr:’ given in
Chapter 3.4. This time, however, there are two files involved - the Stand-
ing Order file and the transaction file. One could write two procedures,
one for each file, along the lines of 'scFr:’. But this would mean an un-
necessary duplication of much of the coding.

With srLAR: (), the choice of file to be examined is determined by an
input argument, set by the calling routine. If this argument is a '1’ (i.e.
'BLAR: (1)’), the transaction file will be used. If *2’, then the Standing
Order file will be used.

As with ’scrr:’, two methods are made available for locating a specific
record - the 'rInp’ technique where a search clue is entered, and the step-
through technique. The routine works in conjunction with three other
procedures - ’Brec:’, "Bsso:’ and the utility sr4:, in the same way that
’scrr:’ works in conjunction with 'scsee:’ and sre:, _

If no search clue is given, then pressing EXE steps through the file
record by record. Keys have also been assigned to enable you to step back-
wards and forwards, as follows:

Pressing...
N will display the next record. If the end of the file is reached, the
last record in the file will be re-displayed.
B will display the previous record.
F will display the first record in the file.
L will display the last record in the file.

If a search clue is given — which can relate to any field in the records of
the chosen file - then repeatedly pressing EXE will search for the next
matching record, until the end of the file. The last matching record is then
displayed. If there is no matching record, a suitable message is displayed.
The keys assigned as detailed above can also be used if a search clue is

142

4.7 Locate a Record

given, to select other records: however, matching records are found only
when the EXE key is pressed.

The *sLar: ()’ procedure is used to simply view the files, and it is also
used when you wish to make a change to a record in the Standing Order
file, to locate the record that requires changing. To terminate the routine
— when the required record has been found, perhaps — press the S key or
CLEAR/ON.

Space required
The space required for the procedure, as listed, but without leading
spaces or'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 811 bytes
Object code only: 363 bytes

How it works

In essence, this routine works in exactly the same way as *scrr:’
detailed in Chapter 3.4. The input parameter (F%) is used to deter-
mine which of the two files is to be searched. If F% =1, then the
transaction file is made current, while if F% =2, the Standing Order
file is made current. A similar test is made for the call to the as-
sociated 'record-captioning’ routines - ’srec:’ and ’ssso’. Both of
these routines will return the ASCII value of a terminating key press
- § or CLEAR/ON - or the ASCII value of the EXE key. The terminat-
ing key presses end the routine, while EXE causes the next record or
the next matching record to be made current (depending on whether
or not a search clue was given).

The end-of-file messages and resulting displays are the same as
detailed for scrr:.

Inputs
The input argument must be
1 for the transaction file
2 for the Standing Order file.

The appropriate input is set by the calling routine, of course.

Returns
The last viewed record in the selected file is made current, for fur-
ther action if necessary.

143

Bank Account Handler Program

Non-OPL functions called
a) Utility routines

GIS:()

MSG:()
b) Banker specific routines

BSSO:
Globals needed

None

Variables used
C% = Check Holds the record number for the most recently found
record in a 'clued’ search.
T% = Terminate Holds the returned value of the called routine
BREC: OF BSSO:, L0 test whether the procedure should be terminated.
8% = String Holds the search clue information.

Customizing
A similar technique to that used in this routine can be used to view
the records in up to four files. For example, if you are also using the
Stock Control program, you could dispense with *scrr:” by using this
routine, To do this you would:
a) Create and Open the Stock Control file as logical file "C’. This
would have to be adjusted throughout the entire Stock Control
program - instead of field names beginning *A soec, they would begin
*Cooad’.
b) Wherever *scrr:’ is called in the Stock Control program, call
"BLAR: (3)" instead. ’scrr:’ could then be deleted from Organiser.
¢) Include an additional test-’ELSEIF Fi=3 :UsE c'’-atthe begin-
ning of BLAR: (), to select the Stock Control file.
d) Include an additional test in the wiILE. . .EnDWH loop of BLAR: (),
tocall rscsee:’ (Thus: ELSEIF F8=3 :T¥=SCSEE:),

Thus, only a few lines extra would be needed to eliminate scFr:.
However, if you do make the change, be sure you correctly identify
the Stock Control file as logical file C throughout the Stock Control
program. When developing your own file-handling programs using
the technique described here, remember that although Organiser
can have more than 100 files saved at each location, no more than
four can be opened at a time, and only one of those four will be cur-
rent.

144

4.7 Locate a Record

The Listing
BLAR: (F%)
LOCAL C%,55(16),Ts
IF Fi=1
USE A
ELSE
USE B
ENDIF
ST::
FIRST
S$=GI$: ("Enter Search clue (or EXE to
(line continued) stepthru)*, 2)
VIEW(1l,"USE EXE or <N>ext,ack,<F>irst,
(line continued) <L>ast ,<S>earchover")
RS::
WHILE FIND(S$)
C%=POS
IF F%=1
T3¥=BREC:
ELSE
T%=BSS0:
ENDIF
IF (T%=%S) OR (T%=1)
RETURN
ELSE
NEXT
ENDIF
ENDWH
IF SS5<>"»
IF C%
MSG: ("EOF:Last match=")
POSITION C%
ELSE
M5G: ("NO MATCH FOUND")
GOTO ST=::
ENDIF
ELSE
MSG: ("EOF:Last record=")
LAST
ENDIF
GOTO RS::

145

Bank Account Handler Program

4.8 View Banker Records
BSEE:

What it does

his short routine offers a further menu when *SEE’ is selected from the
main BANKER menu, to ascertain whether the transaction file or the

Standing Order file is to be viewed.

Sp

ace required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 155 bytes
Object code only: 81 bytes

How it works

After displaying the menu, a check is made to see whether the
CLEAR/ON key has been pressed. If it has, a return is made back to
the calling routine. Otherwise the call is made to Brar: (), with the
selected option as the argument,

Inputs

None

Returns

Passes on the selected choice to the record examining routine.

Non-OPL functions called

BLAR:()

Globals needed

146

None

4.8 View Banker Records

Variables used

C% = Check Holds selected menu option.

Customizing

This routine could be eliminated altogether, if you wished, by adding
the options 'SEE-TRANSACTIONS’ and *VIEW-S/ORDERS’ (or shorter
messages!) instead of 'VIEWREC in the main BANKER menu, and
acting accordingly to call B1.aR: (1) or BrAR: (2) depending on the
selection. This would make the BANKER menu longer (and less
visible), and would save only a few bytes in the final analysis, since
two more "ELsEIF tests would be needed in Banker.

The Listing
BSEE:

LOCAL C%

C%=MENU{ “RECORDS, S /ORDERS")

IF c%=0 :REM Means cancel operation
RETURN

ENDIF

BLAR: (C%)

:REM C%=1 or 2

147

Bank Account Handler Program

4.9 Caption a Transaction Record
BREC:

What it does

This is the routine that adds 'captions’ to a transaction-file record,
making it easier to understand each line of the record when displayed.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 449 bytes
Object code only: 224 bytes

How it works

BREC: works in a similar way to scsee: (Chapter 3.5). In this proce-
dure, however, a slightly different technique is used, to show that
there is more than one way to achieve a desired result! In scsees, a
label (AG::) was used to provide the record displaying loop, the test
for a jump back to the label being made by an 17 statement. In this
procedure, the po. . .unT1L technique is used to provide the loop.
The saving in object code achieved by using this technique is only 4
bytes, and the saving in source code is about 15 bytes — just 19 bytes
altogether.

The top line of a displayed record is prepared from the reference
code for the record (i.e., the cheque number or whatever reference
you entered), followed by the day and month the entry was made.
The next two lines are captioned:

SsuM: The amount of the transaction.
BAL: The bank balance resulting from the transactian.

The last line is the description of the transaction, without a caption.

All the information is concatenated into S3, before being displayed
by a call to the utility sre: (). Only when a terminating code is

148

4.9 Caption a Transaction Record

returned from sre: will a return be made to the calling routine: you
will recall sre: enables browsing through the file by pressing the N,
B, F, and L keys.

Inputs
The transaction file must be current.

Returns
The ASCII value of the S, CLEAR/ON or EXE key, whichever was
pressed. This allows the browsing to be terminated, or, if a F1nD

operation is being undertaken, the next clue-matching record to be
found.

Non-OPL functions called
SR%:()

Globals needed

None

Variables used

a) Field variables
These hold information from the current record, as follows:
A.RS = Reference The transaction reference
A.DY% = Day The day the transaction was made.
A.MN% = Month The month the transaction was made.
A.S = Sum The amount of the transaction.
A.B = Balance The balance following the transaction.
A.D$ = Details Details about the transaction.

b} Local variables
S$() = String To hold all the fields, captions and tab information.
T$() = Tab Holds the 'tab’ character, which forces a new line in the
p1sp function.
C% = Check Holds the returned value from the srs: () utility.

Customizing
This routine sets out just one way to display your transaction record:
you may wish to tailor the captions and the order of the display to

149

Bank Account Handler Program

suit your own purposes, bearing in mind that only the top two lines

are seen when the record is initially displayed.

The Listing
BREC:
LOCAL S$(250),TS(1l),C%
T$=CHRS (9)
Do
SS=A.RS+" ("+NUMS (A.DYS,2)+"/"+
{line continued) NUMS$ (A.MN%,2)+") "+TS

S§=88+"sum: "+FIX$(A.S,2,-9)+T§
55=55+"Bal:"+FIXS(A.B,2,-9)+T$§
55=35%+A.D$
C%=SR%:(S$)
UNTIL (C%=13) OR (C%=%5) OR (C%=1})
RETURN C%

150

4.10 Caption a S/Order Record

4.10 Caption a S/Order Record
BSSO:

What it does

This procedure adds captions to the Standing Order records, to make
them easier to understand when displayed. It is similar to Brec:, in
Chapter 4.9 and scsee: in Chapter 3.5 - giving yet another example of
how a routine can be adapted to suit a specific program requirement.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 425 bytes
Object code only: 213 bytes

How it works
The principle behind this procedure has already been described
(Chapter 3.5). The various fields are concatenated together with
captions, to provide a single string variable for display using the
sre: () utility, The first line displays the recipient for the Standing
Order, without a caption: the captions used for the pext three lines
of the display are as follows:

AMOUNT: The amount to be paid each month.

MONTHS LEFT: The number of payments still to be made (hence
the number of months left).

LAST PAID: The Month that the last payment was made: this will
normally be the current month, since the Standing Orders are up-
dated automatically to the current month each time the program is
run. The exception will be when all the payments have been made:
the month of the last payment will then be displayed on this line. This
field is important in that it enables the program to assess whether or
not updating is needed. Note that the mns: () utility is used to display
the name of the month rather than just its 'number’.

151

Bank Account Handler Program

As with Brec:, this routine continues calling srs: (3, to display the
Standing Order record, until S, CLEAR/ON or EXE is pressed. sr#: ()
allows the selection of other records in the file,

Inputs -
None. The Standing Order file must be current, of course,

Returns
The ASCII value of the S, CLEAR/ON or EXE key, whichever was
pressed. This allows the browsing to be terminated, or, if a2 FIND
operation is being undertaken, the next clue-matching record to be
found.

Non-OPL functions called
MNS:()
SR%:()

Globals needed
None.

Variables used

a) Field variables
B.I$ = Item The recipient for the Standing Order.
B.A = Amount The monthly amount of the Standing Order.
B.NOP% = Number Of Payments The number of payments still to
be made.
B.PM% = Payment Month The month that the last payment was
made.

b) Local variables
8$ = Swring Holds the concatenated field data and caption infor-
mation.
T$() = Tab Holds the 'tab’ character to mark the end of a line for
the p1se command.
C% = Check Holds the return value resulting from the call to
SRe:().

152

4.10 Caption a S/Order Record

Customizing

As with the other *captioning’ procedures, you will probably want to
use your own captions, and possibly change the order of the dis-
played lines. You may feel, too, that displaying the *month of the last
payment’ is a little superfluous, since whilst payments are due this
will always be the current month, It can be useful to know, however,
when a final payment was made. In any event, the field is needed by
the program to determine whether or not another payment is due -
so don't delete the field!

The Listing
BSS0O:

LOCAL S$(250),T$(1),C%

T$=CHR$(9)

DO
S§$=B.I§+TS+"Amount: "+FIX$(B.A,2,8)+T$
S$=s$+"Months left:"+NUMS (B.NOP%, 3)+T$
S55=85+"Last Paid: "+MN$:(B.PM%)
C%¥=5R%: (55)

UNTIL (C%=13) OR (C%=%5) OR (C3=1)

RETURN C%

153

Bank Account Handler Program

4.11 Make a Transaction
BUPD:

What it does

‘e now come (o the routine that adds a new transaction record to the
transaction file. The transaction can be either a debit or a credit. On
the face of it, two updating routines could be required, one for credits
and one for debits. However, the information required for each type of
record is very similar, the only difference between the two actions being
that a credit will be added to the current balance, while a debit will be
subtracted. The actual information is therefore obtained by a call to
another routine (Bcan: (), described in the next Chapter)
This routine allows Credit and Debit transactions to be made without
having to return to the main menu, since it is likely that you would want
to make a number of entries at the same time.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 404 bytes
Object code only: 194 bytes

How it works
The last record in the transaction file is made current (we need the
latest Bank Balance, which is in the last record), and then a weILE
. «ENDwWH loop is used to provide the updates. The choice of Debit
or Credit (or 'End’) is made from a menu, and an appropriate call
made to Bcap: () depending on the choice. Note that the variable
C% is given a value of '1’ before the loop is entered: if this weren’t
done, it would have the value '(’, and the waiLe cs test would cause
an immediate jump through to the end of the procedure - without
giving you a chance to update anything!

154

4.11 Make a Transaction

BCAD: [) requires a string argument — either 'CREDIT or 'DEBIT - 50
that an appropriate message can be displayed during the actual
input. Beap: () will update the relevant field information directly,
and will also return either a’1’ or a’0°. If a’0’ is returned, it means
an input has been received. If a’1’ is returned, it means that the trans-
action has been "cancelled’ — that is, no reference has been given, or
the transaction value is 0. In this circumstance, a jump is made back
to the menu (via ENpIF and ENpwn), to allow further selection.

If Beap: () returns 0%, it is assumed a transaction has been satisfac-
torily entered, and the appropriate adjustment is made to the "Bank
Balance’ field, A.B, before the transaction record is AppEnDed to the
file. The menu loop continues until the CLEAR/ON key is pressed,
ot 'END’ is selected.

Inputs

None.

Returns
Record(s) added to the transaction file.

Non-OPL functions called
BCAD:()

Globals needed
None

Variables used
a) Field variables
A.B = Balance The Current Bank balance
A.S = Sum The sum involved in the transaction.,

b) Local variables
C% = Choice Holds the result of the menu selection.

155

Bank Account Handler Program

The Listing

BUPD:
LOCAL C%
Ccy=1
USE A
LAST
WHILE C%
C%=MENU("DEBIT,CREDIT,END"}
IF C¥=1
IF BCAD: ("DEBIT")
CONTINUE :REM Means no input
ENDIF
A.B=A.B=-A.S
ELSEIF C%=2
IF BCAD: ("CREDIT")
CONTINUE tREM Means no input
ENDIF
A.B=A.B+A.S5
ELSE RETURMN
ENDIF
APPEND
ENDWH

156

4.12 Get the Transaction Details

4.12 Get the Transaction Details
BCAD:()

What it does

Thc type of information required for a Credit transaction is essentially
the same as that for a Debit. This procedure obtains the information
required. It has an input argument to identify (for the user) the type of
transaction being recorded.

Space required
The space required for the procedure, as listed, but without leading
spaces or'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 401 bytes
Object code only: 213 bytes

How it works
This routine uses the utility 615: () to get the required information
from the keyboard. The Reference for the transaction is requested
first: this is expected to be an alphanumeric input, so for "numbers’,
the SHIFT key must be pressed.

If the EXE key is pressed without an entry being made, the procedure
terminates and returns a '1’ to the calling routine, indicating 'no
entry’ and hence cancelling the transaction record. The sum involved
in the transaction is then requested, using the input argument string
to indicate the type of transaction. Another opportunity is given to
cancel the compete entry at this point: if EXE is pressed or 0 is
entered, the procedure terminates as before, Otherwise, the details
of the transaction are obtained, and then the current date is added
to the record by a call to Bro:.

157

Bank Account Handler Program

inputs
An input string argument, either ’CREDIT’ or 'DEBIT, to indicate the
type of transaction being undertaken.

Returns
"0’ if the transaction is to be saved as a record.
'1’ if the transaction is to be cancelled.

Non-OPL functions called
GIS:()
BRD:

Globals needed

None

Variables used

a) Field variables
A.R$ = Reference The reference for the transaction.
AS = Sum The amount involved in the transaction.
A.DS = Details Information about the transaction.

b) Input argurnent
MS$ = Message Either 'CREDIT or 'DEBIT’, to indicate the type of
transaction being undertaken.

Customizing
As with other procedures of this type, you may wish to prune or
change the messages. Also you may consider that it is it unnecessary
to include two "escape’ routes in the routine — in which case one of
the "1r...enDIF' tests can be deleted. The message calling for the
Reference to be entered could incorporate MS$, if you wished. For
example:

A.R$=GIS: (M$+" Reference", 2)

would display’CREDIT Reference’ or’'DEBIT Reference’, depend-
ing on the type of transaction in hand.

158

4.12 Get the Transaction Details

The Listing
BCAD: (MS)
A.R$=GIS$: ("Reference (e.g Cheque No. or
{line continued) SALary)",2)
IF hiR$=""
RETURN 1 :REM For BUPD's test
ENDIF
A.S=VAL(GIS: ("Amount to "+M$,0))
IF A.5=0
RETURN 1 :REM For BUPD's test
ENDIF
A,DS=GI%:("Brief Details",2)
BRD:
RETURN 0

159

Bank Account Handler Program

4.13 Change Standing Orders
BASO:

What it does

From time to time it will be necessary to add a new Standing Order, or
to change or delete an existing Standing Order. This is the routine that
handles the tasks involved.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 809 bytes
Object code only: 407 bytes

How it works
The Standing Order file is made current, and then the user is
presented with a menu of options. These are contained within a
po. .unTIL loop, so that the procedure continues to present options
until ’END’ is selected from the menu, or the CLEAR/ON key is
pressed.

The first option — to ’ADD’ a new Standing Order - simply involves
acall tothe BANKER routine srso: (described in Chapter 4.5). The
*CHANGE' option follows a similar process to the ’scup:’ procedure
discussed in Chapter 3.6. A message is displayed to inform the user
to select the required Standing Order, and then a call is made to the
record-locating routine *srar: (2)’ (the '2’ indicates that the Stand-
ing Order file is to be used). Once the required record has been made
current, a further po. . .unriL loop is used to enable any or all of the
specific fields to be edited. Selection is by menu, and the editing is
achieved using the utilities specially developed for the purpose in
Chapter 2. Once editing is complete (C% = 0), the record is re-writ-
ten to Lhe file (using OPL’s vppaTe command).

160

4.13 Change Standing Orders

When 'DELETE' is selected, the required record is selected (using
BLAR: (2)) and confirmation is requested that the Standing Order
recordis in fact tobe deleted. This is achieved by displaying the mes-
sage 'Delete’ followed by the first few characters of the ’recipient’
field, and then making a call to the yorns: utility. If the deletion is
confirmed (i.e., yorn®: returns a °1’) then the deletion is made.

Inputs
None

Returns

None.

Non-OPL functions called
a) File-handling utilities

MSG:()

EF:

El%:

ES$:

YORNSG:

b) Banker Specific procedures
BNSO:
BLAR:(2)

Globals needed
None.

Variables used
a) Field variables
B.I$ = Item The recipient for the Standing Order.
B.A = Amount The sum to be paid each month.
B.NOP% = Number of Payments The number of monthly payments
still to be made.

b) Local variables

C% = Change The selection from the field-to-update menu.
D% = Do The selection from the updating-options menu.

161

Bank Account Handler Program

The Listing
BASO:

LOCAL C%,D%
USE B
CLS
DO
D¥=MENU("ADD, CHANGE , DELETE, END")
IF D&=1
BNSO:
ELSEIF D%=2
MSG: ("Select S/0Order™)
BLAR: (2)
DO
C%=MENU ("NAME , AMOUNT , MONTHS-LEFT ,END"}
IF c%=1
B.I$=ESS$:(B.I5)
ELSEIF C%=2
B.A=EF:(B.A,2)
ELSEIF C%=3
B.NOP2=EI%: (B.NOP%)
ELSE C%=0
ENDIF
UNTIL C%=0
UPDATE
ELSEIF D%=3
MS5G: ("Select s/0")
BLAR: (2)
PRINT"Delete" ,LEFTS(B.IS§,6);"-"
IF YORN%:
ERASE
ENDIF
ELSE D%=0
ENDIF
UNTIL D%=0

162

4.14 Verify Bank Statement

4.14 Verify Bank Statement
BCBS:

What it does -

T]:u's procedure helps to simplify that tedious task of comparing what

the Bank thinks we have spent against what we know-we have spent.
(Or vice versa). To use the procedure, one should first of all go through
every transaction record in turn, ticking them off on the Bank Statement.
The amounts involved in each Credit and Debit that does not appear on
the Bank Statement should be listed separately. This procedure is then
selected from the main Banker menu ("VERIFY’), and the Debits entered
one by one as requested, ending by entering '0° (zero). The Credits are
then entered as requested, again ending by entering a'0°. You will then
be prompted to enter the bottom line of the Bank Statement (the Bank’s
balance), and the procedure makes the necessary adjustments to show
that, with any luck, the Bank agrees with your records. Otherwise, the pro-
cedure calculates who is kidding who.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 917 bytes
Object code only: 465 bytes

How it works

The Credits and Debits are each entered within a po. . .untIL loop,
the "untrr’ being a ’0’ entry. The utility GI$:() is used to obtain the
entries, with a message that incorporates the entry number. The
Bank Balance figure is then obtained, and this is adjusted by deduct-
ing the Debits and adding the Credits that have not yet reached the
bank. The resulting figure should, of course, tally with the balance
given in the last record of the transaction file.

163

Bank Account Handler Program

The difference (if any) between the Bank Statement and your own
records is converted to a string, and then this is built into a message
for display on the screen, indicating *Balance’ or the nature of the
error,

Inputs

None.

Returns

None.

Non-OPL functions called
GIS:()

Globals needed

None

Variables used

a) Field Variables
A.B = Balance The Bank Balance according to the last record in the
transaction file.

b) Local variables ‘
C = Credit Accumulator for the total amount of Credits not on the

Bank Statement.

D = Debit Accumulator for the total amount of Debits not on the
Bank Statement.

T = Temporary Holds the input value

1% = Item Counter for the number of Credits or Debits that have
been entered.

R = Reconcile The calculated value of the Bank balance adjusted
for non-received Credits and Debits.

S$ = String Holds the string to display the result of the verification.

Customizing o
You may consider it unnecessary to have a count of the input items
— in which case all the code related to *1%’ can be removed.

164

4.14 Verify Bank Statement

The Listing

BCBS:
LOCAL C,D,T,I%,R,S$(24)
I%=1
Do
T=VAL(GIS$:("Enter DEBIT No "+NUMS$(I%$,2)+
{line continued) " NOT on Statement”,0))
D=D+T
I%=I%+1
UNTIL T=0
I%=1
Do
T=VAL(GI$:("CREDIT No "+NUMS$(I%,2)+
{line continued) " NOT on Statement”,0))
C=C+T
Ig=I%+1
UNTIL T=0
CLS
T=VAL(GI$:("ENTER BANK BALANCE ON STATEMENT:",0))
CLS
USE A
LAST
R=T-D+C
S5=FIX$(ABS(A.B-R),2,8)
IF R<A.B
5$=8§+" MORE than*
ELSEIF R>A.B
55=85%+" LESS than"
ELSE
S$="BALANCE with"
ENDIF
VIEW(1l,"Records show "+S5+" Bank statement")

165

Bank Account Handler Program

4.15 Print Out Banker Records
BPRO:

What it does

his final routine in the BANKER suite provides a tabulated print-out

of the Standing Orders and transaction records. It is assumed, of
course, that you have a printer and the Psion Comms Link (or the earlier
RS232 interface).

Space required
The space required for the procedure, as listed, but without leading
spaces or'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 950 bytes
Object code only: 436 bytes

How it works
The print-out is in two parts. First, the Standing Order file is made
current, suitable headings are printed, and then each Standing Order
record is printed out in a formatted way, so that everything lines up
neatly. The numeric "Month Last Paid’ information is converted to
a three-letter name abbreviation, by a call to the utility uns: ().

Then the transaction file is made current, suitable headings are
printed for the transaction file, and all of the transaction records
printed out in a neat tabular form. The utility F1rs: () is used to add
spaces to record fields which may be under-length, and'to help keep
the columns lined up. Note that for print-out, each transaction date
is converted to the form 10 JAN 88', and that the sequence is 'DATE,
REF, AMOUNT, DETAILS, BALANCE'.

Inputs
None.

166

4.15 Print Out Banker Records

Returns
None.

Non-OPL functions called
FILS:()
MNS:()

Globals needed
None,

Variables used
a) Transaction-file Field Variables
A.DY% = Day The day the transaction was made.

A.MN% = Month The month (number) that the transaction was
made.

A.Y% = Year The year that the transaction was made. (Note that
only the last two digits are actually printed out).

A.R$ = Reference The user reference for the transaction.

A.S = Sum The sum involved in the transaction.

A.D$ = Details about the transaction.

A.B = Balance The bank balance after the transaction has been
made,

b) Standing Order file field variables
B.I$ = Item The name of the recipient for the Standing Order.
g‘ﬁ{ = Amount The monthly sum to be paid under the Standing
rder.
B.NOP% = Number of Payments The number of months/Standing
Order payments left.
B.PM% = Paid Month The month the last payment was made.

c) Local variable
T$ = Tab Holds the 'tab’ character (9), to provide tabular spacing.

Customizing
This routine was written and tested using an Epson™ printer. You
may find that the spacing needs adjusting to suit your own printer.
You can, of course, change the order of columns, and the way that
the information is printed out, to suit your own purposes. This
routine, and the similar routine given for the Stock Control program

167

Bank Account Handler Program

in Chapter 3.9, should enable you to prepare print-out routines for
your own file-handling programs. Remember to use semi-colons to
keep the print-out of a record on one line.

Another possibility is to embed printer codes in the print-out — to
produce bold headings, for example: you will find the codes in the
book that comes with your printer. Such refinements have not been

used here since they are very printer dependent.

The Listing
BPRO:

LOCAL TS(1)
T$=CHRS$ (9)
USE B
FIRST
LPRINT"STANDING ORDERS"™
LPRINT
LPRINT FILS:("NAME",8);TS$;" AMOUNT B
{line continued) TS:; "NOP";T$; "LAST PAID"
DO
LPRINT FILS$:(B.IS$,8);TS$;FIXS(B.A,2,-9);
{line continued) TS: NUMS (B.NOP%,~-3);TS;
LPRINT MNS:(B.PM%)
NEXT
UNTIL EOF
LPFRINT
LPRINT
USE A
FIRST
LPRINT"RECORDS"
LPRINT"DATE w.PS;"REF ";T5:;" AMOUNT s Pay
(line continued) "DETAILS ";T$;" BALANCE"
DO
LPRINT NUMS(A.DY%,2);" ";MNS:(A.MN%);
LPRINT" ";RIGHTS (NUMS(A.YR%,4),2);T$;
LPRINT A.R$;TS5;FIX$5(A.5,2,-8);

{line continued) TS$;FILS:(A.DS,15);
LPRINT FIXS$(A.B,2,-8)
NEXT

UNTIL EOF

168

CHAPTER 5

u General Programs

169

General Programs

5.1 Pot-Pourri

Something for everyorie?
In this Chapter of the book you'll find a small mixture of quite different
programs and routines. For the most part, they represent typical ‘quick
solutions’ to problems: only one program took longer than 30 minutes to
develop, write and *debug’. The object of including the programs in this
book is not so much to provide useful utilities (which they may or may not
do, depending on your own particular needs), but to give further examples
of how programs can be prepared for Organiser, and how its use can thus
be extended and tailored to do what you want.

Where most other types of programmable’ computer — particularly the
domestic ’home computers’ — have a plethora of magazines providing
program listings for the keen user to enter, the Psion Organiser, perhaps
surprisingly, has very few sources of listings. This is unfortunate, for
entering routines that others have written (and then adapting and even
improving on them) is an excellent way for beginners to learn about the
programming language.

Alltoo often, the newcomer to computing feels frustrated by not know-
ing quite where to start writing the program he or she wants. In many
instances, the reason is because the programs they want are too ambitious
for them to tackle as "first’ programs. File handling programs are a good
example of this. As you will appreciate from the earlier Chapters of this
book, a considerable amount of planning (as well as programming) goes
into a preparing routines to handle files, They call for a certain amount
of programming experience (but not necessarily expertise), particularly if
the best use is to be made of the available memory space.

Start small

The secret for budding programmers is simple: start with short routines
— even "one-liners’. In the main, one-line routines are used to perform
simple mathematical calculations or conversions. For example, suppose
you are on holiday, and you wish to convert the cost of items in the foreign
currency to English money. Knowing that the exchange rate is (say) 250
foreign coins to the pound, you could use Organiser’s CALCulator mode
to work out every conversion individually - first entering the foreign cost,

170

5.1 Pot-Pourri

then dividing it by 250. At least with Organiser, you won't have to keep
rc--::ntermg‘the "divide by 250’ bit to make repeated calculations.
AIten}atwsly, you could write a very short *function’ on the Organiser
(_'f?r use in the calculator mode). For the above exchange rate example,
this could look something like: .

CONV: (P)
RETURN B/250

In the CALCulator mode of Organiser, one would use this function by
entering the foreign cost within the brackets. Thus, if the cost were 478 in
the foreign currency, you would enter:

CALC:CONV: (478)

This is fine - until the exchange rate changes. You may then say to -
self “Wouldn't it be handy if I could cha:ﬁgc the :xchj;nge ralg W‘if;:lrit
!:a’ung to fiddle about with the program source code in order to amend
it.” I-?avmg spoken to youself in such a manner, you may then extend the
one-hqe routine to allow the exchange rate to ’stay’ in memory when the
Organiser is switched off, and to cope with different exchange rates. You
001}!51 add a few messages, a 'menu’ perhaps — and suddenly, you have a
facﬂ:fy which is more practical, and which is a *program’ rather than a
function, so it can be added to the main menu that appears when you
switch on as another option. (A function - or a procedure that nceds an
argument iput within brackets — must be 'called’ from another program
t-:_>r rtun from th.e c:lcula]l.ltor: it cannot be run from the main menu). The
trst program in this Chapter provides a short
capable of further expans?un. P R A

Other programs will help you to determine the date of Easter Sunday
for any year you care to choose, the umpteenth root of a number, how
many miles per gallon your car is giving you (even though you fill it with
litres’), the state of your Biorhythms’ on any given date, how many days
there are between two dates, and what the date is a given number of days
after (or before) another date, and so on.

Hupe_ful_ty, they will inspire you to create your own routines, so that you
can maximise the use of your Organiser.

171

General Programs

5.2 Exchange Rates
EXCH:

What it does
Hara is a fairly simple program to convert the cost of goods priced in
foreign currencies to good old pounds sterling — a useful routine to
have when travelling abroad. The program is 'menu’ driven when run, you
have the choice of making an exchange calculation, checking the current
exchange rate you're using, or entering a new exchange rate. Pressing the
CLEAR/ON key from the menu stops the program from running. You can
also exit the program by entering 0’ or simply pressing the EXE key when
asked for the ’FOREIGN COST’.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (sec Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 630 bytes
Object code only: 295 bytes

How it works
The program uses the utility c1$: (), developed in Chapter 2, to get
in the cost and the exchange rate information.

The ’problem’ with storing an exchange rate is — where do you store
it? One method would be to put it into a file, but the programming
and space needed to have a file with just one piece of information in
it is quite unjustified, especially as there is an alternative - provided
you don’t mind *forfeiting’ one of the cALCulator’s memories. In this
program, calculator memory 'M9’ is used to store the exchange rate.
As you know, the calculator memories retain their information even
when Organiser is *switched off’.

The program starts by assigning the menu-choice variable (C%) to
the value *1’, so enabling the menu to be used as often as required

172

5.2 Exchange Rates

within a weILE. . .EnDwH loop, until the CLEAR/ON key is pressed. The
"NEWRATE’ ruutme (opuon "2’) starts by assigning to M9 the result
of the input obtained via the utility 615 (). (Notice how an assign-

ment to a calculator memory can be made directly). It is assumed
that, having entered a new exchange rate, you will want to ’test’ it out
immediately: hence the second part of the routine for this option is,
in fact, the routine to obtain the foreign cost and to convert it using
the exchange rate. If the menu option "EXCH’ is selected (option 'T’),
a jump is made to this part of che routine.

The conversion to pound sterling involves dividing the cost in foreign
currency by the exchange rate. If no exchange rate has been entered,
M9 will contain '0’ - and a pxvipe By zERro error will occur. One
could use the OPL language’s error-trapping commands to prevent
the error stopping the program from running; in the procedure given
here, a simple test is madc on the value of M9 before the forc:gn cost
is enlcrcd and a calculation is made. (T‘cstmgbefore acostis entered
saves wasting time makmg the entry). If 0’ is entered as the foreign
cost (or the EXE key is pressed), the program is terminated. There
are thus two ways to end the program — always a good technique, in
case you forget one of them!

The messages and exchanges are displayed on the screen using
OPL'’s view function, which keeps the display visible on the screen
until any key is pressed. The alternative is to use the pr1nt and ceT
commands. The exchange calculations are formatted using OPL’s
FIxs$ function, truncating the answer to two decimal places.

Using EXCH
This program can be RUN from Drgamscr s PROGramming menu, or
it can be installed as an option on the main menu that appea:s when
Organiser is switched on. To do this, you place the 'cursor’ at the
place youwant the option to appearin th: menu, then press the MODE
key. Organiser will respond with the message *INSERT ITEW: you
then simply type in the name of the program 'EXCH’.

Non-OPL functions called
GIS:

173

General Programs

Variables used
a) Local
F = Foreign cost
C% = Choice Holds the menu selection.
P$ = Pound Holds a character not unlike the £’ sign.
b) *Permanent
M9 = Calculator memory 9 Holds the exchange rate. The data is
retained in memory after Organiser has been "switched off.

Customizing
There’s plenty of scope here for the intrepid traveller to extend the
program, by adding in a selection of exchange rates — each heldina
different CALCulator memory, perhaps, or if there is a large number
of rates, in a file — with menu selection of the required rate.

The Listing

EXCH:
LOCAL F,C%,P§5(1)
P$=CHRS$(237) tREM Set up Pound character
ce=1
WHILE C%
C%=MENU("EXCH, NEWRATE , SEERATE")
IF C%=1
GOTO EX::
ELSEIF C%=2
M9=VAL(GIS$: ("RATE TO THE "+P$,0)
EX::
CLS
IF M9=0
VIEW(2,"NO EXCHANGE RATE")
CONTINUE
ENDIF
F=VAL(GIS: ("FOREIGN cosT",0))
IF F=0
RETURN
ENDIF
CY¥=VIEW(2,"="+PS+FIXS(F/M9,2,8))
ELSEIF C%=3
VIEW(2,"RATE="+4+FIX$(M9,2,8))
ENDIF
ENDWH

174

5.3 Miles per Gallon

5.3 Miles per Gallon
MPG:

What it does

The habit of calculating miles per gallon stays with us, even though the

pumps insist on pouring litres into our tanks. This program shows how
easy it is to have Organiser make all the necessary calculations for you —
and to prompt you for the information it needs.

Space required
The space required for the procedure, as listed, but without leading
spaces or 'REMarks’ (see Chapter 2.1) is:
Source + object code: 279 bytes
Object code only: 128 bytes

How it works

This simple procedure is typical of the way that Organiser can be
programmed to handle calculations, and to prompt you for all the
information it requires. "CHR$(63)’ on the print lines requesting
information holds the '?’ character. Once the necessary information
has been entered, the answer is calculated, r1xed to two decimal
places, and printed - all in one program line. The 'clear screen’ (cLs)
commands prevent the display from scrolling untidily.

Using MPG
This program can be RUN from Organiser’s PROGramming menu, or
it can be installed as an option on the main menu that appears when
Organiser is switched on. To do this, you place the "cursor’ at the
place you want the option to appear in the menu, then press the MODE
key. Organiser will respond with the message *1isert 1TEW — you
then simply type in the name of the program "MPG".

Non-OPL functions called
None

175

General Programs

5.4 Umpteenth Roots

Variables used

L = Litres The number of litres, to be converted to gallons.
M = Miles

Customizing

This program is fairly trivial and can, of course, be modified. Its main
purpose is to give you a basis for writing routines that can handle the
calculations you need. The first step is to set down the formula: for
example, to work out the Miles Per Gallon from the number of litres
of petrol and the number of miles, the calculation would be:

Miles
Litres x 0.22

Your routine must arrange to get in the ‘unknown’ parts — the Miles
and Litres, in this instance — with prompts to help the user, and then
make the necessary calculation. Even the most complex formulae

can be adapted quite easily.

If you have entered the utility "e1s: (), you could use it in place of :
each set of 'erINT..., INPUT. .., and cLs statements to get in the

necessary information,

The Listing

MPG:

LOCAL L,M

PRINT"No OF LITRES";CHRS(63)
INBUT L

CcLS

PRINT"HOW MANY MILES";CHRS(63)
INPUT M

CLS

PRINT"MILES PER GAL="

PRINT FIX$(M/(L*.22),2,8)

GET tREM Otherwise the display will clear.

176

5.4 Umpteenth Roots
ROOTD:, ROOT:()

What it does

A number of people have enquired why Organiser II doesn’t have a

function for calculating the nth root of a number. As with any other
‘missing’ function - it is fairly easy to add what youwant. Here is a program
and a function to perform the task: the function allows for the number of
decimal places in the answer to be specified.

Space required
The space required for the procedures, as listed is:

a) The program, ROOTD:
Source + object code: 236 bytes
Object code only: 111 bytes

b) The function, ROOT:()
Source + object code: 102 bytes
Object code only: 57 bytes

How it works
A mathematical way of writing the nth root is

xl.l'n
which can be expressed in Organiser’s terms as
X (lm}
or, in English, "X raised to the power of: 1’ divided by ’N' ", This is
the 'formula’ used by both the program and the function to calculate
the required root. The program "prompts’ for the information, then

displays the answer. This can be installed on the main menu if you
wish. The function must be called from another routine, or used

177

General Programs

from Organiser’s CALCulator mode. It requires three input
parameters: the base number, the required root, and the number of
decimal places for the answer.

Example of use
The function rooT: () must be used from the CALCulator mode:

CALC:ROOT: (64,6,1)

or 'called’ from another program:

R=ROOT: (X, N, 3)

ROOTD: can be RUN from the PROGramming menu of Organiser.

Non-OPL functions called
None

Variables used
N = Number
R = Root
D = Decimal The number of decimal places.

The Listings

a) The program
ROOTD:

LOCAL N,R
PRINT*NUMBER="

INPUT N

CLS

PRINT"ROOT="

INPUT R

cLs

PRINT R;" ROOT OF ";N

PRINT "=";FIXS(N**(1/R)),4,10)
GET

b) The function
ROOT: (N,R,D)
RETURN VAL (FIXS(N**(1/R),D,10))

178

5.5 Number 'base’ Conversion

5.5 Number ’'base’ Conversion
NUMCON:, BASE:()

What it does

This program of two procedures is included to demonstrate a program-

ming technique known as recursion’. Recursion is when a procedure
calls itself - and continues calling itself until a condition is met. In this
program, the procedure ’mase: ()’ is recursive, and is used to find the
value of a number in a different base (to a maximum of 'base 16’).

The base of the number is, in effect, the first value that requires *double
figures’ to represent a value. Thus in the decimal system, the base is '10°
since it needs two digits to represent the value *10". As examples of the
conversion, the decimal value *9’ (9 to the base 10) is *10 in octal (base
8), and the decimal value *32' (32 to the base ’10") is 20’ in hexadecimal
(20 to the base ’16").

What use are numbering systems to different *bases’? Computers
operate on a binary system — numbers to the base *2’ - and use also a num-
bering system that’s to a base '8’ (octal) or 16" (hexadecimal). Converting
from one system to another is a frequent requirement. This program
provides conversions from the decimal system to any base up to '16’, but
as mentioned previously, its main purpose is to demonstrate the recur-
sion technique.

Space required
The space required for the procedures as listed, but without leading
spaces, is;

a) Numcon
Source + object code: 458 bytes
Object code only: 219 bytes
b) Base
Source + object code: 278 bytes
Object code only: 144 bytes

Both procedures are requires for the program to run

179

General Programs

How they work

180

When numbers have a base greater than *9’, it is necessary to allo-
cate a *symbol’ to the values 10, 11, 12 ... and so on. In hexadecimal
(base 16), for example, the values 10, 11, 12, 13... 15 are represented
by the letters A, B, C ... F. The main procedure, NUMCON, sets up
an array of numbers and letters to represent values up to 15. When
a value is required, the appropriate array element is selected and
printed. For example, the 3rd element in the array contains ’3, and
the 12th element in the array contains the character 'C’,

Once the array has been initialised, you are prompted for the decimal
number to be converted, then you are prompted for the required
base. The conversion and print-out is made by a call to pasE: ().

One way to find the representation of a number in a different base
is to divide that number by the base repeatedly, then to take all the
remainders in reverse order, Thus, to convert decimal '13’ to binary

(base 2):

13 dividedby2 = 6 remainderl
6 dividedby2 = 3 remainder0
3 dividedby2 = 1 remainderl
1 dividedby2 = 0 remainder1

Taking the remainders in reverse order, the binary equivalent of
decimal 13 is '1101’. The procedure 'sase: ()’ performs this task
using the recursive technique. First of all, the sign of the number is
assessed. Ifitis negative, then a’-"is printed. The value of the num-
ber is then made 'positive’, and Base: () is called again. Because the
procedure Base: () is called again, it is stored again in RAM. The
dividing process then begins: if the number is still greater than the
base, the procedure Base:() is called yet again (placed in RAM
again), but this time using the divided value as the argument. This
process is repeated until the end of the line’ is reached - the num-
ber is no longer greater than the base (N% is no longer greater than
B%). In the last copy of the procedure in RAM, processing jumps
to the last 'ELSE PRINT A$(N%+1)’statement — to print the character
corresponding to the last remainder. Then processing returns to the
line following the Base: () call in the preceding procedure stored in
RAM, to print the character corresponding to the next remainder.
In other words, the remainders are printed out in reverse order.

5.5 Number 'base’ Conversion

This technique keeps the actual length of the procedure very short
for storage purposes. When run however, there will be as many
copies of the procedure in RAM as the are 'recursions’. But these
do not remain in RAM, of course, after the program has finished.

Non-OPL functions called

wuMcon: calls BASE: ().

Globals needed
The variables required for sase: () are made Global in numcon:.

Variables used

a) Global
A$ = Array Holds the characters representing values 1 to 15. Note
that the first element of the array is A$(1), which holds the value '0:
it is therefore necessary to add 1’ to the array index to identify the
correct aray element.
N% = Number The number to be converted
B% = Base The new base for the conversion.

b) Local (to NUMCON:)
I% = Index For allocating the array clements to values

Customizing
As listed here, the program must be run each time it is required to
convert a decimal number to another base. It will be very easy for
you to create a loop so that any number of conversions can be made,
until the CLEAR/ON key is pressed to terminate the routine. You find
this technique used extensively throughout this book, and it will be
good practice for you to adapt this procedure accordingly.

The Listings
Enter both procedures seperately:

a) NUMCON (continues overleaf)

NUMCON :

GLOBAL A$(17,1),N%,B%

LOCAL I%

I%=0

bo tREM Set up the numbers

181

General Programs

AS(I%+1)=CHRS (I%+48)
I%=I%+1
UNTIL I%=10
I%=65
Do :REM Set up the 'letters’
AS(I%-54)=CHRS(I%)
I%=I%+1
UNTIL I%=71
CLS tREM Start a 'loop’ here, if wanted
PRINT "NUMBER:";
INPUT N3
CLs
PRINT "BASE:";
INPUT B%
CLS
PRINT N%;" TO BASE ";B%
BASE: (N%,B%)
GET

b) BASE

BASE: (N%,B%)
IF N%<0

PRINT "-"; :REM Negative number-print’-’

BASE: (-N%,B%) :REM and make N$% 'positive’
ELSEIF N%>=B%

BASE: (N%/B%,B%)

PRINT AS(N%-((N%/B%)*B%)+1); :REM Semi colons
ELSE PRINT AS$(N%+1l); tREM important
ENDIF

182

5.6 Day and Date Finder

5.6 Day and Date Finder
DAYFIND:, GTDATE:, FTOD:, DTOF:

What it does

Hﬂw many times have you wondered what the date will be in a certain
number of days time, or what it was a certain number of days ago?
Alternatively, how often have you wanted to know how many days there
are between two specified dates? You need never wonder again. Enter
this program — a suite of four procedures — and yow’ll have the answers at
your fingertips, for any dates between May 1st 1900 and Dec 31st 2099.

The reason for this limitation is that the century years are only leap
years if they are divisible by 400, not the usual *4’, and the program does
not take these century years into account. (As a matter of interest, the
Organiser seems to think 1900 was a leap year. Ooops!).

When run, the program offers the two options — to find the number of
days-between-dates, or to find the date resulting from adding or subtract-
ing days to a date. Having made either choice, you then enter the start
date in the form dd/mm/yyyy (i.e. 27/08/1988). The way the program
works, you can enter any month number except zero: for example, you
could enter 25/13/1988. The program will translate this to be 23/01/1989.
The same thing will happen if you enter too many days for the month: the
program will sort out the actual date represented.

If you are finding the number of days between dates, you are then
prompted for the second date: this can be a date before or after the first
date, it doesn’t matter, The number of days between the two dates will be
displayed.

If you want to know what the date will be (or was) a certain number of
days away from the start date, you will be prompted for that number of
days: enter a negative number to find the date before the start date (e.g.
entering -21 will find the date three weeks before the start date).

Some unusual techniques have been used in the development of this
suite: the conventional approach of having a (large) array containing the
number of days in each month has been avoided: the routines used are
shorter and faster.

183

General Programs

Space required

The space required for the procedures, as listed, but without lead-
ing spaces or 'REMarks’ (see Chapter 2.1) and excluding space
required by any of the non-OPL routines called is:

a) DAYFIND

Source + object code: 617 bytes
Object code only: 297 bytes

b) GTDATE

Source + object code: 597 bytes
Object code only: 253 bytes

c) DTOF

Source + object code: 275 bytes
Object code only: 158 bytes

d) FTOD

Source + object code: 662 bytes
Object code only: 363 bytes

How it works

184

The principle behind this program is very simple: the translation of
the principle is perhaps not quite so simple. When a date is entered,
it is converted to a ‘factor’, which is in fact the number of days from
1st Jan 1900 to the entered date (including an erroneous Feb 29th
for the year 1900). To find the number of days between two dates,
the the factor’ for the second date is calculated, and then one of the
factors is subtracted from the other: provided the dates are between
1/3/1900 and 31/12/2099, the answer will be correct.

Similarly, to find what the date will be (or was) a given number of
days from a specified date, the number of days is added (or sub-
tracted) from the ‘factor’ for the date, and the resulting "factor’ is
converted back to a date again.

The procedures involved are paYFInD:, which is the main controlling
routine; GTDATE :, which allows a date to be entered in a fairly casy,
user-friendly way; pror:, which converts a date to the date-factor;
and rrop:, which converts a date-factor back to a date.

5.6 Day and Date Finder

DAYFIND: is fairly straightforward. The option menu is contained
within a loop, controlled by a label and a coro command. The
CLEAR/ON key must be pressed to finish using the program. After
either of the two menu options has been selected, the first or start
date is obtained by a call to cTpaTe: (). This is given the argument
"1’ for message purposes. Then, depending on the option selected,
either the second date is entered, or the number of days is entered
- preceded by a 'plus’ or *minus’ sign to indicate "after’ or 'before’
the start date, (Note: When you look at the procedure you'll see that,
for the second option, it is only necessary to use 'ELSE’, not ’ELSETF
ca=2’, since C% must equal 2 if processing reaches this point).

The appropriate calculations are made, and the number of days or
the new date (depending on the selected option) is displayed on the
screen, For convenience, the month number is converted to the
month name, using the utility mms: () from Chapter 2. Note that
whilst the year, month, day and factor are all integer values, floating
point variables are used. This is because the remainder resulting
from divisions is required in the calculations. For the display print-
out, therefore, the floating point values are converted to integers —
the day (D) and month (M) in payFinD:, and the year in FrOD:.

The GTDATE:() procedure is probably longer than it need be - but
it is designed to be 'user friendly(ish)’. There is always a problem
when entering dates — one can choose to enter it one value at a time
(PRINT"ENTER YEAR® :INPUT Y,etc).In this procedure, atechnique
similar to that given in the utility 615: () is used, so that the entire
date can be entered at once, provided it is to a specified format. Why
not use 61$:()? You can — but for a string input (which is what is
necessary), the keyboard is set to alphanumeric by 61$: (), and that
means holding down the SHIFT key whilst entering the numbers,
with a potential, frustrating error occuring on the first character. All
the characters required for a date are numeric (including the day-
month-year separators) and hence the croaTe: () routine sets the
keyboard for numeric inputs.

Note that, as written, the day-month-year separators can be any
character on the *numeric’ keyboard, not just /. The format for the
date is included in the displayed prompt as a reminder: it must be in
the form dd/mm/yyyy (i.e. 01/09/1988) to enable the actual values re-
quired to be "picked out’. To avoid incorrect entries causing errors,
error-trapping is used, with an addition to the displayed message to

185

General Programs

enter the date "again’. (Note how the word AGAIN’ is added only
once even if several entries have to be made). Errors can occur else-
where in the program if a zero is entered for the day, month or year
and so a test is made to ensure this hasn’t happened. Any number
multiplied by zero is zero, so the test involves simply multiplying all
three variables for day, month and year together: if the result is zero,
at least one of the variables must be zero, and the date must be
entered again. (The '1r x+y+2’ line in the procedure means 'if the
three variables multiplied together have avalue other than zero’, and
is much shorter than ’1F (x=0) orR (¥Y=0) OR (Z=0)")

DTOF: converts the date to a value representing the number of days
between that date and Jan 1st 1900 (with the extra day for the non
existing Feb 29 in that year). First, 1900 is subtracted from the
entered year, to give a two-digit number. Then comes a little sum —
every year is assumed (initially) to have 365 days, and every month
is assumed (initially) to have 31 days. The calculation is

(365 x years) + (31 x days-to-preceding-month) + (day of the month).

186

The *factor’ value obtained so far obviously needs to be corrected. If
the month number is "less than three’ (i.e. January or February), we
need to add a day for every leap year up to the preceding year. This
is done by adding to the ’factor’ the "integer of (years-1) divided by
four’. For the months 3 to 12, the current year must be taken into ac-
count when testing for a leap year.

Now, what about the months - we started by assuming every one of
them has 31 days. For January and February, there is no problem: if
the month is January, there is no preceding month in that year (and
31x0 = 0), and if it is February, then the preceding month — January
—indeed does have 31 days. So for these two months, no correction
is needed.

If we look at the error incurred by the assumption each month has
31 days, we see that over the months the error accumulates as fol-
lows: days to March and April will each be 3 days out, to May and
June four days out, to July, August and September five days out, to
October and November six days out, and to the beginning of Decem-
ber, seven days out. Those of you who remember your school days,
(algebra, graphs and all that), will be able to plot these values on a
graphand deduce the equation of a line which can be passed through

5.6 Day and Date Finder

cach of the integer values. To save you getting your pencils, paper
and thinking caps out, the correction factor line is defined by:

X=04Y+23

So, all we need to do to find the correction factor for any month is
to multiply the month number by 0.4, add 2.3, and forget the decimal
bit. (Try it with July — month 7, for example. 7x0.4 is 2.8, adding on
2.3 gives us 5.1, forgetting the decimal bit leaves us with 5, the num-
ber to be deducted to make our factor correct for the days to the
beginning of July). All of which makes for a procedure that’s much
shorter and a much faster running than having an array of months
and days to run through.

The FTOD: procedure requires similar tricks to convert the factor
number back to a date: it would be pointless being able to produce
the factor number without having an array of months, if an array of
months is needed to convert it back again. The first item to derive
from the factor is the year. If we look at the number of days in four
years, and divide that by four, we get 365.25. Consequently, dividing
the factor number by 365.25 — and again, ignoring the decimal bits
(i.c. taking the integer of the result) — gives us the year.

We next need to find how many days are left, to be allocated out to
months and days. This is achicved by using a utility we developed in
Chapter 2, called *mop:)’ to find the remainder from dividing the
factor number by 365.25. We also need to know whether or not the
year just calculated is a leap year: again, wop: () will give us the
answer: if there is no remainder when the year is divided by 4, it isa
leap year (pity about 1900). If it is a leap year, then the number of
days in January and February is 59. Otherwise it’s 58,

The next step is to see whether the number of days in the year is Iess
than the number of days in January and February.'If it is, we can
quickly arrive at the month and date answer. Suppose the number of
days is 35: the integer result of dividing by 31 (the number of days
in January) is 1, to which we add one to make *2', for February. If
the number of days is less than 31, the integer result of dividing by
31 is 0 - to which adding one gives 'l’, for January. The integer
remainder resulting from dividing the number of days by 31, plus one,
similarly gives the day of the month for the first two months.

187

General Programs

Notice, incidentally, that the Mop: () utility needs two floating point
arguments: hence the use of the decimal point in the actual values
entered as arguments.

How do we determine how many days are in each month for the rest
of the year without an array? If we say that every month has 30 days,
have a look at the pattern of days that need to be added to correct
for the 31’ day months:

March 0 Anugust
April 1 September
May 0 October
June 1 November
July 0 December

We can use this regular pattern to make the calculations, by repeated
"deductions’, in two nested loops. First of all, the number of days in
January and February are deducted. Then, a loop to deduct 30, 31,

30, 31 and 30 days is repeated twice. When the number of days left .

becomes negative, we know we have gone too far’. It is then a simple
matter to add back the number of days for the month to get the ac-
tual day. And to find out which month it is, we simply add in the
current position within the inner loop — and add five if the outer loop
has been completed once. Again, the process requires considerably
less space than would be needed if an array were used.

Non-OPL functions called
a) DAYFIND

GTDATE()

DTOF:

FTOD:

GI$:() (Utility)

MNS:() (Utility)

b) GTDATE
None.

¢) DTOF
None.

d) FTOD
MOD:() (Utility)

188

———

5.6 Day and Date Finder

Globals needed
All the procedures use the Globals declared in the main DAYFIND:
routine, namely:
Y = Year
M = Month
D = Day
F = Factor

Variables used
Apart from the Globals mentioned above, the variables used by the pro-
cedures are as follows,

a) DAYFIND
C% = Choice Holds the menu selection.
F1 = Factor 1 The factor number for the first date.
F2 = Factor 2 The factor number for the second date.

b) GTDATE
M$ = Message Holds part of the date prompt message
D$ = Date Holds the input date
C% = Check Holds the first character of the date input.

c) DTOF
F = Factor

d) FTOD
JF% = JanFeb Holds the number of days in January and February
C = Counter 1 Outer loop counter
K = Counter 2 Inner loop counter
E% = Extra day Holds the value of the 'extra day’ factor.
ND = Number of Days Holds the number of days (left) in the cur-
rent year

Customizing
The sroate: () routine could be shortened, if you are prepared to
use a simpler entry’ system to obtain the date. Do ensure, whatever
system you use, that the year, month and day are allocated to the
Global variables Y, M and D, and that the year is a 4-digit number.
Be careful about adapting the Frop: and pToF: routines: even minor
changes to these could seriously affect the accuracy of the results.

189

General Programs

There is another routine which could be added very easily to this
s_uilc: a 'day-of-the-week’ routine. Since days run consecutively (bril-
liant observation), one has only to subtract one from the factor
number for the required date (1o allow for that 29/Feb/1900!), and
to find the remainder resulting from dividing the answer by 7. It
would then be a simple matter to convert the number so obtained (0
to 6) into a day of the week: you could use a routine similar to the
utility mxs: (). However, do remember that, even though it may be
slower, you could find the information by using Organiser’s Diary...

The Listings

All four procedures must be entered separately.
a) DAYFIND

DAYFIND:

GLOBAL ¥Y,M,D,F
LOCAL C%,F1,F2

AG::
C%¥=MENU("No-of-days,Date+days")
IF C% :REM If C%=0, CLEAR/ON was pressed
GTDATE: (1)
Fl=DTOF: :REM Get the start date
IF C3=1
GTDATE: (2)
F2=DTOF:
CLS
PRINT"Date 1 to Date 2=";
PRINT ABS(F2-Fl);" Days"
ELSE
F=F1+VAL(GI$: ("Days (+ or -)",0))
FTOD:
CLS
PRINT"Date is"
PRINT INT(D);"/";MNS: (INT(M));"/";¥+1900
ENDIF
GET
GOTO AG::
ENDIF
190

5.6 Day and Date Finder

b) GTDATE
GTDATE: (N%)

LOCAL MS$(7),D$(10),C%

IF N%=1
H$= L] 1 1]
ELSE
HMs="2"

ENDIF

KSTAT 3

AG:s

CLS

C%=VIEW(1l,"Enter DATE "+M$+" as DD/MM/YYYY")

AT 1,2
PRINT CHRS(C%);
INPUT D$
DS=CHRS (C%)+D5
ONERR ER::
Y=VAL(RIGHTS (D5, 4))
M=VAL (MIDS (DS, 4,2))
D=VAL(LEFT$(DS5,2))
IF Y*M*D

KSTAT 1

RETURN

ELSE

GOTO ER::
ENDIF

ER::

IF LEN(M$)=1
MS=M5+" AGAIN"
ENDIF

GOTO AG::

¢) DTOF (continues overlea)
DTOF ¢

LOCAL F

Y=Y-1900

F={365*Y)+D+31*(M=1)

IF M<3
F=F+INT((Y¥-1)/4)
ELSE

F=F+INT(Y/4)-INT((.4*M)+2.3)

191

General Programs

ENDIF
RETURN F

d) FToOD

FTOD:
LOCAL JF%,C,K,E%,ND
Y=INT(F/365.25)
ND=MOD: (F,365.25)
IF MOD:(Y,4.0)=0
JF%=59
ELSE
JF%=58
ENDIF
IF ND<(JF%+1)
M=(ND/31)+1

D=MOD: (ND, 31.0)+1

RETURN
ELSE
ND=ND-JF%
c=1
Do
K=1
DO
E%=MOD: (K,2.0)
ND=ND-30-E$%
IF ND<1
D=ND+30+E%

M=2+K+5% (C-1)

RETURN
ELSE
K=E+1
ENDIF
UNTIL EK=6
C=C+1
UNTIL C=3
ENDIF

192

5.7 Biorythms

5.7 Biorythms
BIO:, VBIO:()

What it does

Two of the routines used in the previous Chapter—cToaTe: () and pTOF:
— can be used to evaluate the biorhythms for an individual, and that’s
what this two-procedure program does. Biorhythms are said to indicate
an individual’s Physical, Emotional and Intellectual state, and they’re
based on the fact(?) that these cycles run consistently from the date of
birth, Each cycle lasts a different number of days: the Physical cycle is
said to be 23 days long, the Emotional cycle 28 days long, and the Intel-
lectual cycle 33 days long.

For the first half of each cycle, the status is *positive’ or in an active
state, and for the second half the status is 'negative’ or in a recuperative
state. In each half, the 'peak’ or "trough’ is reached mid-way.

The 'bad’ days are said to be those where a cycle crosses from positive
to negative and vice versa — and the 'danger days’ are those where two
cycles cross from positive to negative at the same time. What happens
when all three cross together? Stay in bed! (This is a very rare event).

This program prints the percentage of maximum peak’ or *trough’ in
each cycle for the selected day — a minus sign indicates the troughs or
recuperative periods. A zero percentage indicates a cross-over day.

A menu allows you to examine other days for the same birthdate, to
enter a new birthdate, or simply to stop the program.

Note that, since the cTpate: () function developed in the previous
Chapter is used, the Birthdate is indicated by 'DATE 1’ and the date for
which you wish to examine the biorhythms is indicated as 'DATE 2’

There can be little doubt that *biorhythms’ actually exist: the human
body’s functions operate on numerous cycles. You can prove this for your-
self with a simple test. Of the two nasal passages, one is normally in an
active state, and the other in a recuperative state. By pressing a finger
against the nose to close first one and then the other nasal passage whilst
breathing in (through the nose), you should find that one of the nasal pas-
sages is 'more blocked’ than the other, The cycle lasts around three hours
— and so repeating the test three hours later should reveal the situation
has reversed.

193

General Programs

5.7 Biorythms

The question mark must come over the accuracy of the cycle period — and

whether it is exactly the same for everyone. There is also the factor that

long journeys involving jet-lag upset the body’s cycles (isn’t that what jet-

lag is all about?) and consequently upset the predictability. Nevertheless,

many people are strong advocates of Biorhythms, and will cite numerous

;u:lanocs where accidents and so on have occured during the ’danger
ys',

With this program, you will be able to judge the predictability for your-
self: if it *works’ for you, then your Organiser will be a remarkable
wnstrument capable of giving you advance warning of when to take care,
when to be creative, and so on.

Space required
The space required for the program, as listed, but without leading
spaces or'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:

a) BIO
Source + object code: 678 bytes
Object code only: 339 bytes

b) VBIO:()
Source + object code: 108 bytes
Object code only: 57 bytes
Both routines must be entered for the program to run

How it works

The Birth date is obtained by a call to TpaTe: (), and this is trans-
lated into the 'days-factor’. The second date is then obtained and
converted, and the Birth date factor deducted from it to obtain the
number of days the individual will have been alive on the required
date. The days into each cycle are then obtained, by using the mop: ()
utility to obtain the remainder after dividing the 'days-alive’ value by
the cycle length,

The next step is to obtain the percentage for each cycle, and display
it. A fraction of ’1’ is obtained by a call in each instance to the second
procedure, veros (). This takes the number days into the cycle as a
fraction of the cycle, finds out how many degrees that represents
(360° representing one cycle), convertsthe degrees toradians so that
the s1n can be taken (to get the fraction of ’1’). This is fixed to two

194

decimal places (who needs more?), and the value of the result is
returned. It looks complicated, but it isn’t really.

The decimal value returned is multiplied by a 100, to turn it into a
percentage, and displayed along with a percentage sign. This is done
for the three cycles, the first two being displayed on the top line by
using the semi-colon technique. Then comes the menu selection:
depending on the choice, a jump is made back to get a new date to
examine, a new birthdate or to finish altogether.

Inputs
VBIO: () requires the number of days and the cycle length to be input
as parameters.

Returns
VBIO: () returns a positive or negative decimal number representing
the status as proportion of ' +1’ or -1’

Non-OPL functions called
All these must also be entered for the 'sro:’ program to run.
GDATE:() (Chapter 5.6)
DTOF: (Chapter 5.6)
MOD:() (Chapter 2.13)

Globals
B10: makes variables Y, M and D Global for use by cToate: () and
DTOF1

Variables used

a) Global
Y = Year Holds the Year for the date calculation. ,
M = Month Holds the Month for the date calculation.
D = Day Holds the day for the date calculation.

b) Local
P = Physical Holds the number of days into the Physical cycle
E = Emotional Holds the number of days into the Emotional cycle
I = Intellectual Holds the number of days into the Intellectual cycle.
FB = Factor Birthdate Holds the factor for the birthdate.
FD = Factor Date Holds the factor for the selected date.
C% = Choice Holds the selection from the menu.

195

General Programs

Customizing
The program given here is really just the bare bones of what can be
done. For example, you could add messages and so on concerning
the states for each cycle, and you could even arrange for the program
to provide a print-out of the cycle information for a given month.

The Listings

Enter the two procedures separately.

a) BIO

BIO:

GLOBAL Y,M,D

LOCAL P,E,I,FB,FD,C%

ST::

GTDATE: (1) :REM Get Birth date
FB=DTOF: :REM Convert to rfactor’
TD::

GTDATE: (2) tREM Get ‘test’ date
FD=DTOF: tREM Convert to 'factor’
FD=FD-FB :REM Days 'alive’

P=INTF(MOD:(FD,23.0)) :REM calculate each cycle

E=INTF (MOD: (FD,28.0))

I=INTF(MOD: (FD,33.0))

CLS

PRINT"P=";VBIO:(P,23.0)*100;

PRINT"% E=";VBIO:(E,28.0)*100

PRINT"I=";VBIO:(I,33.0)*100;"%"

GET

C%=MENU("SAMEB, NEWB, END")

IF C%=1
GOTO TD::

ELSEIF C%=2
GOTO ST::

ENDIF

tREM Get new 'test'’ date

tREM Get new Birth date

b) VBIO
VBIO:(D,C)
RETURN VAL(FIX$(SIN(RAD(360*D/C)),2,5))

196

5.8 When's Easter?

5.8 When’s Easter?
EASTER:

What it does

Hcre is a program that will tell you the date of Easter Sunday. To run
it, simply enter the year on request. If you enter just two digits, '1900"
will be added - so you can enter "88’, for example, instead of 1988.

Space required
The space required for the procedure, as listed, but without leading
spacesor 'REMarks’ (see Chapter 2.1) and excluding space required
by any of the non-OPL routines called is:
Source + object code: 947 bytes
Object code only: 452 bytes

How It works
This program was translated to the Organiser from a program
developed several years ago for another computer, That program
was developed from a method of calculating the date of Easter found
ina magazine ... long since lost. So, the program is offered asit stands,
without the underlying formulae or an explanation of the principles
involved.

One line in the program may require an explanation (only one
line?!):

IF (E%=24)+((E%=25)*({G%>11))

Inthisline the ' +’and the’#’ are the same as writing 'OR’ and ’AND’
respectively. The parts within each bracket are "tests’ which equate
to -1’ if true, or zero if untrue. By substituting either of these values
in place of the tests in the brackets, you will see that the result is the
same when using the mathematical symbols as it is using the logical
operators OR and AND.

197

General Programs

The Listing
EASTER:

LOCAL A%,B%,C%,D%,E%,F%,G%, H%,J%, Y%
Do
PRINT "WHICH YEAR"
INPUT Y%
IF Y%<100
Y&=Y%+1900
ENDIF
GR=Y%~((Y%/19)*19)+1
C%=1+(Y%/100)
Fe=(3*C%/4)-12
A= (8*C%+5)/25)-5
D¥=(5*Y%/4)-Fs-10
E$=11*G%+20+A%-F%
IF E%<0
E®=E%+30
ENDIF
WHILE E%>29
E%=E%-30
ENDWH
IF (E%=24)+((E%=25)*(G%>11))
E%=E%+1
ENDIF
H%¥=44-E%
IF H¥<21
HE:=H%+30
ENDIF
JE=D%+H%
BY¥=J%—((J%/7)*7)
H%=H%+7-b%
CLS
PRINT "EASTER ";Y$%
IF H%>»31
PRINT"SUNDAY APRIL ":;H%-31
ELSE
PRINT"SUNDAY MARCH "“;H%
ENDIF
GET
UNTIL MENU("MORE,END")<>1

198

APPENDICES

199

APPENDICES A1: OPL Commands & Functions

. General
. H ' BEEP t%,n%Sound n% for t% x 20msecs
A1 R OPL Commands & FunCtions DATIMS Returns current date and time as a string
DAY csasmmvn .Returns day number in current month
FREE Returns memory left in RAM
| HOUR .o Returns integer of current hour
or convenience, all of the OPL commands and functions are listed MINUTE Returns integer of current minute
here, together with brief descriptions, under headings related to their MONTH Returns integer of current month
usage. For the full syntax and examples of use of each OPL word, please SECOND Returns integer of current second
refer to your Manual. SPACE Returns memory left on current pack
YEAR Returns integer of current year
File Handling
APPEND Add current record to the current file | |l"lpl.lt/ OUtPUt
BACK Make previous record in the file current I ATx%Y%....... Positions cursor at col x, line y
CLOSE Close current file } 61 E TR Clears display
COPY.......... Copy a file i CURSOR on/off .Switches cursor display on/off
COUNT: ..o Returns the number of records in current file i| GETs. Waits for keypress, returns its AShC!l value
CREATE....... Creates a new file A GETS........... Waits for keypress, returns the character
DELETEFS Delete file F$ ' INPUT Input from keyboard until EXE pressed
DIBE .oovmsunme Display filenames II BEY i vvnmnnvwain Returns ASCII value of a buffered keypress
DISP() v.vvvenss Display a record ! KEYS oo Returns character of a buffered keypress
EDITSS........ Edit string S$ KSTAT .ovuvanus Set keyboard status
EOF Marks file end | LPRINT Prints variable/string to connected printer
ERASE Delete the current record MENU(SS) Displays §$ as Menu for selection
EXIST(FS) Test if file F$ exists | PRINT.......... Prints variable/string on screen
FIND(SS)....... Find string S$ in the current file i VIEW(L%,S$) ...Displays S$ on line L%
FIRST Make the first record in the file current
EAST o Make the last record in the file current
NEXT Make the next record in the file current Machine Code
OPEN ..omvemies Open an existing file f
BPOS ocuisaass Returns ‘number’ of current record in the file ! ADDR(V) Returns address of variable v :
POSITION x Make record x in the file current ' ESCAPE offfon . .Prevents/allows program pausing
RECSIZE Returns number of characters in current record PEEKB(a%]) Returns the byte at address a%

RENAME A$,BS Rename file A$ as B$ PEEKW(a%)Returns the *word’ (two-bytes) at address a%

UPDATE Update the current record POKEB a%,c% ..Pokes byte c% at address a%

USE cucivvsiinn Select a logic file for use ! POKEW a%,c% .Pokes 'word’ ¢% at address a%
USR(a%,b%)Passes b% to a user m/c routine at a%

200 | 201

APPENDICES A1: OPL Commands & Functions
| RETURNv...... Return v (or v%, v§) from function
Mathematical Functions . STOP . vnns Break out of program
ABS(x) Returns absolute value of x | TRAP Trap an error
ATAN(X) Returns arctan of x WHLE/ENDWH .Repeats processing 'while’ condition is true
COS(x) ..cvennns Returns cosine of x !
FLT(i%) Converts integer 1% to floating point type
DEG(x) Converts x radians to degrees ‘
EXP(X) .ocovnun. Raises "¢’ to the power x Stl'il"lg Handllng
HEXS$(x%) Returns hexadecimal value of decimal x% r ASC(s$) Returns ASCII of first character in s$
IABS(x%) Returns absolute value of integer x% CHR3$(n%) Returns character of n%
INT(%) Returns the integer of x [FIX$(v,d%,1%) . .Sets value vto d% decimal places in string 1% long
INTF(X)Returns the integer of x as a float type GEN3(v,1%)Sets value vto a string 1% long
LN(X) ooviiins Returns log x to base 'e’ | LEFT3(s$,1%) .. .Returns left 19 characters in s$
LOG(x) Returns log x to base 10 | LEN(s$) Returns length of string s$
12 TR Returns pi = 3.14159265359 LOC(S$,5$) Finds sub-string s$ in string S$
RAD(x) Converts x degrees to radians 1 LOWERS(sS)Converts string s$ to lower case characters
RANDOMIZE x Sets fixed random sequence on x . MID3$(S8$,5%,1%) .Returns 1% characters from s% in S$
BND s comeinivas Returns random decimal value between 0 and 1 f NUMS$(v,1%)Returnsv as integer string 1% long
SIN(X).......... Returns sin of x . REPT$(c$,r%) .. Repeats string c$, r% times
SOR(X) ..vuuisns Returns square root of x RIGHTS$(s$,1%) . Returns 1% characters from right of s$
TAN(X) Returns tangent of x SCI$(v,d%,1%) .. Returns value v as a scientific string
UPPERS(s%) Converts string s$ to upper case characters
VAL(s$) Returns value of s$
Program Control ‘
AND Lo Logical comparison ‘
BREAK Breaks processing from a loop

CONTINUE Returns processing to top of loop
DO/UNTIL Repeats processing till "until’ condition true

BRR civiivennes Returns number of the last occuring error .

ERRS3(x%) Returns a string describing error number x%

GLOBAL Declares variables for the procedure |
............... and subsequent procedures

GOTOj: Jumps to label j::

IF/ELSEIF/ELSE Tests expression and acts accordingly

LABEL ..i..v.s Specifies a point in a procedure

LOCAL: .« o00a4 Declares variables for the procedure '

OFF . canomss Switch-off under program control

ONERR Error trapping

5 ;- IR Logic comparison

PAUSEt% Wait at keyboard for t% x 20ms

RAISE00:4. Simulates an error

REMcooias Non-processing remark

202 203

APPENDICES

A2: Index of Routines

Utilities
DN:() ... Truncate a number 78
| 2 o P — Edit a float variable 68
El%:() Edit an integer variable 68
ESS() Edit a string variable 68
FIL$:()cun.n Padoutastringc.... 80
GFNS:() GetaFile-namec.o0000. 65
€] b < 3 AR, Getaninputcovvunnnnn 55
GEY: i GetaPack location 61
MNS:() Month name selector 76
MOD:() Find the 'remainder 83
MSG:()......... Display a timed message 47
SR%:()......... Showarecord 12
VLS vinnwseens Update Pack Location 61
YORN%:.......YesorNoTest.........oo0uve. 50

Stock Control/Price List program

SCANE Adding a Stock file record 94
SCDR:Delete a Stock file record 109
SCPR: . .ovvvinins Find a Stock file record 97
SEPRY covvaims Print out Stock file 114
SCSEER: .. casana Caption a Stock file record 102
SCTV: Analyse a Stock file record 111
SCUD: Update a Stock file record 106
STOCK: Main Stock control routine 90

204

A2: Index of Routines

Banker - Bank Account program

BANKER:...... Main Banker control routine127
BASO cowmsmad Change Standing Orders 160
BCAD:..... PP Get details about a transaction . . .157
BCBS:Verify the Bank Statement 163
BLAR:() cuviviid Locatearecordcuutt 142
BNSO:Add a new Standing Order 135
BPRO: Print out records of Banker files . .166
BRD:Add date to a Banker record133
BREC:ovswns's Caption a transaction record148
BEEE: g it View records in Banker files 146
BEEEN ., . vnivenvis Caption Standing Order records .151
BUPD: o ov oy Make a transaction 154
BUSO:.......... Pay Standing Orders 138

General programs

BASEX) Function for 'NUMCON:" 179
BIOY o vuvomvimuny Biorhythm evaluator 193
DAYFIND:...... Main routine for day/date finder .183
B3] I — Convert a date to a*factor’ 183
EASTER: Calculate Easter Sunday date197
BACH: vouonnn Exchange rate calculator 172
FTOD: covsvissi Convert 'factor’ number to a date .183
GTDATE:() Getadateinput 183
MPG: oo v Miles per gallon (litres) 175
NUMCON: Number 'base’ conversions 179
ROOT:() Calculate roots (function) 177
ROOTD: Calculate roots (program) 177
VBIO:()......... Function for Biorhythm evaluator 193

205

00T

