Using and Programming the

PSION ORGANISER I

A complete
guide by
Mike Shaw




Using and Programming
Psion Organiser I

A complete guide



USING AND PROGRAMMING
PSION ORGANISER I

A complete guide

Mike Shaw

To my lovely Annie, who made it all worthwhile.

Published by
KUMA COMPUTERS LTD.



First Published 1986
2nd Revision August 1987
Kuma Computers Ltd.

Unit 12, Horseshoe Park
Horseshoe Road, Pangbourne,
Berkshire RG8 7JW
Telex 846741 KUMA G Tel 07357 4335

Copyright © 1986 Mike Shaw

Printed in Great Britain

ISBN 07457-0134-5

This book and the programs within are supplied in the belief that
its contents are correct and they operate as specified, but Kuma
Computers Ltd. (the Company) shall not be liable in any
circumstances whatsoever for any direct or indirect loss or damage
to property incurred or suffered by the customer or any other
person as a result of any fault or defect in goods or services
supplied by the company and in no circumstances shall the
company be liable for consequential damage or loss of profits
(whether or not the possibilty thereof was seperately advised to it
or reasonably foreseeable) arising from the use or performance of
such goods or services.

ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior
written permission of the author and publisher.

The only exception is the entry of programs contained herein onto a
Psion Organiser I1 for the sole use of the owner of this book.

Acknowledgements

No detailed book about a new product could ever be written
without the support of the manufacturer. This book is no exception:
I am deeply indebted to all at Psion for the considerable enthusiasm
they showed for the project, and for the encouragement, guidance,
advice and help they provided during its preparation. I would like
to thank especially Martin Stamp for painstakingly reading the
manuscript and making invaluable suggestions (and corrections):
in so doing, I would not wish to detract from the generous assist-
ance provided by the entire team, without which this book would
never have seen the light of day.



CONTENTS

PART 1. HOW ORGANISER WORKS

1.1 The Warehouse Concept, 2

1.2

1.3

1.4

Putting you in the picture; Little boxes;

The busy ‘Office’; The power to work;
Keeping in touch; Special duty departments;
Summary.

The Memory Boxes, 7

More than one type; Look-in only boxes;

Put-in look-in and change boxes;

Put-in, look-in, lock-up boxes;

What goes into the boxes; Computers count differently;
Storing ‘characters’; Storing instructions;

Storing values; Instruction, character or value?;
Summary.,

Following Instructions, 18

The Jolly Instruction Man; The Translation Service;
Where is the next instruction?; Excuse the interruption;
What would you like to do?; Saving and Finding;
Using the Calculator; Using the other options;
Summary.

Obeying Program Instructions, 30
Programs and Procedures; Three ways to run a program;
Running a program; Summary.

PART 2. USING THE BUILT-IN APPLICATIONS

21

2.2

Getting to grips with the keyhoard, 36

Not like a calculator;

Selecting CAPS, lower case or NUMbers;

The cursor keys; The CLEAR|ON key; The MODE khey;
The DELete key; The EXEcute key; Special keys.

The main Menu, 41

Switching on, Selecting an option;

Customizing the main Menu, The INFO option;
The RESET option; Switching off.



2.3

24

2.5

2.6

Time and Alarms, 46
Keeping TIME, Using the ALARMS.

Keeping Records, 49

The buiit-in filing system; Storing your information;
Locating information; Changing record information;
Removing records from a file; Copying a complete file;
Copying one MAIN file record.

Keeping a Diary, 58

The DIARY Menu; The PAGE option; The LIST option,
The FIND option; The GOTO option,; The TIDY option;

Using the DIARY, Keeping more than one DIARY.

Using the Calculator, 68

Before you start; Fixing the decimal point;
Entering a calculation,; Very large numbers;
The order in which calculations are made;

Using the Calculator memories; The built-in functions;

Using your own functions; When things go wrong.

PART 3. PROGRAMMING ORGANISER Il

31

3.2

3.3

3.4

The principles of programming, 81
What is programming?; Defining the requirement;
Plan the program flow; Summary.

Using the program Menu, 91

The PROGramming options; The NEW option;
The EDIT option; The RUN option;

The ERASE option; The DIR option;

The LIST option. :

Introducing the programming language, 101

The types of instruction, Separating instructions,

The unknown quantities — variables; Array variables;
Choosing variable names,

LOCALS, GLOBALs and paramelers;

Non-declared variables; When things go wrong.

From Keyboard to Screen, 113

Creating a Procedure; Naming the procedure;
Declaring numeric variables;

Assigning values to variables;

Calling one procedure from another.

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

Handling Characters and Strings, 127

Declaring string variables, Joining strings together;
Non-keyboard characters; Cutting the strings;

How long is a string?; Where's that string?.

Decision making, 140

FPutting things to the test; The Test operators;
IF a comparison is true; IF-IF-IF instructions;
Using AND and OR to link comparisons;

A ‘Password’ procedure.

Crea!;ing options and jumping around, 152
Offering a Menu,; Jumping away;
The Decorating Materials program.

More Keyboard and Screen handling, 163
Has a key been pressed?; Hang on a moment;
Setting up the keyboard; Where's the cursor?;
Viewing a string.

Looping round until the job is done, 172
Keep going until-; WHILE a condition is true;
DO until a condition is true; Nesting loops;
Breaking out of a loop; Making a REMark;
Target game program.

Converting variables, 183

A change is needed; Converting a string to a number;
Converting numbers to strings;

Converting one numeric type to another.

Bpi]t-in data available on demand, 190
Time-related information; How much memory is left?;
Mathematical values.

The sound of music, 194

Organiser’s beep show; Keyboard music-maker;
Sound effects.

Files - Creating and Opening, 200
Introduction to files; What goes into a file;
The file handling process; Creating a file;
Opening a file.

Files - writing and changing records, 207
Putting information on record; Adding a new record;

Changing a complete record; See what you are changing;

Maximum record size; Selecting which file to use.



Programs
3.15 Files— handling records, 214 g

What record do you want?; Step by step;

Searching for specific information; Note that only complete procedures and programs are listed here:

for illustrative program sections, see the relevant Chapters,

Going straight to a record number;
How many records are there?; Viewing your records;
Erasing an unwanted record; Closing a file.

3.16 File Management, 224 _
Looking after your files; Examine file names;
Datapak free space; Deleting a file;

Copying files; The main File Management procedure.

PF - percentage function,

PF - percentage function, shortened version.
PC — percentage program.

OPF - original price function,

GO - to switch off and ‘welcome back’.
MONTH - Month name from its number.
CNTR - Function to centralise a display.

TEST1 - to test CNTR procedure.

MONTHNOY, - find month number from its name.
TEST2 - to test MONTHNO?,, procedure

COW?, — Ceiling or walls? (Decorating program)
CALEM%, — Calculation of Emulsion, long version.

3.17 Errors and bugs, 232
When your slip shows; The error messages;
Trapping any error;
Trapping specific instruction errors;
When Organiser goes into a never-ending loop;

£0 £3 0 B0 0 53 08 6563 €0 60 'SR
PR okt el abt it o
CURTR R YT R N T X

b (Decorating program)
Finding bugs. 3.7.3 CALEM% — QCalculation of Emulsion, short version.
. . ; 944 (Decorating program)

318 fzﬁri::in;f!:?z‘;et}f:: £ E;l:cf:ilr?; Et':riab les in memory; 3.7.4 CALPAPY%, — Calculation of paper. (Decorating program)
Examining the Aenizants of memory; 3.7.5 DECOR - Decorating materials program program.
Changing memory contents; Defining your own characters; 3.8.1 WAIT — Demonstration of lPAUSE, (1).

Machine language programs. 3.8.2 WAIT - Demonstratgon of '‘PAUSE’ (2).
3.8.3 KTEST - Keyboard input tester.

3.9.1 MTABLE — Multiplication Table (WHILE/ENDWH).
3.9.2 MTABLEZ - Multiplication Table (DOfUNTIL).
3.9.3 CHARDIS - Display of character patterns.
3.94a RNDY% - Random numbers for Target game.
3.9.4b DELSY — Delays for Target game.
253 3.9.4c TARGET - Main game procedure.

APPENDIX 3.10.1 HEX - Converting decimal to hexadecimal.
3.11.1 TIMER - A simple timing procedure.

ASCII - Character patterns 3.12.1 BP - BEEP function for frequency inputs.
3.12.2 PLAY - Making Organiser a keyboard instrument.
3.12.3 PHONE - Telephone sound effect.
3.12.4 ALM - Alarm type signal.
3.12.5 SFX — Sound effects sampler.
3.16.1 FDIR - File name Directory.
3.16.2 FSPACE — Memory left on a Datapak.

lllustrations 3.16.3  FDEL - Delete a file.
t leulat t ller number is 3.16.4 FREN — Rename a file.

Bkl E}‘;“{Sﬁ‘é‘;ﬁiu‘,’n‘{;‘;ﬁ“ B 3.165  FMAN - File management main procedure.
3.1.2 Typical Arcade game flowchart. 3.17.1 LOG - Demonstration of ONERR. , .
31.3 “Update the Score’ flowchart. 3.17.2 TRAPPER - Demonstration of TRAP instruction.
3.1.4 Calculation of Decorating Materials flowchart. 3.18.1a  CHRPAT - Character definition control program.
3.31 The use of GLOBAL variables 3.18.1b  CHRDEF - Defining a character.
3.9.1 Flowchart for ‘Target’ game. 3.18.1c  CHRSAV - Saving defined character to a file.

1 3.18.1d CHRLD - Load a pre-saved character pattern.

3.18.1 Character definition grid.



PREFACE

Mike Shaw's skills include the rare combination of the professional
copywriter and the computer buff. He has a remarkable gift for
capturing complex or wide concepts and communicating and
explaining them with simplicity. As a result, this book can be read
with benefit by the expert and uninitiated alike: for the uninitiated,
it provides probably the best explanation I have read of how a
computer works.

The technology behind Organiser II is a classic example of the
application of state-of-the-art microelectronics, resulting in a
compact machine that is ‘high-powered’ yet low on power con-
sumption. I believe that ‘hand computers’ will become as common-
place as telephones or calculators within a few years. Organiser II
is possibly the first of such machines to provide real utility,
versatility and breadth, the first practical computer to fit the pocket
- metaphorically as well as physically,

This book provides an excellent description of that utility and
versatility, and illuminates the opportunities made available by
Organiser II. It opens the mind wide to the application and
potential of the product, while giving an imaginative description of
how a computer works and how, in real time, Organiser II performs
a multiplicity of different tasks. The author's allegorical figure,
JIM, portrays beautifully the huge detail and mechanics of the
tasks that the machine must continually perform. One is left with a
clear understanding — as well as exhaustion at JIM’s immense
‘busy-ness’.

The book also takes the reader steadily through the concepts of
programming, explaining how to customize Organiser I, This is
complemented by many fascinating and varied examples of applic-
ations — from the calculation of decorating materials to playing
music, from file-handling to a simple game - examples which
illustrate the possibilities and enhance the understanding of its
potential.

Mike Shaw has been involved in the project as a professional
communicator from the development phases. His excitement and
enthusiasm has led to the creation of this book, which will be an
invaluable guide to the many thousands of people who own an
Organiser I1.

David E. Potter MA (Cantab.) PhD (Lond.)
Chairman, Psion Ltd.
October 1986



PART 1

How Organiser Il works

In learning how to use any piece of equipment
to its best advantage, it often helps to under-
stand first a little about how it operates.

The aim of this part of the book is to give you
an idea of the way Organiser II works - not in
great technical detail, but in general terms, by
the use of an analogy.



How Organiser works

11

THE WAREHOUSE CONCEPT

Putting you in the picture

Before discussing how Organiser Il tackles all the different
functions it provides, let us first create a mental picture of its
construction.

You may well have heard some of the language that is associated
with computers ... words such as integrated circuits, bytes, pro-
cessors, RAM and so on.

For the time being, forget them all. Instead, consider the Organ-
iser II not as a computer, but as a large, very busy warehouse that
undertakes work on our behalf.

We are going to use this concept to describe its construction and
how it works. The description given will, of course, be analogous to
the actual way Organiser operates. Nevertheless, the picture
created will be sufficiently accurate in principle to enable the more
important parts of its inner workings to be appreciated.

You may now be asking why you need to understand a little
about how Organiser II works before you learn to program it. After
all, one can learn to drive a car without knowing how the engine
works. The answer is simple. You are not going to learn how to just
drive the Organiser — you drive it when you use the built-in
functions such as the Diary or Alarms. You are going to learn how
to build in extra functions to suit your own needs ... you are going
to customize the engine to do what you want.

And to do that it helps to know, even roughly, how it works.

Little boxes

So. Organiser II can be considered as a large warehouse. If you look
inside, one of the first things you'll notice is that there are
thousands upon thousands of small boxes, neatly laid out in an
orderly fashion. Each box is individually numbered — rather like
the houses in a street. And as with houses in a street, this number is
called its ‘address’. It enables the box to be located very quickly
when the need arises,

The boxes are used to store information for the running of the
warehouse, and for handling any work that the warehouse may be
asked to do on our behalf. Because they store information, collect-
ively they are called the memory. The size of the memory is simply
the number of boxes available to carry information.

Along the side of the warehouse there are two ‘doors’, to which
can be driven’ pantechnicons’ containing even more boxes. These

2

1.1 The Warehouse Concept

‘doors’ are the slots in the side of your Organiser II, and the
‘pantechnicons’ are Datapaks or Program Packs.

There is no limit to the number of Datapaks or Program Packs
that can be used with Organiser II, although of course only two can
be connected at a time.

In Chapter 1.2, we’ll take a closer look at the boxes, to examine
the different types used and to see exactly what goes into them, But
for the time being, let us continue with our general exploration ...

The busy ‘Office’

Tucked away in the heart of the Organiser warehouse there is a
small Office, the nerve centre of the entire operation. Very little
happens in the warehouse this Office doesn’'t know about. It
controls. It organises (ves, even the Organiser II needs an organ-
iser!). And it handles simple mathematical tasks such as adding or
subtracting.

This Office, as you will appreciate, is kept very busy indeed, But
in spite of that, it works extremely fast. So fast, it can handle
thousands upon thousands of instructions before you could bat an
eyelid. Which by any standards, is pretty fast.

The technical name for this Office is Central Processor Unit, or
CPU for short. For the time being at least, we shall continue to refer
to it as the Office. It sounds less daunting.

Unlike its counterpart in most other computer ‘warehouses’, this
Office never closes: as long as it has the power, ‘someone’ is always
on duty.

The power to work

Which brings us to another element in our warehouse: the power
supply. Down in the ‘basement’ there is a battery which provides all
the power that’s needed. There is also provision, behind a sliding
hatch at the top, for connecting Organiser II to a mains supply,
using the correct lead.

Even when to all intents and purposes the warehouse is ‘off duty’
(that is to say, when the Organiser II is switched off), a ‘manager’
remains on duty. He sees to it that the Clock and Calendar
functions, for example, are kept working, so you always have the
correct time and date available when you switch on. Also, if you
have set Organiser II to give you an Alarm call, he will know about
it and act accordingly when the time comes,

The power consumed during these off-duty periods is fairly small.
When ‘on duty’, the activity is greater of course, and the power
consumption is higher. If at any time there isn’t enough power in
the battery to perform ‘on duty’ work then, via the Office, you will
be given the message LOW BATTERY. (When you see that
message, switch off immediately).

Fortunately, Organiser II has a small back-up reservoir of power.

3



How Organiser works

In the event of the power supply being missing altogether (1.e., if
the battery is removed), this reservoir will keep the time and date
ticking over for about 30 seconds. This gives you ample time to
change the battery without having to reset the time and date again
afterwards.

As we shall see, some of the memory boxes inside the Organiser
also need a power supply to keep them operational. The back-up
reservoir of power will keep these going for about 90 seconds after
the battery has been removed. So the chances of losing any of the
information contained in these boxes - your valuable information —
is made less likely.

However, it is important that notice is taken of the LOW
BATTERY message: if you don’t switch off immediately, there may
be insufficient power left in the reservoir to give you time to
change the battery. Always switch off before changing the battery.

Keeping in touch

Back to the warehouse concept. All of the memory boxes and the
busy Office would be absolutely useless if we were unable to
communicate with them. We, after all, are the ‘customers’ who
decide what we want the warehouse to do for us. So we need a way
to ‘talk’ to the Office. This is achieved through the keyboard, used
to tap out our instructions.

Similarly, the Office needs to communicate with us - to help us
choose what we want to do, to show us what we are doing at the
ke;.rhoarc]. and to provide the answers to our requests. The Office’s
communications appear on the screen above the keyboard. As you
will be aware, the screen has two lines and each line can display up
to 16 letters, numbers or symbols (such as the ‘+' and ‘~ signs).
These are called characters, and we shall refer to them as such from
now on,

If the screen is not large enough to display all the information at
one time, the Office arranges for the display to scroil from side to
side or up and down, allowing us to view the whole message. It 18
rather like a mask moving over the page of a book, revealing new
information as it travels around. We can control the scrolling
process by using the special keys marked with arrows on the
keyboard: they are called the cursor keys.

Generally speaking, the Office lets you know when it is expecting
you to communicate with it — that is, enter something at the
keyboard - by placing a marker or cursor on the screen. The
keyboard can be switched to produce ‘letters’ (i.e. - the characters
on the keys), or ‘numbers’ (the characters above the keys). When the
keyboard is switched to ‘letters’, the cursor will be a flashing block
and an underline character. When the keyboard is switched to
‘numbers’ the cursor will be just the underline character — no
flashing block.

1.1 The Warehouse Concept

Thus the screen display indicates what type of entry you will be
making from the keyboard, and the Office knows exactly what
character you want when you press a particular key. The keyboard
is discussed in more detail at the beginning of Part 2.

Try the following. Switch on your Organiser. The screen display will
show a range of options: this is called a ‘Menu'. Now press the SHIFT
and NUM keys at the same time to switch the keyboard to provide
number inputs. The cursor will change to just the ‘underline’ character

- no flashing block.

Now as you probably know, you can usually select an item on the
Menu by simply pressing the key corresponding to the first letter of
that item - as an alternative to using the cursor keys to move the
cursor to the required item, then pressing the EXE key (see Chapter
2.2). So now try to switch Organiser off by pressing the O key.

It doesn’t work.

The Office is expecting you to type a number — or one of the characters
printed above the keys. So when you pressed the O key, the message
received by the Office was 4 - the number printed above the O key. At
this stage of the game, the Office knows what to do if the first letter of
any of the words on its Menu is typed in, but it doesn’t know what to do
gbout numbers. So it does nothing - except sit and wait.

The only way you can select any item from the Menu while the
keyboard is sel for numbers is to use the cursor keys to select the item
and then press EXE.

3o, to switch off now, either select OFF on the Menu by using the
cursor keys and then press EXE, or press the SHIFT and NUM keys at
the same time, to reselect letter inputs, then press the O key.

Special duty departments
There are several other departments in our warehouse for handling
special ‘duties’. For example, the Office needs a way to communic-
ate with us audibly, for those occasions when we have ‘booked’ an
Alarm call. There is, therefore, a sound system built in. We can
gain access to the sound system — not from the keyboard, but
through a program — to control the duration and tone of the sounds
produced for our own purposes. This particular aspect of Organiser
II is dealt with in detail in Chapter 3.12.

The other ‘special’ departments need not concern us at this stage:
they will be discussed as and when the need arises.

Summary

That completes our preliminary look at the construction of Organ-

iser II. To sum up, it has:

a) Numerous memory boxes, which hold the information Organ-
iser Il needs to perform and to remember things for us.

b) A busy Office or Central Processor Unit which is in charge of
everything that goes on inside the Organiser II.

e) A keyboard to allow us to communicate our requirements to
the Office.



How Organiser works

d) A screen, so that we can see what we are doing at the
keyboard, and so that the Office can communicate with us.

e) Special duty departments - such as the sound system — which
help the Office to perform.

f) A power supply, with a small reservoir of power to enable the
battery to be changed without losing valuable information.

We will now examine one of the important components — the
memory boxes - in a little more detail.

1.2

THE MEMORY BOXES

More than one type

Within the Organiser II there are two different types of memory
box. In the Datapaks and the Program Packs, there is a third type.
If you use Datapaks, it is important to understand the difference
between the type of memory they use and the memories inside the
Organiser, in order to save an unnecessary waste of memory space
when programming or saving information.

This Chapter discusses the three types of memory box, and then
examines in more detail exactly what goes into them.

‘Look-in’ only boxes

The first and most extensively used type of box inside Organiser II
can be looked into, to see what it contains, and that is all. Its
contents cannot be changed or removed. Even if the battery is
disconnected for long periods, the contents of look-in only boxes
remain intact.

This type of memory box is used to contain information for the
running of Organiser II. The Office looks into these boxes, in the
main, for the instructions it needs to provide the Diary, Alarms,
Clock, Calendar, Record-keeping and Calculator applications, and
also for the information it needs to provide the programming
facilities.

There are 32,768 boxes of the look-in only type in the Organiser II
- an indication of just how much memory is needed to provide all
these facilties,

Obviously this part of memory cannot be used by us directly: the
Office uses it on our behalf whenever we want the Organiser to do
something for us.

The process of looking into a box to see what is there is often
called reading, and consequently these boxes are known collect-
ively as Read Only Memory or ROM for short. You have probably
heard the word before,

As a matter of interest, the boxes for the Read Only Memory in
Organiser IT have addresses from 32,768 to 65,535.



How Organiser works

‘Put-in, look-in and change’ boxes

We can not only loek inte this type of memory box, we can also put
information in. If there is an item of information already in the box
when something new is put in, then the original item is lost.

It is rather like a cassette tape: when a new recording is made on
on it, what was there before is erased. Also, like a cassette tape, this
type of box can be ‘emptied’ so that there is virtually nothing in it
at all - its contents are erased.

This type of box is used to store our information on a ‘temporary’
basis, although ‘temporary’ can mean as long as we like.

The computer term for a collection of these boxes is Random
Access Memory or RAM for short. That’s because you can look in,
put in and change the contents of each box ‘at random’ or at will.

Within the CM Model of Organiser II there are 8,192 such boxes,
while in the XP Model there are 16,384. Most of these boxes are
available just for your own use — to keep your records, your Diary
information and so on. However, the Office needs some of the boxes
for its own ‘housekeeping’ purposes,
because it too needs to save information on a ‘temporary’ basis, It
cannot, use the ROM look-in only memory for that.

The small snag with this type of memory box is that it needs a
power supply to keep it ‘active’. No power supply, no RAM memory.
That's why Organiser II has been provided with a small reservoir of
power for when you change batteries — to give you adequate time to
make the change without losing all your valuable information.

For both Models of Organiser II, the first address of these
memory boxes is 8,192. The Office also has another small chunk of
RAM all to itself, at addresses from 64 to 255. It will look into the
box at address 164, for example, to find out whether the internal
sound system should be ‘muted’ - i.e. should it make a noise for an
Alarm call or not. There may be times when you don’t want your
Organiser to make a noise — when you're at a meeting or the
theatre, for example — and by altering the information at this
address, you can make your wishes known. (See vour Handbook,
Page 151).

Generally speaking, the boxes at the addresses from 64 to 255
should be used only when you wish to change the way that
Organiser Il operates — and even then, they should be used with
great caution. In any event, they can be accessed only by writing a
program,

In practice, you need not worry about the addresses of the
memory boxes at all until you become an experienced programmer.
Organiser II knows exactly where to put information on your
behalf, and it can tell you where that information is, when you
really need to know. The important thing is that it knows where the
information is, and can find it again the moment that you need it.
Comforting thought.

1.2 The Memory Boxes

‘Put-in, look-in, lock-up’ boxes

This is the type of memory box to be found in the Datapaks. It
combines some of the features of the two memory boxes discussed so
far. You can put information in one of these memory boxes, and you
can [ook in to see what is there. But once the information is in, it
cannot be changed by Organiser II. So to all intents and purposes,
once the information has been put in, it is there for good. Well,
almost for good.

If the information that you put into this memory becomes out of
date — a friend’s address or telephone number changes, for example
— then when you enter the new, correct information, you lock up the
boxes with the old information in, and the new information goes
into a new set of boxes. Once the boxes are locked up, you cannot
look into them any more.

So what is the benefit of having this type of memory? Quite
simply, it doesn’t need a power supply. The information the boxes
contain remains good and true, even when the Datapak is removed
from Organiser II.

This means that there is no limit to the amount of memory you
can plug into your Organiser. You could, for example, keep all your
personal addresses on one Datapak, and all your business contacts
on another. A third could contain details of your stamp or record
collection, or your own proven programs. You simply plug in the
appropriate Datapak when you want access to the information it
contains.

A guestion arises. If this type of memory gradually gets used up
as up-to-date information replaces old, doesn't there come a time
when the good information occupies only a comparatively small
number of boxes but, because of all the locked-up boxes, there's no
room for more information?

Yes. But all is not lost.

The good information can be transferred to a fresh Datapak (or
even into the Organiser II's RAM memory, if there's room), and the
old Datapak can then be ‘wiped’ absclutely clean of everything that
it contains, so that it can be used again as good as new. This
‘wiping clean’ process is achieved by exposing the Datapak to
ultra-violet light (with its protective label removed) for thirty
minutes or so. A special unit is available for performing this
operation: if your dealer doesn't have one, then Psion will do it for
you for a nominal handling charge.

When you plug in a brand new or ‘cleaned up’ Datapak, Organ-
iser Il knows immediately that it is completely blank and auto-
matically prepares it to receive information — a process called
sizing. This simply means organising the Datapak so that the
information can be put in correctly on your behalf, and it takes
only a few moments. You will see a message on the screen to the
effect that sizing is being undertaken.

In computer language, the type of memory we have just been

9



How Organiser works

discussing is called Erasable Programmable Read Only Memory, or
EPROM for short.

The type of memory to be found in the Program Packs is virtually
the same, but of course, you cannot ‘lock-up’ the boxes: there would
be nothing to gain if you could, only everything to lose. The
putting-in — of program information - has already been done for
you. So as far as you are concerned, a Program Pack effectively
contains lock-in boxes only.

What goes into the boxes

As far as we are concerned, all three types of memory box store
information the same way.

It would be nice to think that one memory box contains a specific
‘chunk’ of information, such as an address or a telephone number.

It doesn't.

It doesn’t even contain one ‘word’.

All that any memory box in Organiser II can hold is a number
between 0 and 255. Moreover that number, whatever it is, can
represent an instruction or part of an instruction, it can represent a
character such as the letter ‘A’ or the figure ‘3’, or it can represent
part of a value — that is, an actual number which is to be used for
mathematical operations such as adding, subtracting, multiplying,
dividing and so on. (The reason why computers need to know the
difference between numbers as characters and numbers as values
will be made clear later on).

This raises several questions: how can a number represent an
instruction, a character or a value — and how does the Organiser
know the difference (numbers are, after all, just numbers)? And
why is 255 the largest number that a memory box can hold?

Understanding the answers to these questions is fairly important
when learning to program the Organiser II. The rest of this Chapter
is devoted therefore to providing the answers, starting with why
the number stored in any one of Organiser's memory boxes cannot
be higher than 255,

Computers count differently

One of the most difficult things for many people to get to grips with
during their introduction to computers is the fact that computers
have a different way of ‘counting’. In our normal, everyday life, we
use the decimal system of counting. That simply means we have ten
' different numbers to count with-0,1,2,3,4,5,6,7,8,and 9,

Computers have only two numbers to count with,

This is because it is far easier to have devices with two states
than it is to have devices with ten states. Take an ordinary switch,
for example. This can be off, or it can be on. If we say that when the
switch is off it represents the value ‘0', and when it is on it

10

1.2 The Memory Boxes

represents the value ‘1’, we have a simple way of representing the
values 0 and 1: for ‘0’, we can set the switch to off, and for ‘1’ we can
set the switch on.

Not very much use,

However, we can now add a second switch. We can say that when
this second switch is off it represents ‘0, and when it is on it
represents ‘2. Now, by using both switches, we can represent the
the values 0, 1, 2 and 3. Thus:

The ‘2’ switch The ‘1’ switch
OFF (=0) OFF (=0) represents 0
OFF (=0) ON(=1) represents 1
ON(=2) OFF (=0) represents 2
ON(=2) ON(=1) represents 2+1= 3

Without being too boring, we can add yet a third switch, to
represent ‘0’ when it is off, and ‘4’ when it is on. Now, with these
three switches, we can represent numbers from ‘0’ to ‘7". For
numbers ‘0’ to ‘3’ this new switch would be off. Then, for numbers
‘4 to "7

‘4’ switch 2’ switch ']’ switch
ON (=4) OFF OFF represents 4
ON (=4) OFF ON(=1) represents 4+ 1= 5
ON(=4) ON(=2) OFF represents 4+ 2= 6
ON(=4) ON(=2) ON(=1) represents 4+ 2+1= 7

We can continue, the same way, until we have eight switches,
representing the numbers 128, 64, 32, 16, 8, 4, 2, and 1 respectively
when they are on. With all of the switches on, the number they
represent is 255 (i.e 128, 64, 32, 16, B, 4, 2 and 1 all added together).

By setting these switches on or off in different combinations, we
can represent all the numbers between 0 and 255.

(Congratulations. You have just mastered the basics of the
Binary Code!).

As you will gather, one of the Organiser IT's memory boxes effect-
ively contains eight ‘switches’: the way the ‘switches’ are set
determines the number contained in the box.

But why use only eight switches — why not use ten, say, to allow
us to represent even higher numbers? Just as we have seen how
binary is a convenient counting system for computers to use, so
eight is also a convenient number in computer technology. In larger
computer systems, the memory boxes have 16 or 32 ‘switches’ -
always multiples of eight.

Each of the ‘switches’ in one of our memory boxes is representing
a Binary digit, or Bit for short. Hence the Organiser Il is called an
eight-Bit machine.

The block of eight ‘switches’ in a memory box are called a byte.

11



How Organiser works

(Taken together, the first four ‘switches' and the last four ‘switches’
are each called a nibble. Don't ask!).

As you know, the abbreviation ‘k’ (short for ‘kilo’} usually stands
for 1000. In the world of computers, *k’ actually stands for 1024. So
when you see that a computer has a memory of 8kbytes, it means it
has roughly B000 memory boxes, or, to be precise, it has 8,192
(8x1024) memory boxes.

We need not delve any deeper into the way computers count
(sighs of relief).

Storing ‘characters’

In Chapter 1.1, we saw that within Organiser II there are several
‘Special Departments’. One of these departments is effectively a
library of patterns. Each pattern in the library is different, and
defines the ‘shape’ of a character, as it appears on the screen.

Each pattern is identified by a number: pattern number 65, for
example, defines the shape for the capital or upper-case letter ‘A’,
pattern 97 1s for the small or lower-case letter ‘a’, and pattern 51
defines the figure '3'. (The Organiser cannot use this pattern
number for calculations - and so the value ‘3’ has to be stored
differently). Within Organiser II's ‘library’ there are 192 predefined
patterns, numbered from 32 to 127 and from 160 to 255 inclusively.

When the number stored inside a memory box represents a
character, the Office in effect sends a messenger off to the library to
look up the corresponding pattern for printing on the screen.

The keyboard of Organiser II allows you to access 79 of these
patterns: the upper and lower-case letters, as printed on the keys,
the numbers and symbols, as printed above the keys, and SPACE -
which is really just a blank pattern, When you press a key, it
actually passes a number to the Office. If the information you are
entering at the keyboard is to appear on the screen, then the Office
sends off the messenger to look up the corresponding pattern, and
that pattern is then reproduced on the screen in the appropriate
place.

This happens, for example, when you are entering information
that you wish to SAVE as a record.

If you'd like to see what number is associated with each key - and
hence with each pattern - do the following:

a) Switch on your Organiser [, and select CALC.

b) Press the SHIFT and NUM keys together, to select 'letter’
inputs. (Your Organiser automatically chooses 'number’ inputs
when you select CALC).

c) Type in the word GET, and then press the EXE key. (‘GET' is
one of the Organiser II's programming words which we will come
to later. It tells the Office to send a messenger to the keyboard to
wait for a key to be pressed, and then to report back the
corresponding pattern number. In this instance, it reports the
number to the screen).

12

1.2 The Memory Boxes

d) Press any key. The number corresponding to the pattern for the
key pressed will appear on the screen. For example, if your
Organiser is set for CAP letters, pressing the A key will cause
the number '65' to be printed on the screen. If it is set for
lower-case letters, pressing the A key will cause the number 97 to
be printed on the sereen. If you set the keyboard for NUMbers,
pressing the A key will cause the number ‘60’ to be printed on the
screen — this being the number for the *<* pattern.

e) To try out another key, press EXE, which takes you back to
CALC:GET, then press EXE again, to execute the instruction,
then press the key you wish to see the pattern number for.

If instead of pressing one of the ‘character' keys you press one of the
‘control’ keys {one of the keys marked with an arrow, for example) you
will stil] get a number displayed on the screen. These 'control key
numbers have a special and useful significance when you are writing
your own programs: they enable your program to detect, for example,
when a specific ‘control* key has been pressed,

When vou are ready to switch off, simply press the CLEAR/ON key
two or three times, to return to the main Menu, then press O, or select
OFF using the cursor keys and press EXE,

Earlier, it was stated that there are patterns associated with every
number from 32 (the SPACE or blank pattern) to 127 and from 160 to
255. But you can ‘get at’ only 79 of these directly from the keyboard.
You can get any of the others printed on the screen through a
progrem. The full set of characters is shown in the Appendix.
15$hat about patterns for the numbers from 0 to 31, and from 128 to

Part of the ‘library’ is allocated to you, so that you can define
your own patterns. You can create up to eight patterns for your
own use — and these have numbers from 0 to 7. You need a program
to enter the patterns you require. But note that the patterns you
define are lost whenever the Organiser II is switched off. So if you
want to use your own patterns in one of your programs, you must
arrange for those patterns to be defined as part of the program, (to
save you from entering them afresh each time you use the program).
A program to define and save character patterns for subsequent use
1s given in Chapter 3.18,

This still leaves no apparent patterns for numbers from 8 to 31
and 128 to 159. The reason is that these numbers are reserved for
use by the Organiser II. Of particular interest are the ‘patterns’
associated with the numbers 8 to 15; these are called control
characters, since they each control, in some way, what happens on
the screen. The ‘pattern’ associated with number 8, for example,
moves the cursor on the Organiser's screen one place to the left,
and deletes any character on the screen in that position.

The ‘pattern’ for number 16 is, in effect, an instruction to the
Organiser to give a short ‘beep’ on the sound system,

_Al_] the control character pattern numbers can be ‘called’ from
within a program, in the same way that the characters unreachable
from the keyboard can be called. The remaining numbers, from 17
to 31 and from 128 to 159, need not concern us at all.

13



How Organiser works

One other point should be made while discussing the patterns
associated with numbers. There is an internationally recognised
‘code’ for the numbers from 0 to 127, called ASCII. This stands for
‘American Standard Code for Information Interchange’. It ensures
that there is some kind of compatability between devices that may
be connected together. For example, if you connect your Organiser
II to a printer through the optional R5232 connector lead, the
printer will produce the same pattern for each number (from 32 to
127) as the Organiser. (What a mess-up if it didn’t!). The numbers
below 32 are recognised as ‘printing control’ instructions.

Storing instructions

We have already seen that some of the numbers that are stored in a
memory box to represent ‘patterns’ are, in fact, ‘instructions’.
Pattern number 16, for example, isn't a pattern at all — but an
instruction to give a short beep on the internal sound system.

These instructions are quite different from the second meaning a
number can have when stored in a memory box.

Without going too deeply into the subject, the Office works
entirely in numbers from 0 to 255. It ‘speaks’ numbers the same way
that we speak words. Its ‘language’ is purely and simply numbers.
An instruction for the Office to do something may consist of one or
more numbers.

Each of the numbers in any one specific instruction will be stored
in consecutive boxes. In the main, a series of instructions occupy
consecutive boxes too.

Take for example two basic instructions, the first of which
occupies three boxes. The first box of this instruction could contain
a number which tells the Office that it must look at the information
held at a specific address, and hold on to if. The next two boxes of
the instruction will tell the Office what that address is, in its own
language.

The next boxes could then contain an instruction which tells the
Office what to do with the information it is currently holding. It
might be an instruction to display the information on the screen: if
this is the case, the information it is holding — a number, remember
—is regarded as a character and, in crude terms, a messenger is sent
off to look at the pattern associated with that number. The pattern
so found is then sent off to be displayed on the screen.

This is, of course, an extremely simplistic view of how the Office
treats the numbers it finds in the boxes as instructions. Its
‘language’ contains hundreds of different instructions, most of
which occupy several consecutive boxes. Even as programmers, we
don't need to know this language - or even understand it any
further. Only when you enter the realms of machine-code pro-
gramming do you have to get to grips with what all the numbers
mean. The good news is, that's something you need never bother to

14

1.2 The Memory Boxes

do. As we shall see later on, the Organiser provides us with a
special lﬂnguage*‘called OPL (Organiser Programming Language),
to enable us to write programs in a way that twe can understand,

Storing Values

There will be many times when you want to store or use a number
as an actual value — when performing a calculation, for example.
What's more, you will in no way want to be limited to numbers
between 0 and 255 — which is all that can be stored in a memory box.

Values are treated differently from characters when they are
stored: they have to be stored in such a way that the Organiser can
manipulate them to do what you want — add, subtract, multiply,
divide and so on.

Consequently, they are stored in a special way, occupying two
boxes or eight boxes, depending on the type of value being stored.

Whole numbers or values without a decimal point (e.g. 1234) are
called infegers, and always occupy two boxes, even if the number is
only ‘1’. Values with a decimal point in them somewhere (e.g. 12.34)
are called floating point numbers, and always oceupy eight boxes.

When you are using Organiser II's calculator, the type of number
used is always floating point - even though you may be working
with whole numbers. The only time you have to be aware of the
difference between floating point and integer numbers is when you
are writing programs — and when you are perhaps using those
programs while Organiser is in the CALCulator mode.

We will be returning to this subject when we examine ‘variables’
in the section on Programming.

Instruction, Character or Value?

We have now seen how a memory box contains a number from 0 to
255_, and we have seen how that number can represent a character,
an 1nstruction (or part of an instruction), or part of a value.

Now, how does the Office know which is which?

By just looking into the box, it doesn’t.

It is told to regard the contents of a box as a character or part of
a value by an instruction. A typical instruction, in plain English,
might be:

Display consecutively on the screen the patterns for the
numbers you find in boxes 8554 to 8560.

Clearly, the numbers in boxes 8554 to 8560 represent characters —
they may be the seven letters of a friend’s name, or his telephone
number. However, should the Office for some reason look into one
of the boxes 8554 to 8560 for an instruction, then things could g0
very wrong indeed.

15



How Organiser works

Fortunately, we need not concern ourselves with this problem:
the Office is organised enough for such an error not to occur. Only
if you program in machine code, or if you misuse some of the words
in OPL (those which allow you access to the Organiser’s operating
system), is the problem likely to arise: don’t worry, you will be told
which are the ‘danger’ words!

Similarly, the instructions to the Office could have been some-
thing like

Display on the screen so that we can understand it, the
integer value to be found in boxes 8561 and 8562.

In this instance, the Office knows it must first convert the actual
value contained in the boxes to the characters for that value, before
displaying them on the screen.

Suppose, for example, that the two boxes contain the integer
value 4567. The Office converts this value into four ‘character’
pattern numbers - to give the patterns ‘4’, '5’, ‘6', and *7" — and then
1t displays these patterns on the screen. So we see, on the screen,
the number ‘4567'. This is the display of a number that can be
manipulated mathematically.

Don't panic! The Office handles all this kind of conversion work on
your behalf - for floating point numbers as well as integer numbers,
so you don’t have to worry about it. And as we shall see when we
start programming, telling the Office what you want it to do is
much easier than the foregoing paragraphs might imply!

Summary

In this Chapter we saw that there are three types of memory box,
and that all memory boxes hold numbers between 0 and 255 which
can represent instructions, characters or values. To sum up:

The three types of memory box are

a) ROM - look-in only boxes whose contents are never lost and
cannot be changed. They contain information for the oper-
ation of Organiser II.

b) RAM - put in, look in and change boxes, which hold the
information we want to keep, and which need a power supply.

c) EPROM — put in, look in and leck up boxes, which are to be
found in the Datapaks. These boxes don't need a power supply,
but the information that’s put into them cannot be removed or
overwritten by the Organiser.

16

1.2 The Memory Boxes

The numbers contained in memory boxes:

a)
b)
c)
d)

e)

Can only be from 0 to 255.

Can represent an instruction or part of an instruction.

Can represent a character pattern number, to be displayed on
the screen, for example.

Can represent part of an integer or floating point value, for
mathematical manipulation. ’
The Office assumes that the contents of a memory box
represent an instruction or part of an instruction unless it is
told” otherwise. You do not have to worry about ‘telling’ the
Office: the Organiser handles it on your behalf.

17



1.3

FOLLOWING INSTRUCTIONS

The Jolly Instruction Man

So far, we have seen that the major components used in the
operation of Organiser Il are memory boxes (by the thousand), an
Office, a keyboard and a screen.

During the description of these, brief reference was made to a
‘messenger’. This was, of course, an analogy - a convenient way of
explaining how information is passed from one place to another
within the Organiser. We are going to continue with this analogy,
since it makes the way Organiser works easier to understand
without getting into deep technical detail.

The ‘messenger’ is a carrier of instructions and information. He
doesn’t really exist, but since we have created him, we shall give
him a name ... the Jolly Instruction Man, or JIM for short. He
travels about inside the Organiser (and into the Datapaks and
Program Packs, when necessary), at lightning speed. He gets all of
his instructions from the Office, which is in complete control of his
actions. When we want the Organiser to do something for us, the
Office controls what we want done, and JIM does the running
around.

JIM is unique to this book: don’t expect to find reference to him
elsewhere, and don’t expect computer buffs to know anything about
him. As mentioned earlier, he has been created simply to help you
understand the inner workings of computers in general and Organ-
iser I in particular.

The Translation Service

The kind of instructions that the Office needs are extremely
explicit: every small step has to be spelled out in detail. And in the
Office’s own language (this is called machine code).

Happily, we do not have to know this language in order to give
the Office instructions - that is to say, to program the Organiser. A
‘Translation Service’ is also built in to the memory system to help
us. It’s one of the ‘Special Departments’ mentioned in Chapter 1.1

All we need to learn is the instruction language that the Trans-
lation Service understands. This language is called OPL (Organiser
Programming Language), and just one 'word’ in in it is translated
into a whole series of instructions that the Office can understand.

Surprisingly, perhaps, the translated version can take up less

18

1.3 Following Instructions

room in the Organiser than the original OPL version — which can be
discarded once it is known that the program works to our complete
satisfaction,

However, it should be noted that the Translation Service works
only one way — from the OPL instructions to the Office’s own
language. The language used by the Office cannot be translated
back to OPL. So once the OPL instructions have been discarded,
there is no easy way to change the program. The instructions in the
Office’'s own language can also be discarded, of course, and a
completely new OPL program written and translated — but it is
obviously best to make sure your programs work exactly the way
you want before discarding the OPL version.

Since we need to learn the language the Translation Service
understands, the way Organiser II works will be discussed in terms
of the instructions in that language (OPL), rather than in terms of
the language the Office understands.

Where is the next instruction?

'_[nside Qrganiser II there are over 32,000 memory boxes containing
instructions. These are the ROM boxes. If you have a Program Pack
connected, there could be many thousand more boxes containing
instructions. And when you write your own programs, there’ll be
even more boxes just filled with instructions.

~ The Office needs to know where it is going to get its next
instruction from.

Consequently, inside the Office there is a special compartment
which contains an address. This address tells the Office which
memory box holds the next instruction. (Every box is identified by
an address number, remember).

This special compartment is called the Program Counter: the
Office (or CPU) in every computer has a Program Counter.

When power is applied to the Organiser for the first time, the
Program Counter has nothing in it — or, to be more precise, it is
pointing to the box with an address of zero. The Office immediately
sends JIM off to that box, to get the first instruction. From that
moment on, things are really buzzing, The sequence of instructions
that follow can be regarded as ‘housekeeping’ - getting the Organ-
iser ready for work. This sequence is performed only when a battery
15 connected for the first time (or if it is connected after there has
been a long break in the supply), and when you RESET the Organ-
iser from the main Menu.

It takes just a fraction of a second.

Ultimately, the Office reaches an instruction which, in effect,
tells JIM to go to the keyboard and wait for the CLEAR/ON key to
be pressed. So far, nothing has appeared on the screen. As far as
you are concerned, the Organiser is ‘switched off’, As far as the
Office is concerned, it now has work to do ... keeping the Clock
information 'up to date’ for example.

19



How Organiser works

A lot of the work that the Office does goes on ‘in the background’
— virtually independent of anything we want it to do for us. The
Office does this work when the Organiser is switched off as well as
when it 1s switched on.

Before going any further, let us take a brief look at some of these
behind-the-scene duties that the Office has to tackle.

Excuse the interruption

Another of the Special Departments referred to in Chapter 1.1 is, in
essence, a counting device. It counts hundreds of thousands of
times a second at a fixed, precise rate. Whenever it reaches a
certain number, it effectively ‘rings a bell’ in the Office.

It will ‘ring the bell’, for example, when the counting has been
going on for exactly one second.

The Office acts on this news immediately. Whatever it is doing at
the time, it stops doing it. Even if it is in the middle of an important
calculation for you, it stops ... for a split second.

Tt has been ‘interrupted’.

As we have already seen, the address of the next instruction that
the Office has to perform is kept in a compartment called the
Program Counter. The Office manager takes that address out of the
compartment, and puts it temporarily in a safe place.

He then puts another address in the compartment, and sends JIM
off poste haste to get the instruction to be found in the memory box
at that address.

Every time JIM returns with an instruction, the address in the
Program Counter box is changed - usually to the next consecutive
memory box number. (The instruction JIM brings back could tell
the Office to put a completely different address in the Program
Counter compartment).

As a result of the instructions brought back to the Office, JIM
will be sent all round the Organiser performing specific jobs. In the
particular instance currently being discussed, JIM will be sent to
the memory boxes containing the latest information about the fime.
He will add ‘one’ to the contents of the box holding the second
information and, if necessary, will be told by the Office to also
change the minute, the hour, the day of the week, the month and
even the year information.

He takes only a few millionths of a second to perform this task.

When he returns to the Office, reporting that all these duties
have been done, the Office manager retrieves the instruction
address previously put in a safe place, and pops it back into the
Program Counter compartment, JIM then carries on where he left
off when he was so rudely interrupted ... zooming off to get the next
instruction from the specified address.

The result of all this activity is you have the correct time and
date information available whenever you want it. And as it all
happens so quickly, you're never aware that it's going on in the
background.

20

1.3 Following Instructions

There are two other ‘interruptions’ that should be mentioned. The
first of these concerns any Alarm calls you may have set — either
using the Diary or the Alarm function. Every so often — about ten to
twelve minutes —- the Office work is interrupted so that JIM can go
looking around the Diary and the Alarm memory boxes, to see if an
Alarm call is required during the next ten minute period.

If there is, JIM reports back to the Office that an Alarm call is
required in s0 many minutes time. The Office makes a note of the
fact (in effect), and when the appropriate time comes, again stops
what it is doing, saves the contents of the Program Counter, and
sends JIM off on another series of errands that ultimately result in
providing you with the required message. If necessary Organiser IT
will be switched on, and the sound system will beep to draw your
attention to the fact that there is a message on the screen — your
Alarm call.

When you press the CLEAR/ON key - to clear the Alarm - the
Office manager again retrieves the saved address of the next
instruction and pops it back in the Program Counter compartment.
So if you were in the middle of using Organiser IT for something
else, you will be returned to where you left off. If Organiser II was
off when the Alarm call occured, it switches off again. )

The other type of interruption you should know about concerns
JIM waiting at the keyboard for something to happen. The Office is
well aware of the fact that all the time Organiser II is switched on,
it is using more power than when it is switched off,

If JIM waits at the keyboard for more than about five minutes
with nothing happening, he gets pretty bored, and assumes you
have found something else to do. So he sends a message back to the
Office and the Office says, “0.K,, let's leave everything as it is, and
awitch off”’.

Apart from his forays to up-date the Clock and check for Alarm
calls, JIM can now rest by the CLEAR/ON key, waiting for you to
switch on again. When you do, the Office recalls everything the
way it was when it switched off on your behalf, so you can pick up
exactly where you left off.

All pretty clever stuff.

What would you like to do?

Let us start by taking a look at what happens when you first switch
on Organiser IT — the moment JIM has been waiting for at the
CLEAR/ON key.

 As soon as you press this key, JIM reports back to the Office. He
is immediately sent off again to collect the main Menu information
for printing out on the screen. This Menu information is held in the
RAM memory boxes (the put-in, look-in and change boxes), so that
you can change it, if you wish, to suit your own purposes.

21



How Organiser works

Once JIM has seen to it that the Menu is on display, he is told by
the Office to sit and wait by the keyboard for you to make your
selection.

In effect, he is holding up a placard of options, and is saying to
you, “Pick one".

He gives you two ways of choosing the option you require.

If you type in a letter - be it a capital or lower case letter — he will
look through the words on the Menu to see if any of them start with
that letter. If he finds just one of the Menu options starting with
that letter, he will assume that is the option you want, and
immediately arranges (through the Office)} for the facility you
selected to be provided. If on the other hand there is more than one
word on the Menu starting with the letter you select, he will move
the cursor to the first of them: each time you press the letter again,
he moves the cursor on to the next Menu word beginning with that
letter. In these circumstances, he waits for you to press the EXE
key to select the option you want.

The second way you have of selecting an option is to use the
‘arrow’ or cursor keys to move the cursor around the screen until it
is ‘on’ the first letter of the option you want. Then, pressing the
EXE key selects that option.

As mentioned earlier, the words of this main Menu are stored in the
RAM boxes, 50 that you can change them around, add to them or
remove them to suit your own purposes. When you write a program,
if you want to have that program as one of the options on the main
Menu, you can. We'll see how to do this later on. The only word on
the main Menu the Office will not allow you to remove is OFF
because, obviously, without that option you would not be able to
switch Organiser I1 off.

Some of the options on the main Menu, when selected, will
provide you with a further set of options. If you select PROG, for
example, you will be put into the Organiser II's PROGramming
‘mode’, and you will be given the choice of writing, editing, testing
— and so on — one of your own programs. These further Menus, when
part of the Organiser's built-in facilities, are stored in the look-in
only memory (ROM), and cannot be changed or altered in any way.

The Organiser’s Programming Language allows you to create
Menus for use in your own programs. You could, for example, build
up a conversion table — centimetres to inches, litres to gallons and
so on — and have the options available on a Menu.

Whenever an option on ane of the Organiser’s own built-in Menus
has been selected, JIM is sent off to examine a special list which
gives a memory box address for each option. That address is then
brought back to the Office and placed in the Program Counter
compartment. If you select the Diary, for example, the address of
the first memory box containing the set of instructions associated
with the Diary application is popped into the Program Counter

22

1.3 Following Instructions

compartment. JIM is then sent off to get those instructions.

When you create a Menu in one of your own programs, things
work a little differently. You need to tell JIM what you want him to
do when one of your options has been selected — all he will do is
return a number relating to the position of the selected option
within your Menu. Your program will use that number to decide
what JIM must do next. This will be discussed more fully in Part 3
of this book.

Saving and Finding

One of the powerful built-in features of Organiser II is its ability to
SAVE information you wish to keep, and to FIND it again with only
a small clue as help. This feature involves something called a file in
the Organiser and, since you can write programs to create your
own, separate files, it is worth examining how Organiser performs
this task.

A file is simply a group of records. You can create up to 110 files
within your Organiser (and on any Datapak) - memory space
permitting -~ when you write and use programs. However, each file
must have its own, individual name, to identify it from other files.
You may wish to create one file for club members, with details of
their addresses and subscriptions, another file for your domestic
accounts, yet another for details of a stamp or record collection.

One file is automatically created by the Organiser — so that you
can save information straight away, either in the Organiser's RAM
memory or on a Datapak, without having to write a program. This
file is called ‘MAIN’,

A record is one ‘group’ of information within a file. It may be one
club member's name and address, his or her club membership
number, subscription rate — and whether or not it has been paid,
and any other pertinent details.

If you were to write all these details on a card, such as may be
found in a card index system, you would probably organise it so
that each item of information occupied a specific area on the card.
For example, you might put all the subscription information in a
bottom corner so that you could quickly flick through and see who
has or hasn’t paid, or so that you could add up all the subscriptions
to see what the total should be.

The records in an Organiser file are arranged in a similar way —
the individual ‘areas’ are called fields. And, just as with the index
cards, any desired ‘field’ or ‘area’ of all or any of the records can be
searched and analysed for specific information. All of that is
achieved through a program.

Each of the records in the Organiser’s MAIN file have just one
field. Nevertheless, this file still provides an extremely useful and
powerful record-keeping facility: it can be used, for example, to
carry all the information you might otherwise keep in an address
book - names, addresses, telephone numbers, birthdates, whether or

23



How Organiser works

not the person is a plumber or a doctor, whether or not you wish to
send Xmas cards to that person, and so on. All of this information
can be kept in just one field of a record, the only proviso being that
no more than 16 lines of information are used, and the total length
of the record is not more than 254 characters (including ‘spaces’).

Let us assume that you are creating an address book file such as
this, using the Organiser’s MAIN file — i.e, using the SAVE and
FIND options from the main Menu.

When you select SAVE, the first thing the Organiser needs to
know is where you wish to save your information. If you don't have
a Datapak connected, you have no option. If you do have a Datapak
connected, however, you have the option of saving your inform-
ation in the Organiser's RAM or on a Datapak. Either way, the
display is cleared and the words

SAVE A:

appear on the screen. The ‘A’ here is telling you that the Office is
currently expecting you to save the information in the RAM
memory boxes of Organiser: if you want to save onto a Datapak,
you press the MODE key the appropriate number of times — so that
the screen reads SAVE B: for the upper Datapak, or SAVE C: for the
lower Datapak. If a Datapak isn’t connected, the Office won’t give
you the corresponding option (for obvious reasons!).

Having selected where you wish to save your information, you
now type it in, perhaps using the top line for the person’s name, the
next line for the ‘phone number, the next line for the address (it
doesn’t matter if it takes up more than the screen’s width — the
information will ‘scroll’ to the left as it is entered), and so on, up to
a maximum of sixteen lines or 254 characters.

Every time you enter a character, JIM rushes off with it and
stores it temporarily in a safe place (called a buffer). If you make a
mistake and go back to correct your error, JIM nips away to make
the same correction in the ‘safe’ place. Then, when you are happy
yvou have entered all your information correctly, the EXE key is
pressed. This says to JIM — “0.K, that’s it, go and save it properly".

JIM now goes to where all the information was kept temporarily,
and transfers it into the MAIN file as one record.

Further records are added in the same way.

The situation is fairly similar when you wish to FIND one of the
addresses — or any other item of information you have stored away
in the MAIN file.

When you select FIND on the main Menu, the screen display
switches to

24

1.3 Following Instructions

FIND A:

As before when SAVE-ing information, the Office now needs to
know where to look for your information — in RAM (‘A’), or on a
P.Ellltg?ak (‘B or ‘C’). And just as before, the MODE key is used to
ell it.

Having told the Office where you want it to look, it now needs a
clue as to what it should look for. Let us suppose you wish to locate
all the people you know with birthdays in January - and assume
that you entered birthdates in the form 3/5/80 — where the month is
the middle number.,

With this system, January could be identified by ‘/1/' — the two */’s
being necessary to differentiate the month number from any other
number that may be in the file.

So, you would type in at the keyboard so that the screen looked
like this (assuming your information is in RAM and not on a
Datapak):

FIND A:/1/

Pressing the EXE key now sends JIM off to the MAIN file on the
designated 'Pack’ - in this instance the RAM of Organiser II - and
he meticulously examines every record to find the character
sequence that you have asked for - ‘/1/’. As soon as he finds a
match, he brings back the entire record — and displays it on the
screen. (You won't have to wait more than a fraction of a second —
JIM has eyes like a hawk). You can now use the cursor keys to
examine each line of the record.

Meanwhile, JIM is waiting at the keyboard to see whether you
want another record to look at, or whether you have finished. If
you want another record, you'll press EXE again — and off JIM will
go, looking through the file from where he left off, and displaying
the next record that meets your requirement when finds it. When he
gets to the end of the file — with no more records to look through, he
will tell you:

AERB SR I NEREE N

*f-END QF PACKI..

[f you wish to stop looking at some point, then pressing the
CLEAR/ON key tells JIM you've had enough, and he puts away his

25



How Organiser works

searcher’s hat and gets the main Menu displayed again on the
screen, ready for your next instruction.

Using the Calculator

When the CALC option is selected from the main Menu, Organiser
IT is set to provide facilities that emulate a powerful calculator.
However, unlike an ordinary calculator, the screen display shows
you what you are doing: the entry you make remains on the top line
of the screen while the answer appears on the bottom line.

While you are using Organiser II as a calculator, JIM is in effect
obeying your instructions as you enter them. The first thing he does
is to reset the keyboard so that pressing the keys produces the
‘number’ characters — that is, the characters printed above the keys.
That's because he knows that most of your entries will be numbers
or mathematical symbols. Pressing the SHIFT key together with
one of the letter keys will tell JIM that you want that letter, not the
number character.

When you enter a calculation, as mentioned above, it appears on
the top line of the screen — scrolling to the left if necessary to get all
of your calculation on one line. The details of your calculation are
stored by JIM in a safe area — the same as when entering inform-
ation that you wish to SAVE. This means that you can go back and
put right any mistakes you may have made in your calculation
entry, using the cursor keys and the DEL key.

As soon as you press the EXE key, JIM goes to the safe place in
memory where he stored your calculation, and he follows it
through obeying your instructions. When he gets to an answer, he
displays it on the second line of the screen,

At this point, he waits to see what you want to do next. If you
press EXE or one of the cursor keys, he will assume that you wish
to make the calculation again, but perhaps this time with a mino.
change (for ‘what-if' calculations). So he clears the answer away
from the bottom line, and places the cursor marker back on the line
at the end of your calculation entry.

You can now use the cursor and DEL keys to make an alteration
to your calculation — JIM will make the same alteration in the safe
place in memory. Pressing the EXE key again sends him off to obey
the instructions as before.

Alternatively, you may wish to hold onto that answer, for use in
another calculation, perhaps. In this instance, you tell JIM by
pressing the MODE key. Organiser II allows you ten calculator
memory stores, and JIM needs to know which one you wish to use
(you're the boss). So he asks you to make a choice, by printing a
message on the top line.

M: press 0-9
=your answer

26

1.3 Following Instructions

When you’ve made a choice - by pressing one of the keys ‘0" to ‘9’ -
he then needs to know whether you want to add or subtract the
current answer from anything that may already be in the chosen
calculator memory, or whether you want to ‘overwrite’ what is
there. So he presents you with another set of options:

MO: +, - EXE.DEL
“¥our answer

You now press the appropriate key (+, -, EXE), according to your
choice. The DEL key clears the chosen memory (in the instance
illustrated above, caleulator memory ‘0°) to zero,

You can recall the contents of the memory by simply entering M
and the memory number while entering your calculation. Thus, to
multiply the contents of calculator memory MO by 2, you would
enter:

CALC:MO*2

Note that ‘calculator memory 0’ does not mean that you are putting
your information into the memory box with an address of ‘0. In
fact, to store a number used by the calculator takes up eight
memory boxes altogether, and these boxes are in the RAM area of
Organiser II. The ten memories that you can use with the Organ-
iser’s calculator are referred to as MO to M9 for convenience. They
r?}ain whatever you put in them even when you switch the Organiser
off.

When you write programs, you can put in or look into the
memories M0 to M9, without having to know what their addresses
are. This will be dealt with again later.

The really useful feature of Organiser’s built-in calculator is
that, because JIM can be sent off almost anywhere inside the
Organiser, you can ‘call up’ any of the ‘numeric functions’ that are
in the Organiser’s programming language — and you can call up any
programs you may have written yourself,

The built-in functions include practically all those you might
want for engineering calculations (SINe, COSine, TANgent and so
on). They also include a host of other functions which can be
extremely useful.

This feature of the Calculator was used earlier on, in Chapter 1.2
under the heading ‘Storing Characters’, when GET was used to find
the number of the pattern associated with a pressed key. The other
functions you can use while Organiser is set for Calculations
include HOUR, MINUTE, SECOND, DAY etc. (which give the appro-

27



How Organiser works

priate current numeric value), RND (which gives a random number
between 0 and 1), and, two interesting functions, ADDR( ) and FREE.

ADDR( ) needs, in the brackets, the name of a variable — don’t
worry if you don’t understand what a ‘variable’ is at the moment.
When EXEcuted, JIM rushes off to find the address of the first box
holding the specified ‘variable’. An example will help to explain ...
how would you like to know the first address in memory where the
Calculator memory ‘M0’ is stored? Fine, then switch on your
Organiser and select CALC. Now, remembering that you must hold
the SHIFT key down while you type in letters, enter ADDR(MO) and
then press EXE. JIM will find the address for you immediately ...
8447. If you try it again, using ‘M1’ instead of 'M0’, you'll find that
the first storage address is 8455. As mentioned above, the eight
memory boxes 8447 to 8454 are used to hold, in a special way, any
number that you decide to keep in the calculator memory MO.

While you're in the Calculator mode, clear the current entry by
pressing the CLEAR/ON key once, and then type FREE and press
EXE. This instruction asks JIM to go and find out how many
memory boxes are currently free for your use in the RAM area of
Organiser II. It will give you an exact number of ‘unused’ memory
boxes (or bytes), rather than the percentage of RAM available given
by the INFO option on the main Menu. So you can keep a precise
check on how much space you have left.

As you will appreciate, by providing you with access to a number of
functions built into the Organiser’s programming language, by
leaving on display the calculation as you entered it, and by
allowing you to go back and correct or change your calculation
entry, Organiser Il offers a far more sophisticated and powerful
‘caleculator’ than any conventional calculator.

Using the other options
The way Organiser I operates to provide the other options
available from the main Menu — or other built-in Menus for that
matter — is similar in many respects to the general outline already
given. When you have selected the required option, JIM goes off
either to get another Menu, or to display the information that you
have requested. If you select ALARM, for example, in order to set
one of the Organiser's eight internal Alarm Clocks, he presents you
with the current condition of the first Alarm (or the last one that
you used). He then waits to see if you press the EXE key to set or
reset this Alarm, or a cursor key to select another of the Alarms. If
you press EXE on a ‘free’ Alarm, he will display the current day
and time, for you to adjust as you wish using the cursor keys. And
so 1t goes on,

The operation of these other options need not concern you any
further: sufficient background has now been provided to give a
general idea of how Organiser II operates for the built-in facilities.

28

1.3 Following Instructions

What is important, however, is the way Organiser II obeys your
programming instructions, and this is dealt with in the next
Chapter.

Summary

You have now been given an idea of how Organiser II provides
some of the built-in options. To sum up

a}) A ‘Program Counter’, maintained within the Office (CPU),
contains the address of the memory box holding the next
instruction in the Office’s own language.

b) The Office work is interrupted regularly, for a few millionths
of a second at a time, to enable such functions as the Clock to
be updated.

¢) A 'Translation Service’ converts the Organiser's Programm-
ing Language — used for writing programs - into the language
the Office understands (machine code).

d) The Calculator option provides direct access to a number of
OFPL instructions and to your own mathematical programs, as
well as providing all the facilities normally expected from a
calculator.

29



1.4
OBEYING PROGRAM INSTRUCTIONS

Programs and Procedures

We have now a classic ‘chicken and egg’ situation. In order to
appreciate how Organiser II works when it is obeying the instruct-
ions of one of your awn programs, it is first necessary to understand
what a program is and how it is put together. This is given in detail
in Part 3. But to understand better how to write a program, it helps
considerably to know how Organiser II works when obeying pro-
gram instructions — which is the subject of this Chapter.

Consequently, we shall start with a brief description of how an
Organiser Il program is formed,

OPL, the Organiser’'s own programming language, is called a pro-
cedure-based lanpuage. A procedure is simply a segment of a
program — a series of instructions to undertake one particular task,
A typical task could be a calculation such as miles per gallon. That
task may be all that is required — in which case, the program
consists of just one procedure.

A procedure can incorporate two or more tasks, but generally
speaking, it is far better practice to make each procedure perform
just one task — and to keep the procedures as short as possible. This
makes writing them and testing that they work much easier.

Each procedure, when it is written, 1s given its own unique name.
One procedure can ‘call up’ another procedure by simply naming
that procedure (don't worry how that is done, at this stage). In
other words, in obeying the instructions for one procedure, the
Organiser can be ‘told’ to go and do another procedure: this second
procedure can, in turn, call on yet a third — and so on.

That is how a complete program is built up from a number of
procedures. One of the procedures may, in fact, simply ‘call up’ the
others in the required sequence. This procedure would be the one
that carries the name of your overall program.

You could have one task that is common to two or more
completely different programs. It is not necessary to re-write the
procedure for that task, with a different name, for each program
that uses it. The procedure can be written just once, and ‘called’ by
any program you choose. You can thus build up a library of
commonly used procedures for use in any program that you write:
one such procedure could, for example, shorten any number to two
decimal places, for use in programs concerned with money matters.

Making Organiser II obey the instructions of a program (or pro-
cedure) is called running a program. Organiser II gives you three
ways to select and run your program: these three ways will be
discussed first, and then the manner in which the Organiser
operates while running your program will be examined.

30

1.4 Obeying Program Instructions

Three ways to run a program

There are three different occasions when you could want to run one
of your own programs or procedures.

a) While you are programming, so that you can test that it
works.

b) While you are performing a calculation.

¢) Asanoption on the main Menu,

Organiser II allows you to run your program on any of these
occasions. H_owever, the way you tell the Organiser to run your
program is different for each occasion.

While programming. When you are writing a program procedure,
you will be in the Organiser's programming mode ~- having selected
PROG on the main Menu. In this mode, JIM — our tireless messenger
boy — presents you with another Menu, among the options of which
is RUN. Selecting this option causes the screen to be cleared and
the message

RUN A:

to be displayed. As before for the SAVE and FIND aperations, JIM is
in effect asking you to tell him where to look for the program
procedure you want to run.

The interesting point here is that, although you must specify the
location of the program procedure you wish to run, any other
procedures called by that program can be in any location. For
example, your main, controlling program could be in the RAM area
of Organiser (‘A’) - but that program could call up procedures that
are being stored on a Datapak — ‘B’ or ‘C". All you need to specify is
where the main program is - Organiser sorts it out from there.

You select the location, by repeated use of the MODE key. JIM
then waits for you to enter the name of the procedure or program
you wish to run.

If you have been editing or writing a procedure immediately
before you select RUN from the PROG Menu, JIM will assume that
you will want to run that procedure, and will save you the effort of
having to type it in by displaying its. name after the RUN A:
message. [f he's right, all you need to do is press the EXE key. If
he's wrong and you want to run another procedure, pressing the
CLEAR/ON key once will clear JIM's choice so that you can type
in the procedure name you want. JIM tries to be as helpful as
possible.

31



How Organiser works

While calculating. In this instance, you will be in the calculating
mode of your Organiser, and you may wish to call up a procedure
that you have written.

For example, you may wish to make a calculation using a
procedure you have written that will evaluate how much an item
costs without VAT added at 15%, given the price with VAT
included.

You can do this by simply typing in the name of the procedure,
followed by a colon: you do not have to specify where the procedure
can be found. The colen tells JIM that he shouldn't waste his time
looking for one of the Organiser’s built-in functions (which are, in
effect, procedures stored in the ROM memory boxes), but should
instead look into the RAM area and in any Datapak that may be
connected. He'll keep looking until he's searched everywhere, and
if he can’t find it, he’ll tell you.

Usually, if a procedure or program is to be used in calculations,
you would want to pass a value to the procedure for it to work on.
There are a number of ways to pass values to a procedure — direct
from the keyboard, through one of the calculator memories, or from
the instruction that calls the procedure. All of these methods are
discussed in the Programming section: sufficient to know here that
JIM will obey whichever method you have selected.

Whilst in the CALC mode of Organiser II, you can also run a
complete program — again, by simply typing in its name followed by
a colon.

From the main Menu. One of the valuable features of Organiser II is
that, having prepared your program, you can install it on the main
Menu that appears when you switch on. In other words, it can be
one of the options presented to you. You can make it the first
option, too, if you wish, so that all you need to do to use your
program is press the CLEAR/ON key, to switch on, and the EXE
key to select and run it.

Programs used from the main Menu do not give you the option of
passing information in via the instruction: if your program needs
information to work on, it must arrange to get that information
from the keyboard - or, less usefully, through one of the calculator
memories.

When you tell JIM to EXEcute your program from the main
Menu, he will search high and low until he finds it. Just as in the
CALC mode, you don't have to tell him where to look.

After the program has ended. Generally speaking, when a program
has finished JIM will reset the Organiser back to the mode it was in
before the program was run, If you were in the programming mode,
for example, when the program has finished he will again display
the PROG Menu of options.

However, this may not always appear to be the case: your
program may include an instruction to switch the Organiser off at

32

1.4 Obeying Program Instructions

the end of the program — or even part way through a program. JIM
will of course obey this instruction. And as always when the
Organiser is off, he will wait patiently at the CLEAR/ON key for
you to switch on again. When you do switch on, he will go back to
where he left off — either part way through the program or at the
end: if he was at the end of the program and Organiser II was in the
g;ogramming mode, he will display the PROG Menu, not the main
enu.

Running a program

JIM obeys your program’s instructions just as if they were the
Organiser’s own built in instructions. They will have been
‘translated’, remember, to the language the Office understands
during the programming process.

Virtually all of your programs will need some RAM memory boxes
- the ones you can change the contents of — in order to make
calculations and so on. The VAT program mentioned earlier for
example would be working on different information practically
every time it is used. To run such a program ‘in a Datapak’ - even
though that’s where it may have been saved — would very quickly
use up the memory boxes (once a Datapak memory box is ‘locked
up', it cannot be used again, remember). So the best place to run a
program is in RAM.

However, it is possible that your whole program is built up of a
number of procedures which, together, need more memory space
than is available inside Organiser. Such a program would have to
be kept on a Datapak.

JIM solves this problem in a clever way.

As you will see, at the beginning of every procedure that you
write, you will give instructions to JIM to reserve space for the
different pieces of information that your program will use. This
information may be numeric values the program needs for cale-
ulations, and it may well be that you will want to enter the values
from the keyboard. All the values must be saved somewhere so that
the program - and JIM - can work on them.

When a program procedure is run, JIM first of all searches for
that procedure — wherever it may be. When he finds it, he gets the
‘space requirement’ instructions and copies them into a specific
area in the RAM memory boxes. He also gets the translated program
instructions - the ones the Office understands — and copies these
into RAM memory boxes too. Even if the procedure had been saved
in RAM, JIM still copies it into a special area of RAM.

Then he starts to obey your program instructions, step by step.
One of these instructions may name or call another procedure: if so,
.:IIM goes away to get that procedure from wherever it is, and copies
1t into the special area in RAM immediately after the previous
procedure — having first sorted out the space needed for inform-
ation. He will then start obeying the instructions of this second

33



How Organiser works

procedure.

When all of the instructions for one procedure have been
completed, JIM empties the boxes those instructions occupied.
They are then available to take the instructions for any other
procedure that may be called.

A procedure that has had all of its instructions obeyed will
always be the last one to have been copied into RAM: the procedure
calling it will still have instructions in it for JIM to perform.

Thus even with a very long program — using a large number of
separate procedures — only the procedures which JIM is actually
working on are in the RAM memory at any one time. As soon as a
procedure is finished with, it is cleared out of its temporary home -
even if it is going to be called again umpteen times before the
overall program has ended.

This technique means that the number of RAM memory boxes
needed to run a program is kept to the minimum, and programs far
longer than one would expect the Organiser to be capable of
handling can be stored on Datapaks and run.

Don't worry if all of this seems extremely complicated to you at the
moment. As you get into the programming language, it will begin to
make more sense,

At this stage, it is not necessary to understand how Organiser II
obeys individual instructions in the programming language: details
will be given, where necessary, in the appropriate sections of Part
3

Summary
In this Chapter, we have seen that

a) OPL, the Organiser programming language, is procedure
based.

b) A procedure is a segment of a program (or a complete
program) performing one discrete task.

¢) One procedure can ‘call up’ another procedure.

d) A procedure, when written, can be used in more than one
program,

e) Procedures or programs can be run while the Organiser is in
the PROGramming or CALCulator modes, or from the main
Menu if the program has been installed there.

f) When a program is run, the procedures are copied as and
when they are needed, into a specific area of the Organiser’s
RAM, and erased from RAM once all the instructions in the
procedure have been obeyed.

This concludes the general overview of the main components
within Organiser II and the way that it operates. It is by no means a
complete description, nor is it fechnically precise, but is given
rather as a guide to help you better understand the programming
process.

34

PART 2

Using the built-in applications

In this part of the book you’ll find step by step
instructions and tips to help you use the built-
in applications provided by Organiser IT's main
Menu.

35



2.1
GETTING TO GRIPS WITH THE KEYBOARD

Not like a calculator

At first glance, Organiser II's keyboard looks rather like a calc-
ulator keyboard with an alphabet. However, it does not *behave’
guite like you'd expect a calculator keyboard to behave, and this
can cause some confusion in the early stages of using your Organ-
15er,

For example, although there is a + sign and a — sign, there are no
apparent signs for multiplication or division. That does not mean,
of course, that your Organiser IT cannot perform these operations.
It can - and to 12 figure accuracy, which is more than most
calculators can achieve.

Also, you will have noticed that there is a key with = printed
above it: this is not used to get the answer to a calculation, as on a
calculator. Nor will the % key produce percentage calculations.
You may also have noticed that there is a key labelled with a $ sign,
but not a key labelled with a £ sign - that does not mean Organiser
I1is intended for the American market.

The reason for all these anomalies is that the Organiser Il is a
computer rather than a calculator, and this is reflected in the
keyboard. The keyboard has been designed primarily for entering
information rather than making calculations — although calculat-
ions are achieved just as easily as with a calculator.

In many respects, Organiser’s keyboard is like a typewriter
keyboard, the main difference (apart from layout) being that most
of the Organiser's keys can produce three different characters,
rather than two. The key inscribed with the letter A for example
can produce A, a, or < (the symbol above the key).

Also note that if any key is held down for more than one second,
it will ‘automatically repeat’ very quickly indeed.

It is well worth spending a little time to become completely
familiar with the keyboard. The rest of this Chapter summarises the
use and purpose of various keys on the keyboard. Put them to the
test for yourself — this is called ‘hands on’ experience, and is the
best way to learn how to use your Organiser,

Selecting caps, lower case or numbers

When you first switch on your Organiser, the keyboard is set to
give letters - as printed in white on the alphabetic keys.

The keys you press will not produce a display on the screen until
Organiser is in a ‘mode’ that requires you to enter information —
such as SAVE or FIND. So that you can see the effects of the
SHIFT, CAP and NUM keys, switch on your Organiser (CLEAR/
ON key) and press the S key to get into the SAVE mode. The screen
should now look like this:

36

2.1 Getting to grips with the keyboard

SAVE A

(If the letter ‘B’ or ‘C’ appears after SAVE, press the MODE key
until the letter ‘A’ is displayed).

Immediately after the colon, you will see a flashing block: this
tells you that the keyboard is set to alphabetic characters, and
shows you where anything you type in from the keyboard will
appear. As you enter characters, the flashing block — or ‘cursor’ as
it is called — will move along to show you where characters will
appear next. )

Using the SHIFT, CAP and NUM keys to perform operations as
outlined in the summary that follows, experiment typing in inform-
ation from the keyboard. Do not press the EXE key — else you will
SAVE the information that you type in!

To clear any entry that you have made, press the CLEAR/ON
key once: pressing this key twice will return you to the main Menu.

Note that, if you enter more characters on one line than the line
length, the display will ‘scroll’ to the left. You can use the cursor
keys (discussed in the next section) to move about your entry or to
the next line.

The SHIFT, NUM and CAP keys function as follows:

SHIFT and NUM keys pressed simultaneously
This combination sets the whole keyboard either to aphabetic
characters (those printed in white on the keys) or to numeric
characters (those printed above all alphabetic keys), depend-
ing on the previous setting.
You would use this combination before making a large
number of numeric or alphabetic entries.

SHIFT and CAP keys pressed simultaneously
This combination switches alphabetic inputs from the key-
board between capital letters and lower-case (small) letters.
You would use this combination whenever you wished to
change from capitals to lower case or vice versa.

SHIFT plus any ‘white’ key
Using the SHIFT key simultaneously with any of the keys
carrying a white letter produces the alternative character to
that for which the keyboard has been set.

Example I: Keyboard set to alphabetic inputs.
Pressing K produces ‘K’ or ‘k’, depending on whether the
keyboard is set for capitals or lower case.
Pressing K and SHIFT produces ‘9", the character above
the ‘K’ key.

37



Using built-in applications

Example 2: Keyboard set to numeric inputs.
Pressing K produces ‘9.
Pressing K and SHIFT produces ‘K’ or ‘k’, depending on
whether the keyboard is set for capitals or lower case.

Note: For all Menu displays, the keyboard is automatically set for alphabetic
inputs (capitals or lower case, depending on previous use of the SHIFT
and CAP keys).

For the Calculator, the keyboard is automatically set for numeric
nputs,

Tip:  When entering mainly one type of characler, set the kevboard for that
character type {alphabetic or numeric), and use the SHIFT kev fo produce
the alternative characters when needed.

The cursor keys

The keys marked with arrows - pointing up, down, left and right -
are used to control the position of the cursor on the screen. The
cursor indicates where the next character to be typed will appear
on the screen. The use of the cursor keys is fairly obvious: the
RIGHT and LEFT arrow keys move the cursor one position to the
right or left respectively. The UP and DOWN arrow keys move the
cursor to the beginning of the line above or below its current
position.

Sometimes you will find that the cursor will not move past a
certain point: this means that there is no information available past
thgt point, or that it is not possible to enter information past that
point.

When used with a Menu display, the RIGHT and LEFT cursor
keys move the cursor one word at a time, so that the cursor is
always over the first letter of an option.

The RIGHT and LEFT cursor keys can also be used to control a
line on the screen when it is scrolling - that is ‘rolling’ round so
that you can see the entire entry should it be longer than 16
characters. Using the appropriate right or left key will stop or start
the scroll in the corresponding direction.

The CLEAR/ON key

Apart from its obvious use of switching Organiser II on, for the
built in applications this key generally has the effect of clearing
Organiser back to its previous state. For example, during SAVE and
FIND operations, if information has been entered from the key-
board, pressing CLEAR/ON once will clear that information from
the display. Pressing CLEAR/ON the second time returns to the
main Menu.
There are two exceptions:

38

2.1 Getting to grips with the keyboard

When editing a program
The CLEAR/ON key removes the current line only: that is,
the line on which the cursor is displayed.

When using the Diary
When the Diary is initially selected, the screen displays the
current date and time (to the next half hour segment).
From this condition, CLEAR/ON returns to the main Menu.
If editing a Diary entry:

The first press of CLEAR/ON clears that entry.

The second press clears the EDIT operation.

The third press returns to the main Menu.

The MODE key

Generally speaking, this key provides selection of the non-Menu
options available within an application. Its main uses are as
follows:

Main Menu
Pressing MODE allows you to add or replace an option on the
main Menu - if you add an option, there must of course be a
program for it in the Organiser.

Applications involving a ‘location’
The MODE key allows selection of the desired location (‘A’
for the internal RAM, ‘B’ or ‘C’' for Datapaks fitted to the
upper and lower slots respectively). If Datapaks are not
plugged into Organiser II, the selection obviously cannot be
made.

Diary applications
When the screen is displaying a date and time — pressing the
MODE key will switch the display to the DIARY Menu.

Alarm applications
Pressing MODE whilst setting one of the eight Alarms
switches on the ‘repeat’ action for the Alarm - that is, enables
the Alarm to be set to ring hourly, daily or weekly,

Time application
Pressing MODE when TIME has been selected enables the
time and date to be set or reset.

The DELete key

This key is used to delete entries from the Organiser (you guessed!).
Its use is summarised below:

On the main Menu
Pressing DEL removes the option under the cursor from the
displayed Menu. The option can be restored (by using the

39



Using built-in applications

MODE key), but while it is deleted, the option cannot be used.
While editing
When editing an entry, this key is used to delete the character
to the left of the cursor.
SHIFT and DEL when pressed simultaneously delete the
character under the cursor.
Diary applications
Apart from its use to delete characters whilst editing, the
DEL key can be used to delete a previously recorded entry,
Erasing records
In order to delete a record that has previously been SAVEd, it
is necessary to first select the ERASE option from the main
Menu, then select the record to be deleted (by repeated use of
the EXE key or by specifying a search clue as for FIND),
before pressing the DEL key.
Since deleting a record can be a drastic action if undertaken
by mistake, Organiser will seek confirmation that you want
the record deleted by asking DELETE Y/N. Pressing Y makes
the deletion, N eancels it.

The EXEcute key

This is the ‘all-action’ key. It tells Organiser II to go ahead and
perform the operation selected.

For example, after typing in information during a SAVE oper-
ation, pressing EXE will cause that entry to be stored in RAM,
After entering a ‘clue’ during a FIND operation, pressing EXE will
tell Organiser Il to go and search for the required information.
After entering a calculation when Organiser II is set to CALC,
pressing EXE will cause the calculation to be made.

Further explanation is unnecessary.

Special keys
A number of the ‘numeric’ keys have special functions when used
for the CALCulator or PROGramming applications.

The “*' key, for example, is used for multiplication (not the ‘x’
key, as you might imagine), and the '/’ key is used for division.

An explanation of the use of these keys is given in the appro-
priate sections of this book.

40

2.2

THE MAIN MENU

Switching on

When you first switch on Organiser II (using the CLEAR/ON key),
the screen will display a series of options - covering the applic-
ations immediately available to you:

FIND SAVE DIARY
CALC PROG ERASE

These are not the only options available. By using the UP and
DOWN cursor keys, the screen display will scroll to reveal further
options available. The full list of options is

FIND SAVE DIARY
CALC PROG ERASE
ALARM TIME INFO
COPY RESET OFF

TIME gives you a display of the current date and time, while
ALARM allows you to set or reset up to eight different alarms,
without repeats or with repeat periods of every hour, day or week.
These two applications are dealt with in Chapter 2.3.

The SAVE, FIND, ERASE and COPY options enable you to record,
find, change and manipulate information you wish to keep — such as
an address list with telephone numbers, birthdays and+3:} on, or
perhaps gardening information or recipes. This application 1s
covered in Chapter 2.4.

DIARY provides you with half-hour segments through to the year
2000, so that you can record appointments and so on. It also gives
you facilities for editing your entries, browsing through them,
finding a specific entry on the flimsiest of information and, perhaps
most useful of all, it allows you to set an alarm call up to 59 minutes
before all or any of your appointments. This alarm facility is quite
independent of the eight alarms provide by the ALARM option. The
DIARY is discussed in Chapter 2.5. . _

CALC provides you with a powerful calculator which, unlike
other calculators, shows you what you are doing and allows you to
‘edit’ your calculation so that you can repeat it with different
figures. It gives you access to a range of scientific and math-
ematical functions, and has ten of its own memories (the contents of

41



Using built-in applications

which are kept even when you switch off). It also lets you use your
own programs to perform calculations — with prompts, if you wish.
The CALCulator is covered in Chapter 2.6.

PROG provides the extremely powerful programming facility,
allowing you to tailor the Organiser 1T to do the things you
specifically want. This is dealt with in Part 3 of this book,

Finally, there are the INFO, RESET and OFF options, which need
only a brief explanation, and are dealt with in this Chapter.

Selecting an option

Two methods are available for selecting the facility you wish to
use,

Method 1
Use the cursor keys to position the cursor (flashing blob) over
the first letter of the required option, then press EXE.

Method 2
Type in the first letter of the option you wish to use.
If only one option begins with that letter, the option will be
selected immediately.
If more than one option begins with the entered letter, the
cursor will move to the first of such options. In this instance,
press the letter key until the cursor covers the required
option, then press EXE.

Note: If using method 2, the cursor must be a flashing blob: if for any reason
the cursor is just an underline {(indicating ‘numeric’ inputs), press the
SHIFT and NUM keys simultaneously to restore the keyboard for
alphabetic inputs. It does not matter if the keyboard is set for capital or
small letters.

Customizing the main Menu

It may well be that the order of the options on the Menu is not to
your liking. For example, you may prefer to have the DIARY as the
first option so that you can access it straight away by simply
switching on and pressing EXE.

Also, you may want to remove options from the Menu (the RESET
option can erase all the information you wish to keep, if you are not
careful. Removing it from the Menu eliminates the possibility
altogether). And when you have written a program, you would no
doubt like to add that program as an option on the Menu.

You can customize the main Menu exactly how you want.

Note that, when an option is removed from the Menu, it cannot
be accessed by Methods 1 or 2 given previously. It is not perm-
anently lost, however: to regain that option, you mneed only to
re-install it on the Menu.

42

2.2 The main Menu

Deleting an option

a)  Use the cursor keys to position the cursor over the option you
wish to delete.

b) Pressthe DEL key

¢) The screen will display the option on the top line, and DELETE
Y/N on the second line - asking for confirmation that you do
indeed wish to delete the option (you may have pressed DEL
in error).

d) To make the deletion, press Y (Yes). To cancel the operation,
press N (No).

Note: The OFF option cannot be deleted, for obvious reasons.

Restoring (or adding) an option

a) Use the cursor keys to position the cursor at the place in the
Menu where you wish your option to be restored (or added).

b) Press the MODE key,

c)  The screen will display INSERT ITEM on the top line, and the
cursor will be positioned at the beginning of the second line.

d) Carefully type in the name of the option you wish to restore or
add, and press EXE: it doesn’t matter whether you use capital
or lower case letters — Organiser will change them to capital
letters when displaying the Menu,

e) The option will now be included in the Menu: other options
will have been ‘'moved along’ to make room for the addition.

Nate: If you add an option name which is not one of the Organiser's built-in
applications, or is not one of your own programs, when you try to select
this option the screen will display the message:

MISSING PROC
'option®

‘PROC" is short for procedure, and Organiser I is telling you that it
cannot find the procedure or program that you have selected anywhere.
If it is simply a question of incorrect spelling when you added the
option, delete it and re-install it correctly in the Menu. If the program
doesn't exist, there is no point in trying to include it.

Note too that you cannot delete one of the Organiser's options and
replace it with one of your own programs having the same name:
Organiser Il will assume you want to install its own built-in aption,

Moving options around

n) Follow the Deleting an option instructions to remove the
option from its current position.

b) Follow the Restoring (or adding) an option instructions to
re-install the option in the desired position.

43



Using built-in applications

Tip: When adding one of your own programs as an optior, Iry to kegp t-'_w
initial letter different from any already existing in the Menu: this will
make selection easier when using the ‘initial letter’ method. Nete that you
cannol rename any of the buill-in options.

The INFO option

When selected, this option tells you on the top line of the screen the
total number of RAM memory boxes available in Organiser II for
your use. It will be about 1000 less than the actual number built in,
because Organiser itself needs some RAM space in which to work.

The second line of the screen gives you a guide as to how much of
the RAM space is occupied by the Diary and any records or
programs you may have stored, and also, if fitted, how much space
you have used in the Datapaks. The display scrolls continuously to
the left, and shows you the percentage of space used, ending with
the percentage of space free in Organiser's RAM. Use the LEFT and
RIGHT cursor keys to stop the second line from scrolling, or to
start it again in the desired direction.

To find the exact number of bytes (memory boxes) you have free
in Organiser’s RAM, select the CALC option from the main Menu,
and remembering to keep the SHIFT key pressed to enter letters
(CALC automatically sets the keyboard for numeric inputs), type in
FREE and press EXE.

To return to the main Menu, press CLEAR/ON.

The RESET option

There may be an occasion when you want to completely clear out
everything that you have stored in the RAM of your Organiser — so
that it is just as it was when you switched it on for the very first
time.

The option for this is RESET.

However, RESET can be a drastic measure if used in error.
Consequently, Organiser IT makes doubly sure you really do want
to reset and start again.

When RESET is selected, the screen will display the message:

ALL DATA WILL BE
LOST - PRESS DEL

This is the first reminder that you are about to lose all your
information.

If you do not wish to continue, press CLEAR/ON - you will be
returned to the main Menu and nothing will be lost.

To continue, press DEL. The screen will now display

44

2.2 The main Menu

ARE YOU SURE
PRESS Y/N

This is your last chance to back out. Pressing N - for No — will
return you to the main Menu. Pressing Y will erase all the
information stored in Organiser's RAM, including the Diary, any
Alarms you may have set, any records you may have stored, any
programs you may have written, and anything you may have stored
in one of the calculator’s ten memories. None of this information is
recoverable: it will have to be re-entered.

Information stored on any Datapak will not be affected, Nor will
the internal clock — you will still have the correct time available.

Tip: To be sure you won't select the RESET option in error, remote it from the
matn Menu: you can always re-instell it again should you wish to use it,

Switching off

This is as simple as pressing the O key from the main Menu.
Alternatively, you can use the cursor keys to select OFF on the
main Menu, then press EXE.

If Organiser II is left on for five minutes without any keys being
pressed, it will decide you've been interrupted in whatever you
were doing, and it will switch off on your behalf - to conserve
battery power.

All 1s not lost. When you switch on again — using the CLEAR/
ON key as normal, you will be returned to exactly where you left
off, as if nothing had happened.

45



Using buiit-in applications

23

TIME AND ALARMS

Keeping TIME

The date and time in Organiser II is continuously updated, even
when Organiser is switched off. The date and time information is
used by the Alarm application, and by the Diary to provide the
current half hour segment when this application is selected. Date
and time information is also accessible from Organiser’s built in
programming language, so that it can be used in your own pro-
grams if required.

To set the date and time

a) Select the TIME option from the main Menu.

b) Press the MODE key: the cursor will appear over the day of
the month, and the clock will be stopped.

¢) Use the UP and DOWN cursor keys to set the correct day of
the month: the UP cursor key increases the figure one step at
a time, the DOWN cursor key decreases the figure one step at
a time.

Note that the name of the day in the week changes auto-
matically as the date is changed.

d) Use the RIGHT (and LEFT, if necessary) cursor key to
position the cursor over the name of the month.

e) Set to the current month by using the UP and DOWN cursor
keys.

f) Continue as in d) and e) above, using the RIGHT and/or
LEFT cursor keys to position the cursor over the item to be
changed, and the UP andfor DOWN cursor keys to adjust the
setting, until the date, hours and minutes have been set.

Note; Organiser II uses the 24 hour clock, so that 1.27.00 pm, for example,
should be set as 13.27.00.

g) When the date and time are set correctly, press EXE: the
clock will be re-started instantly. The clock can thus be set
precisely by pressing EXE when the actual time (as obtained
from the ‘Speaking Clock’, for example) matches that reg-
istered on the Organiser.

h) Press CLEAR/ON to return to the main Menu.

The correct date time will now always be available by selecting the
TIME option from the main Menu.

When changing batteries, the date and time within Organiser II
will continue to be updated for approximately 30 seconds, giving

46

2.3 Time and Alarms

you time to make the change without need to reset the internal
clock again afterwards. Alternatively, the optional power supply
lead can be connected whilst the battery change is made, so that
the clock is kept running however long the change takes.

Using the Alarms

There are eight individual Alarms in Organiser II. All or any of
them can be set as described here. Note that these Alarms are quite
independent of the Alarms that can be set in the Diary application,
and give a different ‘buzz’.

Any Alarm can be set for up to one week ahead, and can be set to
repeat every hour at the same number of minutes past the hour,
every day at the same time, or every week on the same day and
same time,

Setting an Alarm
a) Select the ALARM option from the main Menu.
b} The screen will display

1) FREE
press EXE to set

If Alarm 1) has been set previously, the screen will display the
day of the week, hour and minute of the setting on the top
line, and any ‘repeat’ instruction on the bottom line.

c) Use the UP and DOWN cursor keys to select the Alarm
number to be set.

d) Press EXE.

e) The current day of the week and time will be displayed on the
top line, with the cursor flashing over the day of the week.

f) To set the Alarm, use the LEFT and RIGHT cursor keys to
select the item to change, and use the UP and DOWN cursor
keys to effect the change.

To cancel the Alarm before it has been set, simply press
CLEAR/ON.

For a ‘onceonly’ Alarm

Press EXE. The cursor will be removed from the screen. Now,
1) Toset another Alarm, repeat these instructions from c).
2) Toreturn to the main Menu, press CLEAR/ON.

For repeated Alarms

Press MODE. The letter R will appear under the day of the
week. The RIGHT and LEFT cursor keys can be used to
position the R under the hours or minutes, to obtain repeated
Alarms as follows.

47



Using built-in applications

Once a week, on set day and time: position the R under the
day name.
Euvery day, at set time: position the R under the hours
figure.
Every hour, at set minutes past the hour: position the R
under the minutes figure.
To cancel the repeat function before it has been set, press
MODE again.
To enter the Alarm and repeat function into Organiser’s
memory, press EXE. Then:
1) To set another Alarm, repeat these instructions from c).
2)  Toreturn to the main Menu, press CLEAR/ON.

Cancelling an Alarm

a) Select ALARM from the main Menu.

b) Use the UP and DOWN cursor keys to locate the Alarm to be
cancelled.

c) Press DEL.

d) Use the UP and DOWN cursor keys to locate another Alarm
for cancelling (or setting), or CLEAR/ON to return to the

main Menu.

Modifying an Alarm

a) Select ALARM from the main Menu.

b) Use the UP and DOWN cursor keys to locate the Alarm to be
modified. You then have a choice:

To change the day or time of alarm

1) Press EXE.

2) Use the RIGHT and LEFT cursor keys to select the item

to change, and the UP and DOWN cursor keys to effect
the change.
If the repeat function has been set on the selected Alarm,
the R indicator will move with the operation of the
LEFT and RIGHT cursor keys. Once the Alarm has been
reset as required, simply use the LEFT and RIGHT
cursor keys to restore the position of the R indicator.

3) Press EXE, then UP and DOWN cursor keys to select
another Alarm, or CLEAR/ON to return to the main
Menu.

To cancelfinsert the repeat function

1)  Press MODE. If cancelling, the R will disappear and the
Alarm will be set ‘once’ only. If adding, the R will
appear, and can be positioned as detailed previously,
using the LEFT and RIGHT cursor keys.

2) Press EXE, then the UP and DOWN cursor keys to
select another Alarm, or CLEAR/ON to return to the
main Menu.

48

2.4

KEEPING RECORDS

The built-in filing system

One of the important features of Organiser II is its ability to store
information, and to enable stored information to be found with only
a small ‘clue’ as a guide,

Organiser provides complete flexibility for you to design your
own ‘storage’ system, using the programming language. It also
provides a built-in system which enables an extremely useful ‘file’
of information to be created. This Chapter deals with the built-in
system.

A ‘file’ can be imagined as an empty card index box. A ‘record’ is a
card of information placed in the index box. When you SAVE
information in your Organiser II, you are effectively writing out a
record card and placing it in a card index box.

When a power supply is first connected to the Organiser, an
empty ‘file’ is created in its RAM memory. When Datapaks are first
connected, empty ‘files’ are created on these too. Connecting two
Datapaks effectively gives you three ‘card index box’ files — one in
RAM, and one on each of the Datapaks.

As a matter of interest, all these files have the same name —
MAIN — but you don’t have to worry about that until you write
programs to create your own files. What is important, if you have
Datapaks connected, is that each file or ‘card index box’ is ident-
ified by its {ocation. The file in RAM is always identified by ‘A?’, that
on the upper Datapak by ‘B:’ and that on the lower Datapak by ‘C:'.
Note that it is the location of the Datapak that is important — not
what it contains.

Thus if you have an address list in the MAIN file on a Datapak in
the upper slot, you would identify the file for that Datapak as ‘B:". If
the same Datapak were removed from the upper slot and plugged
Egt,o the lower slot, the file on that Datapak would be identified by

[f Datapaks are connected, you choose which ‘file’ your inform-
ation goes into. If Datapaks are not connected, naturally you have
no choice.

The main Menu options which allow you to use your files are
SAVE, FIND, ERASE and COPY.

SAVE is the option to choose when you wish to store away
information - in effect, to write out a record card and
stow it in the index box.

49



Using built-in applications

FIND enables you to locate a specific record quickly by giving
the smallest of clues as to what you want, and, if you
wish, lets you change that record.

ERASE lets you remove completely one or more records from

yvour file.

COPY lets you copy information from one file to another — from
the MAIN file in RAM to the MAIN file on a Datapak, for
example.

Storing your information

If you have Datapaks connected to your Organiser, you should
think very carefully about the type of information you are going to
store on them. The information stored in Organiser's RAM can be
changed, modified or even deleted without losing memory space.
However, whenever a change is made to information held in a
Datapak, the entire original record is ‘locked up’, and a new record
created.

Taking the card index box analogy, in the RAM card index box,
information on each individual record card can be ‘rubbed out’ and
replaced by new information, or the card removed completely. In a
Datapak card index box, cards are left in the box, and the new
information is ‘written’ to a new card: the original, now out-of-date
card stays in the box taking up space, but cannct be examined or
looked at any more. Thus a Datapak can gradually get filled up
with obsolete information.

Hence, if you wish to keep information which changes quite
frequently, you should save it in Organiser's RAM (‘A:"). The
Datapaks are best used for information of a more permanent
nature.

In any event, it is advisable always to save any information
initially in RAM, and to transfer or copy it to the desired Datapak
when you are sure it is correct.

When saving information, think ahead to how you may wish to use
that information. For example, let us say you wish to store names,
addresses and telephone numbers — not just of family and friends
and/or business associates, but also important local people — such
as the Doctor, plumber and so on. You may also wish to keep on
record the birthdays of those close to you, and perhaps have easy
reference of all the people you wish to send Christmas Cards.

Provided the required information is stored in a consistent
manner in your Organiser, it can be found again very easily.

Thus if you know you will want to find, for example, all the
people with birthdays in the current month, make sure you enter all
birth dates the same way — 12/3/1940 or 12 MARCH 1940, whichever

50

2.4 Keeping Records

you prefer. Use some form of simple code to identify groups of
people you may wish to find: for example, you can identify those
you wish to send a Christmas card to by ‘XC, or perhaps just an
asterisk '*’,

Similarly, if you save the name and telephone number of local
tradesmen, identify them by including their trade or profession
(‘Plumber’, ‘Decorator’, ‘Doctor’) in the information so that you
will still be able to find them quickly even if you cannot remember
their name. And so on.

Remember too that Organiser will display the top two lines of
information when it finds a record. Although you can quickly
access the rest of the information, it is best to put the most
important details on these two lines so that you can see them
straight away.

Also, it is advisable to restrict one record to one ‘set’ of inform-
ation — one person’s name, address and so on.

These little ‘tricks’ will make it extremely easy to locate inform-
ation you may need in a hurry, or to get Organiser to list for you all
the people of a certain category (with birthdays in MAY for
example).

To SAVE a record

a) Select SAVE from the main Menu,

The screen should display the message SAVE A:. This tells you
your information will be saved to the ‘A’ Pack - Organiser’s
RAM. To save to a Datapak, press the MODE key until the
required Datapak is selected (‘B’ for a Datapak in the upper
slot, ‘C’ for a Datapak in the lower slot). But note that it is not
usually advisable to use Datapaks to save information that
can change frequently.

b) Type in your top line of information. If you are entering an
address, this would be the person's name, possibly followed by
their profession (i.e. DOCTOR). Notice that the screen display
will ‘scroll’ to allow you to enter more information than the
normal sereen width.

¢} To enter information on the next line down, use the DOWN
cursor key to position the cursor on that line. You may choose
to use this line for the telephone number. (See Chapter 2.1
regarding the use of the SHIFT, CAP and NUM keys to enter
capital or lower case letters, or numbers).

d) Continue entering information until your entire record is
complete. Remember to add any special ‘codes’ you may wish
to use to locate that person - for example, “*’ as a recipient of
Christmas cards.

e) Use the cursor keys to move round your record and to edit it
(in conjunction with the DEL key).

f} To delete a record - without saving it — press CLEAR/ON:
you will still be in SAVE, and can re-enter your record if you
wish. To return to the main Menu, press CLEAR/ON again.

b1



Using built-in applications

g) When you are sure the information is correct, press the EXE
key. This enters your record into the selected file.

Note; Records can be up to a maximum of sixteen seperate lines or a
maximum of 254 characters. You could, if you wished, have the entire
record on one line - but this would make the record less easy to read
when you are examining it later.

h) To enter another record, simply repeat this procedure from the
start,
Note that you do not have to enter your records in alphabetic
- or any other — order.

Locating information

The real power of Organiser II becomes apparent when you wish to
locate one or more of your records — on a specific item of inform-
ation.

The methods for locating records are as follows:

To FIND a specific record

a) Select FIND on the main Menu.

The screen will display FIND A:. If the information you want
to find is not in the Organiser’s RAM (‘A"), select the required
Datapak by pressing the MODE key. (If Datapaks are not
connected, this will have no effect).

b) Type in just a few letters or symbols that you know are
included in the record you wish to find. For example, to find
the Doctor — simply enter DOC. To find those people you wish
to send Christmas cards to, enter your ‘code’ for the Christmas
card recipients. To find a person by name, enter just a part of
that name,

¢) Press EXE. Organiser will immediately search through the
selected file for a match, and will display the first matching
record it finds on the screen.

d) If this is not the record you want, or if you wish to find
another record with the same match, press EXE again,
repeating as necessary. If a match is not found, or the end of
your records is reached, an END OF PACK message will be
displayed on the screen.

€) Press CLEAR/ON to return to the main Menu.

Press EXE to continue the search from the start again.

To browse through your records

a) Select FIND on the main Menu.
The screen will display FIND A:, If the file you wish to browse
through is on a Datapak, use the MODE key to choose the
appropriate Datapak.

b) Press EXE. The first two lines of a record (usually the first
record) in the selected file will be displayed. (See the the next

52

2.4 Keeping Records

section — When a record has been found - for details of how to
examine your record).

c) Each successive press of EXE will display a new record, until
you reach the END OF PACK message. Pressing EXE again
will cause the first record to be displayed (depending on
previous use of Organiser, FIND may not always start by
locating the first record in your file).

When a record has been found

a} If the top line of your record is more than 16 characters long,
that line will ‘scroll’ to the left, so that you can read it all. Use
the LEFT and RIGHT cursor keys to stop and start the
scrolling action.

b) Use the UP and DOWN cursor keys to view the other lines of
your record: if any line that the cursor is on is longer than 16
characters, that line will seroll. Use the LEFT and RIGHT
cursor keys to stop and start the scrolling action.

¢} To find the next record, press EXE. To return to the main
Menu, press CLEARJON.

Changing the information in a record

You can change the information contained in any of your records
at any time, However, note that if the record is kept in a Datapak
file, the old record will not be ‘erased’ from the Datapak, but will be
‘locked up’ so that it can no longer be examined. It will still occupy
space 1in the Datapak.

The procedure for changing information in a record 1s as follows.

Editing a record

a) Select FIND on the main Menu.

The screen will display FIND A: If the record you wish to
change is on a Datapak, use the MODE key to select the
appropriate Datapak.

b) Enter a ‘search clue’ to locate the record you wish to amend.
For example if the record you wish to change contains the
name ‘Bloggs’, you could type in ‘oggs’ or ‘Blog’.

¢) Press EXE. The first two lines of the required record should
be displayed. If an incorrect record is displayed (because it,
too, contains the ‘search clue' that you entered), press EXE
until the required record is found.

d) Press MODE.
The screen display will now change: the first line of your
record will start with the message SAVE A: (or SAVE B: or
SAVE C:, depending on whether a Datapak has been selected).

¢) Use the cursor keys to locate the information you wish to
change.

f)  Use the DEL key, or the SHIFT and DEL key to remove the
information you wish to change.

53



Using built-in applications

g) Enter the replacement information in the appropriate place,
and check that it is correct.

Note: At any time from step d) to this point, you can abort making a change
by pressing CLEAR/ON twice. Alternatively you can delete the entire
record by pressing CLEAR/ON once, followed by pressing EXE.

h) If the amended record is to be saved back to the same place it
came from — i.e. Organiser's RAM, (‘A:") or a Datapak (‘B:" or
‘C:") - press EXE.
If the amended record is to be saved to the MAIN file at an
alternative location (i.e. to a fitted Datapak), press MODE to
select that location and then press EXE.

Removing records from a file

Organiser II allows you to locate and delete a single record, to
locate and delete a group of records with a common entry, or to
browse through your file and delete records as you wish.

The procedure for deleting a single record or a group of records
with a common entry is the same:

Deleting one record/common entry records

a) Select ERASE on the main Menu.

The screen will display ERASE A:. If the file containing the
record(s) you wish to delete is on a Datapak, use the MODE
key to select the location of the Datapak.

b) Type in three or four letters as a ‘search clue’ for the record(s)
you wish to delete. Thus to delete a record or all records
containing the word ‘Temporary’, you could type in ‘Temp’ or
‘mpor’,

¢) Press EXE.

If the record displayed is not one you wish to delete, press
EXE repeatedly until the correct record is found. (Other
records may include the same 'search clue’ you entered).

d) Todelete the record, press DEL.

The second line of the screen display will now be replaced by
DELETE Y{N - checking that you do indeed wish to delete this
record.

To confirm the deletion, press Y.
The record will be deleted from the file, and either
another record with the same match will be found and
displayed, or the END OF PACK message will be dis-
played.
To delete the next record found, repeat from d) above.
To return to the main Menu, press CLEAR/ON.

54

2.4 Keeping Records

T'o avoid deleting the record, press N.
The record will not be deleted from the file, but will still
be displayed on the screen.
To continue the search, press EXE - i.e., continue from
step c) above.

e} To abort the search, press CLEAR/ON. You will be returned
to the main Menu.

Browsing through to delete records
This procedure is identical to the one given previously, except that
you press EXE without entering a search clue when ERASE A: is
displayed on the screen. You will be presented with all your records
— a new one each time you press EXE.

To make a deletion, press DEL, as in the previous procedure.
When a deletion is made, the next record will be displayed.
To finish browsing at any point, press CLEAR/ON.

Copying a complete file

When Datapaks are connected, you may wish to transfer an entire

file of records from one location to another.

The COPY option on the main Menu allows you to do this. (You
can copy any file using the COPY option, but the file must first have
been created - through a program that you write).

The procedure is as follows:

a) Select COPY on the main Menu.

The top line of the screen will display FROM.

b)  You must first type in the location of the file you wish to copy.
If the file is in Organiser's RAM, type in A:. If the file is in a
Datapak, type in B: or C:, depending on whether the Datapak
is connected to the upper or lower slot respectively,

¢) If you wish to transfer all files, or if you have only one file at
the specified location — (as will be the case until you create
your own files), press EXE.

To specify a particular file that you wish to transfer, type in
the name of the file. (You could do this with the built-in file by
entering the built-in file's name - MAIN), Then press EXE.

d) The word TO will be displayed on the second line of the screen.
You must now enter the location you want the file copied to —
A:;, B:orC..

This location must be different from the source location.

¢) If the copied file is to have the same name, press EXE. If you
wish to give the copied file a new name, type in the new name,
then press EXE.

Note: If you rename the MAIN file, the SAVE, FIND and ERASE options on
the main Menu will not be able to access the copied file. The renaming
facility is provided for the files that you create yourself when pro-
gramming Organiser [

55



g)

Using built-in applications

The screen will clear and the message ‘Copying...” will be
displayed. The copying process may take some time, depend-
ing on the number of records in the file to be copied.

Note: Copying a file places a higher drain on the battery power: if the LOW
BATTERY message is displayed, press CLEAR/ON to return to the
main Menu, and switch off (press Q) immediately. Failure to do this
could result in there being insufficient back-up power to retain your
records, your Diary information and the time and date.

If the file already exists at the destination, the copied records
will be added to the end of that file. If the file does not exist at
the destination, a file will be created automatically either
with the specified name, or if a name hasn’t been specified,
with the same name as the file being copied.

Here are some examples (You don't enter ‘FROM’ or 'TQ’).

1)

2)

3)

FROM A:
T0 B:

Every file in Organiser’s RAM is copied to the Datapak
fitted in the upper slot. Any records in the MAIN file in
RAM are added to any records in the MAIN file on the
Datapak.(MAIN files are automatically created on Data-
paks when they are first plugged in).

FROM A:MAIN
TO C:

Only the MAIN file in Organiser's RAM is copied to the
MAIN file in the Datapak fitted to the lower slot. As for
example 1), records in the RAM file are added to those in
the Datapak.

FROM B:MAIN
TO A:OTHER

The records in the MAIN file on the upper Datapak are
copied to a file called ‘OTHER’ in Organiser’'s RAM. If a
file called ‘OTHER’ already exists, the records will be

56

2.4 Keeping Records

added to it. If the file doesn't exist, it will be created, and
then the records copied into it. The built-in SAVE, FIND
and ERASE options will not access the file called
‘OTHER": it can be accessed only from your own pro-
grams.

Copying one MAIN file record

You may wish to copy just one of your SAVEd records to or from a
Datapak. For example if a ‘changeable’ record kept in RAM
becomes more permanent, you may wish to transfer it to a Datapak.
This can be achieved using the FIND option on the main Menu, as
follows.

a)

b)

c)

d)

g)

Select FIND on the main Menu.

The screen will display FIND A:. Use the MODE key to select
the location of the record you wish to copy — 'A:" if it’s in the
RAM file, ‘B:’ or ‘C:’ for the Datapaks.

Type in three or four letters as a search clue for the record.
Thus if you wish to copy a record for a person called ‘Jones’,
you could type in ‘Jon’.

Press EXE.

The first two lines of the record you wish to copy should now
be displayed: if the wrong record is displayed (because it, too,
contained your search clue), press EXE repeatedly until the
required record is displayed.

Press the MODE key.

The first line of the display will now start with the word
SAVE, followed by the current location of the record - ‘A:’ for
RAM, 'B:" or ‘C:’ for the upper or lower Datapak respectively.
Press the MODE key until the required destination location is
displayed. Thus if you wish to save the record to a Datapak
fitted into the lower slot, press MODE until the first line of
the display starts with SAVE C:

Press EXE.

The displayed record will now be added to the MAIN file at
the specified location.

Note: If the record is copied back to its original location, or if it already
exists at the new location, it will be in the MAIN file twice. In terms of
the card index box, you will have written cut another record card
duplicating the first, and placed that in the box too. This is obviously a
waste of space - and is nol the way to correct a record.

After the record has been copied, you will be returned to the
main Menu.

57



2.5

KEEPING A DIARY

The Diary Menu
The Diary enables entries to be made right up to the last minutes of
the year 1999.

Entries are made in half-hour ‘slots’: in other words, the Diary
can be considered as an appointment book with space for making
an entry every half-hour throughout the day.

When an entry is made in the Diary, you have the option of
requesting an Alarm to remind you of the entry. This Alarm can be
set to buzz from one to 59 minutes before the entry time, and can be
used for as many — or as few — entries as you wish. The Diary alarms
are independent of and produce a different sound to the eight
Alarm clocks built into Organiser II.

When the DIARY option is selected from the main Menu, the
screen displays immediately the current date and time slot on the
top line: if any entry has been made within this slot, it is displayed
on the lower line.

This display is in the PAGE mode of the DIARY Menu, described
later.

To obtain the DIARY Menu, press MODE,

(To return to the main Menu, press CLEAR/ON.)

The options offered on the DIARY Menu cannot be changed,
removed or added to, as is the case with the options on the main
Menu.

The options offered are:

PAGE LIST FIND
GOTO SAVE TIDY
RESTORE DIR
ERASE

The options can be selected in the same way as those on the main
Menu: that is, either by entering the first letter of the required
option (the fastest and easiest way), or by using the cursor keys to
place the cursor over the first letter of the required option, then
pressing EXE.

Briefly, the function of each option is as follows:

PAGE Enables you to make your Diary entries.

LIST Enables you to browse through your Diary entries,
starting from the latest setting of the date and time.

FIND Enables you to find a specific Diary entry or entries,
from a three or four letter search clue.

58

2.5 Keeping a Diary

GOTO Enablea you to select any specific date within Organ-
iser’s range (1 January 1900 to 31 December 1999).

TIDY Enables you to erase from your Diary all entries up to
the latest setting of the time and date.
SAVE Enables you save a copy of the entire contents of your

current Diary to RAM or a Datapak.

RESTORE Enables Diary information that has been SAVEd to be
put back into RAM as the current Diary — overwriting the
existing current Diary information.,

DIR Enables you to see a list of all the Diary names you may
have SAVEd.

ERASE  Enables you to delete a Diary that you have SAVEd.

The first five of these options enable you to work on the current
Diary - that is, the one that Organiser I looks after on your behalf,
Each of these options is discussed separately, followed by the
procedures for using your Diary.

The last four options enable you to keep more than one Diary:
however, it should be noted that Organiser IT will display inform-
ation and respond to Alarm calls in the current Diary only. These
options are dealt with together in the section Keeping more than
one Diary.

Key operation from the Diary Menu
The keys function as follows whilst the DIARY Menu is displayed
on the screen.

CLEAR/ON Selects the PAGE mode of the Diary.

Cursor keys Enable an option to be selected.

EXE Selects the option indicated by the flashing cursor.

Letter keys If the pressed letter key corresponds to the first
letter of an option, that option is selected.

Other keys have no effect.

The PAGE option

Lhis is the mode entered when DIARY is selected from the main
enu.

_ On entering the mode from the main Menu, the current date and
time slot is displayed, together with any entries that may have been
made within that time slot.

On entering the mode from the DIARY Menu, the last date and
time slot worked on will be displayed, together with any entries
within that time slot. A typical display could be:

JUL:Q8:TUE:13.00
{AYLUNCH J.Brown

59



Using built-in applications

This indicates that a lunch appointment has been made with J.
Brown on July the 8th at 1.00 p.m., and that an Alarm call for the
appointment has been requested (as indicated by the ‘(A)’ ). .
If the Diary entry extends beyond the screen width, the entry will
be serolled.
It is not possible, in this mode, to stop the scrolling action.

Key operation in the PAGE mode
CLEAR/ON Returns to the main Menu

MODE Selects the DIARY Menu

DEL Deletes the displayed entry.
This is the only mode that allows you to delete Diary
entries.

UP Each press reduces the time slot by half an hour,
The date remains unchanged.

DOWN Each press increases the time slot by half an hour.
The date remains unchanged.

LEFT Each press reduces the date by one day.

RIGHT Each press increases the date by one day.

EXE — or any letter key — selects the EDIT mode to

enable a Diary entry to be made. (This mode is
indicated by the message ‘EDIT’ at the start of the
second line).

In this mode, the keys function as follows:

LEFT and RIGHT cursor keys allow you to move
backwards and forwards through your entry.

DEL enables you to delete characters to correct an
entry.

CLEAR/ON clears your entry. To abort making an
entry, press CLEAR/ON again.

EXE or MODE saves your entry, and initiates the
Alarm Call option.

The LIST option

LIST allows you to browse through your Diary, and is selected from
the DIARY Menu. The first entry to be displayed will be the one on
or after the latest set date and time slot: if you have not been
working on your Diary, this will be the current time and date, as
determined by the built in clock and calendar.

Key operation in the LIST mode

EXE Selects the next entry for display, until the END OF
DIARY message is displayed. Pressing EXE at this
point restarts the browsing from the earliest entry
that has been made.

DOWN Operates exactly the same as the EXE key.

60

2.5 Keeping a Diary

UpP Similar to EXE, but moves back through the Diary
entries until the first entry is reached.

LEFT/RIGHT Enable any scrolling of an entry to be stopped and
started.

MODE Returns to the DIARY Menu.

CLEAR/ON Returnsto the main Menu.

The FIND option

This option when selected from the DIARY Menu allows you to
locate a specific entry in your Diary, by entering a short ‘search
clue’. For example, to find when you have an appointment with J.
Brown, you could enter ‘Bro’ or ‘rown’.

If no 'search clue’ is given, all entries from the last set time and
date — or the current time and date - can be displayed.

This mode differs from the LIST option, in that it allows you to
transfer to the PAGE mode in order to change or delete an entry.

Key operation in the FIND mode.
Once a ‘search clue’ has been entered to the FIND prompt, the
keys function as follows.

EXE Locates the next entry matching the search clue,
until the END OF DIARY message is reached. The
next press of EXE starts the search again from the
earliest entry in the Diary.

Note that any of the alphabetic keys has the same

effect as EXE.

LEFT/RIGHT Enable any scrolling of an entry to be stopped or
started.

MODE Switches Organiser from the FIND mode to the
PAGE mode, enabling you to change or delete an
entry.

CLEAR/ON Returns you to the DIARY Menu.

The GOTO option

GOTO enables you to select a specific date in your Diary, in order to
make a new entry. When GOTO is selected from the DIARY Menu,
the screen displays the current date, in the following form:

1986 JUL 08

The cursor will be flashing over the first figure of the year.
Key operation in the GOTO mode.
LEFT/RIGHT Move the cursor over the year, month and date, to

61



Using built-in applications

enable you to effect a change.

up Each press adds one to the year, month or date,
according to the position of the flashing cursor.

DOWN Each press subtracts one from the year, month or
date, according to the position of the flashing
Ccursor.

MODE/EXE Puts you into the PAGE mode for the selected date.
You can now set the time slot for your entry, using
the UP and DOWN cursor keys.

CLEAR/ON Returns you to the DIARY Menu.

The TIDY option

TIDY enables you to delete all entries in your Diary up to the latest
PAGE date and time setting. If you have just been using your Diary,
this will be the last date and time slot worked on. Otherwise it will
be the current date and time, as determined by the Organiser’s built
in clock and calendar.

The display will be in the form:

JUL:O7:MON:12. 30
DELETE UPTO Y/N

When this option is selected, be sure to check the date and time
carefully: there is no way to recover Diary entries once they have
been deleted.

Key operation in the TIDY mode.

Y Clears all Diary entries up to but not including the
specified date and time.

N Returns to the DIARY Menu.

Using the Diary
This section summarises the various procedures for using the
Diary. Refer back to the appropriate Diary option paragraphs for
further details and information regarding the action of the keys
within each mode. _
The procedures that follow assume that the Organiser has just
been switched on and is displaying the main Menu: if you have been
using the Diary, return to the DIARY Menu, and pick up.the
procedure from that point.

Locating a specific date and time
Two methods are available. The first is more suited to dates
and times fairly close to the current date and time setting of
the Diary.

62

2.5 Keeping a Diary

Method 1:

a) Select DIARY on the main Menu.
You will be in the PAGE mode,

b) Use the LEFT andfor RIGHT cursor keys to select the
required date.

¢} Use the UP and DOWN cursor keys to select the
required time slot.
Holding any of the cursor keys down for more than a
second will cause that key's operation to repeat auto-
matjcally. so that you can move quickly through the
settings.

Method 2:

a) Select DIARY on the main Menu,

b) Press MODE to select the DIARY Menu.

c) Press G, to select the GOTO option.

d) Use the cursor keys to select the required date,

e¢) Press MODE or EXE to enter the PAGE mode.

f) Use the UP and DOWN cursor keys to select the
required time slot.

Making a Diary entry

a)
b)

c)

d)
o)

Select the required date and time slot using Method 1 or 2 in
the previous paragraphs.

Press EXE or the first letter of your required entry.

The word EDIT will appear at the start of the second line to
indicate that you are in the EDIT mode.

Enter your information,

Your entry can be a maximum of 64 characters, including
spaces, and can appear on one line only. (Don't worry if you
can't see all of your entry: it will scroll when subsequently
displayed). Remember that the LEFT and RIGHT cursor keys
and the DEL key enable you to locate and correct errors in
your entry.

Press EXE or MODE when you are satisfied your entry is
correct.

The lower line of the screen will display the message ALARM
Y/N (provided that vour entry is not in the past!).

Press N if you do not want an Alarm call for your entry.
Press Y if you want an Alarm call. The lower line of the screen
will display MINUTES: 15. This tells you that the Alarm will
buzz 16 minutes before the event you have entered. To
increase the number of minutes warning you will be given (to
a maximum of 59 minutes), use the UP or RIGHT cursor keys.
To decrease the amount of warning time you will be given, use
the DOWN or LEFT cursor keys.

Press EXE.

Your entry will now be displayed, scrolling if it is more than

63



Using built-in applications

16 characters long, and preceded by ‘(A)' if an Alarm call has
been requested.
g) You are still in the PAGE mode of the Diary, and can therefore
select another date andfor time slot to make another entry.
h) Press MODE for the DIARY menu, or press CLEAR/ON to
return to the main Menu.

Browsing through your Diary.

a) Select DIARY on the main Menu.

b)Y Press MODE to select the DIARY Menu.

¢) Press L, to select the LIST option.

The first date and time slot containing an entry, starting from
the current date and time, will be displayed.

d) Press EXE (see The LIST option for other keys to use) to
display each successive entry in turn, until the END OF DIARY
message is displayed. Pressing EXE again will cause the
earliest entry to be displayed.

Entries longer than 16 characters will scroll: use the LEFT
and RIGHT cursor keys to stop and start the scrolling action.

e) Press MODE to return to the DIARY Menu, or CLEAR/ON to
return to the main Menu.

Locating a specific entry.

a) Select DIARY on the main Menu.

b)  Press MODE to select the DIARY Menu.

¢) Press F to select the FIND option. _

The screen will display FIND on the top line.

d) Enter three or four letters as a search clue for the entry you
wish to find. For example, to find an entry containing the
name ‘Brown’, enter ‘Bro’.

e) Press EXE.

The first record (after the current date and time setting) that
has a match for your search clue will be found: if this is not
the one you require, press EXE until the required entry is
displayed. (If you reach the END OF DIARY message, pressing
EXE again will take you to the earliest entry with a match for
your search clue).

f)  Press MODE (to enter the PAGE mode) if you wish to change
or delete your entry, or press CLEAR/ON to return to the
DIARY Menu.

Changing or deleting a Diary entry. : _

a) Locate the entry to be changed or deleted, using the previous
procedure,

b) Press MODE to enter the PAGE mode.

¢) Press EXE.
EDIT will be displayed at the beginning of your entry, to
indicate you are now able to make corrections.
You can now change or delete your entry, andfor remove or
add the Alarm call, by following the appropriate procedure:

64

2.5 Keeping a Diary

Changing the entry:
Use the cursor and DEL keys to locate and delete the un-
wanted information, and insert the new details. Then procede
from d) in the section Making a Diary entry.

Deleting the entry:
a) Press CLEAR/ON to remove the entry.
b} Press EXE to complete the deletion.

Deletingladding the Alarm call:
Press EXE to resave the entry. You will now be asked if you

wish to set the Alarm: procede from e) in the section Making a
Diary entry.

Returning to a Menu:

Press MODE to return to the DIARY Menu, or CLEAR/ON to
return to the main Menu.

Tidying up your Diary

a) Ifyou have been working on your Diary, or if you wish to
delete entries up to a different date and time slot to that
which is current, first locate the entry you wish to delete
up to, using either the Browsing through your Diary or
the Locating a specific eniry procedure given earlier.

b) Press MODE once or twice, to return to the DIARY
Menu.

¢) PressT, to select the TIDY option.
The display will show a date and time slot, and ask
whether you wish to ‘DELETE UPTO Y/N’'.

d) To delete up to (but not including) the displayed date and
time slot, press Y.
To cancel the deletion, press N,
Either way, you will be returned to the DIARY Menu.

Keeping more than one Diary

For most purposes, one Diary will prove to be adequate, However,
you may wish to keep separate Diaries, or you may wish to store
away one Diary for reference at a future date.

Organiser II provides facilities to enable you to save a complete
Diary, either to the RAM area or to a Datapak. A Diary saved in
this way cannot be accessed or used by the PAGE, FIND, LIST, GOTO
or TIDY options of the DIARY Menu: these operate only on the
cierrent Diary.

The saved Diary can be restored as the current Diary, but this
netion completely overwrites the existing current Diary. Cons-
equently, if you wish to continue using the existing current Diary,
that would have to be saved for restoring at a later time.

65



Using built-in applications

When you save a Diary, you must give it a name, to enable you to
identify it when you want it restored. Each time a Diary is saved to
a Datapak, it occupies ‘new’ space in the Datapak: if it is saved
frequently with the same name, earlier versions will be lost com-
pletely and the Datapak will gradually be ‘used up’. The Datapak
will still be used up if a different name is given to a Diary each time
it iz saved — but all earlier versions will still be accessible for
restoring.

Saving a Diary in Organiser's RAM will overwrite any previously
saved Diary that has been given the same name. You can erase a
Diary saved in RAM, to regain the space it occupied.

Saving a Diary

a) Select the DIARY option from the main Menu,

b) Press MODE to select the DIARY Menu.

¢} Press S toselect the SAVE option.
The screen will display the message SAVE A: This indicates
your Diary will be saved to RAM: press MODE to display the
Datapak you wish to save your Diary to. (If Datapaks are not
connected, the MODE key will have no effect).

d) You must now name your Diary.
The name must be no more than eight characters long, it must
start with an alphabetic character, and can contain only
alphabetic or number characters (no spaces). It doesn’t matter
whether you use capital or lower case letters.
Type in the name immediately after the SAVE message. Thus,
if you chose the name ‘'HOME1' and you were saving to the
upper Datapak (‘B"), the screen display would look like this:

SAVE B:HOME1

To cancel the SAVE operation at this point, press CLEAR/ON
twice. You will be returned to the DIARY Menu.

e) Press EXE.
Your Diary will be saved, and you will be returned to the
DIARY Menu.

To restore a saved Diary
If you intend to carry on using the current Diary at a later time,

be sure to SAVE it first, using the procedure just given.

a) Select DIARY from the main Menu.

b) Press MODE to select the DIARY Menu.

¢) Press R to select the RESTORE option.
The screen will display the message RESTORE A:, If the Diary
you wish to restore is on a Datapak, press MODE to select
that Datapak ('B’ for a Datapak in the upper slot, ‘C' for a

66

2.5 Keeping a Diary

Datapak in the lower slot).

d) Enter the name of the Diary you wish to restore — the same
name that you gave it when it was saved. (It doesn’t matter
whether you use capital or lower case letters).

e) Press EXE.

The named Diary will now be the current Diary, ready for
your perusal or work. You will be returned to the DIARY
Menu,

To erase a saved Diary

a) Select DIARY from the main Menu.

b) Press MODE to select the DIARY Menu.

¢) PressE to select the ERASE option.
The screen will display the message ERASE A:. If the Diary
you wish to erase 1s on a Datapak, use the MODE key to
select that Datapak.

d) Type in the name of the Diary you wish to erase.

e) Press EXE.
The saved Diary will be erased, and you will be returned to the
DIARY Menu display.

To list saved Diary names

a) Select DIARY from the main Menu.

b) Press MODE to select the DIARY Menu.

¢) PressD to select the DIRectory option.

The screen will display DIR A: Use the MODE key, if
necessary, to select the required Datapak.

d) Press EXE. The name of the first Diary saved to the selected
Datapak or RAM will be displayed. Press EXE repeatedly to
see other Diary names.

e) Press CLEAR/ON to return to the DIARY Menu.

67



2.6

USING THE CALCULATOR

Before you start

You will find the calculator function of Organiser 11 differs from
ordinary calculators. For example, your calculation entry is
displayed on the screen, enabling you to go back and correct errors
or change the figures for repeated calculations. Also, whereas some
calculators have keys ‘dedicated’ to producing results like square
roots, Organiser doesn't — instead, these functions are entered as
words in an abbreviated form.

Furthermore, you can add to the many functions that are already
built in, by writing your own as programs.

The ten calculator memories are different, too. They can be used
just like any other calculator’s memory. But when anything is
saved in them, it stays until it is changed, even though the
Organiser may be switched off in between. So you can keep the
results of calculations for further work at a later date.

When CALC is selected from the main Menu, the keyboard is set
automatically for numeric inputs: that is, all the characters printed
above rather than on the alphabetic keys. The actual numbers are
easily identified: they are on an area of different background colour
to the rest of the keyboard.

The basic mathematical operator keys are as follows:

+  Add

- Subtract
*  Multiply
! Divide

If the multiplying symbol, *, is entered twice, it means ‘raise to the
power’. Thus, 3**2 means ‘three raised to the power two' — or 32,

The brackets ( and ) can be used as in ordinary calculators, to
group together parts of a calculation which need to be worked out
first. Organiser II lets you have brackets within brackets — as many
times as you wish.

If a number is prefixed by the $ symbol, that number is considered
by the Organiser to be hexadecimal. Thus $20 is the hexadecimal
number 20 — which is 32 in decimal. Before you panie, hexadecimal
is just a numbering system used by experienced computer pro-
grammers, and it is a very useful feature for them to have on a
calculator. If you don't understand it, don't worry.

68

2.6 Using the Calculator

The calculator will also recognise the symbols <, » and = as ‘less
than’, ‘greater than' and ‘equals’ tests respectively. These tesis
produce a result of -1 if true, and 0 if not true. Thus a ‘calculation’
such as 4=4 would produce the seemingly crazy result of -1,
signifying that it is indeed true that four equals four.

Again, 1f all this is new to you, don’t worry about it: the use of
these symbols is important when programming to test the results of
a calculation, and will be explained fully in the programming
section of this book.

Finally, the % symbol: this does not produce ‘percentages’. Like
the $ symbol, it has a special significance in computers and is
mainly used in programming. However, the calculator will recog-
nise a % symbol in froni of a character as meaning the patlern
number for that character. These pattern numbers are explained in
Chapter 1.2, under the heading Storing characters. The use of % as
a prefix is consequently limited to ascertaining the pattern number
for a character in Organiser I1.

Fixing the decimal point

Organiser performs its calculations to 12 significant figures,
rounding up the last figure if necessary. Thus, a calculation such as
“7/9" will produce the result ‘0.777777777778".

You may not always want so many figures after the decimal
point. If you are working with money calculations, for example, you
will want only two figures — representing pence.

Organiser II lets you determine how many figures you have after
the decimal point. With Organiser in its Calculator mode, so that
the screen looks like this

CaLC:_

type in FIX= followed by the number of decimal places you want.
Remember to hold down the SHIFT key while you type in the
letters ‘FIX'.

Now, any calculations you make will have only the number of
decimal places in the answer that you entered after 'FIX=", to a
maximum of 12.

The number of decimal places you set will be remembered by
Organiser even when you switch off. So the next time you come to
make calculations, they will be to the same number of decimal
places that you set previously. You can of course reset the number
at any time. To revert back to 12, yvou need only type in FIX=, If
Organiser can't find a number after the = sign, it uses its ‘default’
value of 12.

69



Using built-in applications

Entering a calculation

You enter a calculation into the Organiser just as you would an
ordinary calculator. The difference is, you can see what you are
doing, because your calculation is displayed as you enter it, on the
top line. If your calculation takes up more room than the top line
permits, its scrolls to the left.

When you have entered your calculation, you execute it by
pressing EXE (not the = key).

The answer will appear on the second line, following an = sign,
and your calculation will remain on the top line — scrolling if
necessary. The CALC message will no longer be displayed, indic-
ating that Organiser is displaying a result, and is not ready to
receive another calculation at the moment.

For example, suppose you wished to find 159, of 72. Your calc-
ulation would be entered as

CALC:15/100*72

Note that Organiser puts ‘CALC’ on the screen — you don’t have to
enter it. If CALC isn’t displayed, you cannot enter a calculation.
When EXE is pressed, the display becomes

15/100*72
=10.8

If you had FIXed the number of decimal places to two, the answer
would read 10.80.

Now, supposing you wished to find 15%, of some more figures. No
problem: press EXE again, and the display will revert back to the
way it was when you finished entering your calculation, with the
cursor at the end of the line. You can now use the curser keys to go
back over your calculation, and the DEL key to make changes. In
this instance, you would remove the ‘72" and replace it by the next
figure, then press EXE for the new answer.

EXE is not the only key that will return you to your calculation:
other keys can be used, too, with different results. Here is a
BUMMATY:

EXE Returns to calculation, cursor at end.
DOWN As above,
RIGHT As above.

UP Returns to calculation, cursor at beginning.
LEFT Returns to calculation, cursor under last figure (or
symbol).
70

2.6 Using the Calculator

DEL Returns to calculation, the last digit or symbol is
deleted, and the cursor is at the end.

You can also continue with a calculation, using the answer
obtained as the first value, by pressing any of the mathematical
operators — +, —, ¥ or /. When any of these is pressed, the answer
replaces your original calculation, and it is followed by the symbol
for the pressed key.

For example, if this is the display after a calculation

43
=12

pressing the + key will result in:

CALC:12+_

The underline indicates the curser is positioned for your next
input.

To clear an answer and the calculation, press CLEAR/ON.
To return to the main Menu, press CLEAR/ON while the screen
is displaying just CALC on the top line.

Very large numbers

The Calculator handles very large numbers by using a system
called scientific notation. This always looks more frightening to the
uninitiated than it really is.

If the number to be represented on the display has more than 15
digits before the decimal point (of which only the first 12 are
significant — the rest must be zeroes), Organiser displays the
number as a decimal number — with just one digit before the decimal
point. This is followed by an ‘E+" and the number of places the
decimal point must be shifted.

For example, if the answer to a calculation happened to be (or if
you simply enter)

1234567890120000
it would be displayed as
1.234567890E + 15
71



Using built-in applications

when EXE is pressed. The ‘E’ indicates that scientific notation is
being used. The +15 indicates that the decimal point must be
shifted 15 places to the right of its current position. Note that, in the
example just given, the ‘12’ before last few zeros is lost: in scientific
mode, Organiser works to ten figures, two figures being needed to
determine the decimal point shift.

If you're working with astronomical figures, you can enter
calculations in scientific notation.

For example, 123456000 in scientific notation is written as
1.23456E + 8. You could multiply thiz by 2 by entering

1.23456E + 8*2
In this instance Organiser would display the answer as
246912000

because it goes into scientific notation only when it has to.

The order in which calculations are made

Just like you, the Organiser has to work cut a calculation a bit at a
time. It always looks to see if there are any brackets, and works out
the bits in brackets first. If there are brackets within brackets, the
calculation within the ‘innermost’ brackets gets tackled first.

Thus, if the calculation is

4+3-(3/(5 +6))

the ‘5+6 part of the calculation will be evaluated first, then the
result is divided into 3, and finally the rest of the calculation is
made.

Once Organiser has decided which part of a calculation should be
done first, it then has an order of tackling the mathematical
operators. It first looks to see if any of the values are negative
(rather than being subtracted), and sorts that out. For example, you
could enter

4*-3

Here, the calculation is to multiply 4 by -3 (=-12): it 1s not going to
subtract 3. This kind of ‘minus’ is called a urery minus and it is
indicating that the 3 is negative. It gets top priority in the Organ-
iser's sequence of working out a calculation.

The next priority is given to ‘powers’ — entered in the Organiser
as ‘“**' These are evaluated from right to left. Thus for a cale-
ulation such as

gRkgdky
72

2.6 Using the Calculator

first the 2 would be raised to the power of 4 (=16), then 3 would be
raised to the power of the answer, 16.

Note that Organiser has a special routine for working out
‘powers’ — which provides an extremely high degree of accuracy.
However, for a simple power calculation such as 2?, {(entered as
2**3 and meaning ‘2x2x2"), the answer is not precise. For the
example just gquoted, Organiser would give the result as
8.00000000005 — instead of just 8. This special routine is necessary
for Organiser to be able to handle really tricky powers.

Next in order of calculation precedence comes any multiplication
and division. Then comes addition and subtraction and finally come
the ‘comparison’ operators — <, > and =.

Thus, in a calculation such as

4+ 3*10/2-6%5

the sequence of calculation is first the multiplications and divisions
— 3*10/2 (=15) and 6*5 (=30). Then these results are used in the
additions and subtractions - 4 + (16)-(30), to give the answer -11.

If, in this example, you wanted the 10 to be divided by the result
of 2-6%5, and worse, you wanted the 6 to be subtracted from the 2
before it is multiplied by the 5, then you would have to tell
Organiser the order of events by enclosing within brackets the
items you want handled first. Thus, to achieve the required result
under these conditions, the calculation would have to be entered as

4+ 3*10/((2-6)*5)
The calculating sequence this time is:

1) The innermost bracket: 2-6 = -4

2) The next bracket: (—4)*5 =-20

3) The multiplication and division: 3*10/-20 = -1.5
4)  The addition: 4+ (-1.5) = 2.5

As you can see, working the calculation out his way produces a
completely different result: 2.5.

If you are ever in doubt regarding the order in which your
calculation will be made, enclose the parts you want calculated
first or together within brackets. It doesn't matter how many sets of
brackets you have — as long as there is always a closing bracket for
an opening bracket. If you do happen to miss out a bracket (or make
some other mistake), Organiser will tell you the type of mistake you
have made and will ask you to press the SPACE key. Your
calculation will then be displayed again, with the cursor marking
the point where Organiser failed to understand what it should do.

Very helpful.

73



Using built-in applications

Using the Calculator memories

It has already been mentioned that the calculator has ten mem-
ories, and that their contents are kept even when Organiser II is
switched off. These memories have another useful feature — they
can be accessed from your programs. Thus you could write a
bank-balance/cheque program that uses one of the calculator mem-
ories to store what you think the bank should have on your behalf.
You could then look into that memory at any time to check the
balance, without having to use the program.

The ten calculator memories are aliwaeys identified by the same
‘names’ — MO to M9, inclusive — whether you're accessing them from
the calculator or from a program. Here’s how to use them.

To store in a calculator memory

a) First, there must be an answer on display — that is, the second
line must have the = sign followed by a number, usually as
the result of a caleulation. If you wish to store a number
without making a calculation, enter that number after the
word CALC, then press EXE: the number will then be repro-
duced on the second line.

b} Press MODE.
The top line will display M: PRESS 0-9

¢} Select which of the calculator memories you wish to use, by
pressing the appropriate number (0 to 9). The top line of the
display will change to show the memory you selected, followed
by +,—,EXE,DEL.

d) Younow have five options:

1) To add the number on the second line to what is already
in the selected memory, press +.

2) To subtract the number on the second line from what is
already in the selected memory, press —

3) To just save the number on the second line in the
selected memory, overwriting anything that is already
there, press EXE,

4) To clear the contents of the selected memory to zero,
press DEL.

5) To call the whole thing off, and go back to the cale-
ulation and its result, press CLEAR/ON,

To recall a number from memory
Simply enter its name.
This can be done within a calculation: 4.2*M5
Or, if you just want to inspect its contents, enter the name
alone and press EXE.

The built-in functions
Organiser’s programming language has a number of numeric funct-

14

2.6 Using the Calculator

ions, any of which can be used in calculations. Some, however, are
more suited for use in programs — ‘HOUR', for example, is one such
function. This gives the current hour from Organiser’s built in
clock: useful for certain kinds of program, but not of great value
when making calculations.

Most of the functions suitable for calculations are intended for
scientific and engineering’ type of work. A list of these follows,
together with a brief description. You will find a complete list of
the other numeric functions within the programming Chapters of
this book.

To use a function, you simply ‘name’ it in your calculation,
followed, in most instances, by the value to be ‘worked on’ enclosed
in brackets. This value could be another calculation. For example,
to multiply the logarithm of 5/9 by 4, you would enter:

4*LOG(5/9)

To perform this calculation, Organiser would work out 5./9, find
the LOGarithm of the answer, and multiply that result by 4.

The main functions are as follows:
ABS(no.) Gives the number as a positive value, even if it is

negative, Thus ‘ABS(4-6)' gives 2, not -2,
ATAN(no.) Gives the Arctangent of the number, in radians.

COS(no.) Gives the COSine of the number, which represents
an angle in radians.
DEG(no.) Converts the number, which represents an angle in

radians, to degrees.

EXP(no.) Raises the arithmetic constant ‘e’ (2.178) to the
power of the number in brackets,

INT(no.) Gives the part of the number before the decimal
point — the integer of the number. Thus ‘INT(10.3)
would give 10. Negative numbers are rounded down,
s0 ‘INT(-7.6)" would give -8.

LN(no.) Gives the logarithm of the number to the base ‘e’

LOG(no.) Gives the logarithm of the number to the base 10.

PI Gives the value of pi (3.14159265359...)

RAD(no.) Converts the number which represents an angle in
degrees, to radians.

REND Gives a random value between 0 and 1.

SIN(no.) Gives the SINe of the number, which represents an
angle in radians.

SQR(no.) Gives the square root of the number.

TAN(no.) Gives the TANgent of the number, which represents
an angle in radians.

Remember that in all instances where a number is needed, it can be
either a specific value, or a calculation that results in a value. Also,

75



Using built-in applications

the value or calculation must be enclosed within brackets.

Example: To find the result of four multiplied by the square
root of 256, the display would look like this:

CALC:4*50R(256)

Don't forget to press the SHIFT key when entering letters.
This calculation will be made as soon as you press EXE.

Using your own functions

There may be some calculations that you need to make quite
frequently - adding or deducting VAT, miles per gallon, loan
repayments, and so on. One of the purposes of being able to
program Organiser II is so that you can undertake such cale-
ulations with the minimum of effort — that is, by simply entering the
necessary figures, without all the calculation part.

Furthermore, you can arrange your program so that it prompts
you for the figures it needs to make the calculation. All of this is
discussed in Part 3.

In addition to complete programs, there may be functions — like
the scientific ones given in the previous section — that you wish to
use when making a calculation. A very simple one, for example,
could convert litres to gallons.

Whether it's a complete program or a function, you would ‘call’ it
for use in the Calculator mode the same way — and this is almost the
same as the way you ‘call’ up the built-in functions.

There is just one difference. For your own functions or programs,
you must add a colon (:) after the name part.

A couple of examples will help to clarify the procedure. Let us
say, first, that yvou have written a function to convert litres to
gallons — so that you can see how many miles to the gallon you are
doing even though you pumped in litres. And let us say that you
called this function ‘GAL’. When such a function is used it needs a
value to work on — in this case, the number of litres. This value
must be enclosed within brackets (just as a value must be enclosed
in brackets for most of the built in functions).

The way to work out miles per gallon, as you know, is to divide
the number of miles by the number of gallons. But you pumped in
litres, so when making your ecalculation, you would enter

miles/GAL:(litres)

You would use actual numbers in place of miles and litres of course.
Note the colon after the name of your function. That tells Organiser

76

2.6 Using the Calculator

IT not to waste its time looking through its own functions — it must
look through RAM and the Datapaks for the one you will have
wrlitten, called ‘GAL'. Note too that the brackets come after the
colon,

Organiser will work out the part in brackets - if it needs working
out, then use your program to convert the answer into gallons. It
then divides that answer into the miles figure to give you the
number of miles-per-gallon.

Let us now take another example, this time for percentages. It
could be that you frequently need to know what percentage one
number is of another number. You would therefore write a very
simple little program, which needs twe inputs. Your program would
take the first number, divide it by the second and then multiply the
answer by 100 to give the required percentage. This is, of course, a
very simple calculation, and wouldn't take very long to enter as a
straight calculation. Nevertheless, it will serve to demonstrate the
principle. Having written your program, which we’ll say is called
PC, you could use it to find, say, what percentage 37 is of 96 by
simply entering

PC:(37,96)

and this could be just a part of a larger calculation.

Notice that the two numbers are separated by a comma. That is
important. Equally, it is important that you enter your numbers in
the right order — to match the way the program is written: the first
number divided by the second.

You can write programs to accept almost as many inputs as you
want — certainly as many as you're ever likely to need.

Within the brackets part of one of your functions, you could
include another function. Taking the two examples given here, you
could work out what percentage a number of gallons is against a
number of litres. Let us say you want to know what percentage 34
gallons is of 200 litres (pretend! pretend!). This would be entered as:

PC:(34,GAL:(200))

Organiser would first use your ‘GAL’ program to convert the litres
to gallons. Then it would use your 'PC’ program to evaluate the
percentage. It works, always, from the innermost brackets out-
wards remember.,

One final point. The calculator works in floating point arithmetic.
That means it expects numbers to have a decimal point in them
somewhere, even if it isn't shown (e.g. ‘10"). When programming,
you can identify numbers that will never have a decimal point -
they're called integers. If you write a program that expects an
integer to work on, you will get an error if you try to use that

T



Using built-in applications

program from the calculator. The message will come up TYPE
MISMATCH.

Organiser is telling you that you are trying to mix two types of
number — floating point and integer. As the two types of number are
stored differently inside the Organiser, it's a bit puzzled as to what
it should do. (Why have two types of number? Because integer
numbers take up much less memory space, and calculations with
them are many times faster).

As always, there is a solution to the problem. Two, in fact. You
can either make sure that any program you are going to run from
the calculator requires only floating point numbers to be passed to
it, Or you can convert the number passed to your program to an
integer type, using the INT(number) function. With the second
method, you would of course lose any fractional part of a number
passed, and this could cause calculation errors. ‘INT(5/2), for
example, results in the value of 2, not 2.5.

If the ‘GAL’ program needed an integer input, you would have to
write ‘GAL:(INT(33))", even though the number you are passing
doesn’t have a decimal point in it, The INT(number) function converts
the way the number is stored — and hence the way Organiser can
use it.

When things go wrong

When Organiser comes up against something it doesn't understand,
or if it finds an error in something you've entered, it will tell you —
and usually, it will tell you where it has found the mistake. For
example, if you're making a calculation that uses several programs
that you've written, and there's an error in one of them, Organiser
will not only announce the type of error it found, it will also tell
you which program has the error.

It goes even further. When the SPACE key is pressed — to clear
the error message from the screen — Organiser will often (but not
always) display the place where it found the error, with the cursor
marking the point. How close to the location of the error it gets
really depends on the type of error that has been made.

When making a calculation that uses a number of brackets, for
example, you may get the message MISMATCHED ()’s if there are
too many ‘closing’ brackets. On pressing SPACE, the calculation
will be displayed with the cursor under what Organiser believes to
be the offending bracket — the one it couldn't understand. If you
havetoo many ‘opening’ brackets, the message would be SYNTAX
ERR and on pressing SPACE, the calculation would be displayed
with the cursor at the point where Organiser believes there should
be a bracket.

The abbreviations used in error messages likely to be met when
making ealculations are

78

2.6 Using the Calculator

ARGS Arguments — the numbers passed to a function
ERR  Error

FN Function

PROC Procedure — another name for a program.

Handling programming errors is discussed in Chapter 3.17.

79



PART 3

Programming Organiser li

There are three aspects to programming. First,
there is the principle involved — how to set
about it and plan what you want to do. Second
there is the mechanical process of actually
entering your program, using the facilities pro-
vided. Third there is the programming language
— the special instructions that allow you to
achieve the result that you want. The first two
are dealt with in the first two Chapters of this
part of the book: the remaining Chapters deal
with the programming language.

3.1

THE PRINCIPLES OF PROGRAMMING

What is programming?

Quite simply, programming a computer means nothing more than
giving it a series of instructions to perform a particular job. The
program, once written, tested and saved, can be used over and over
again without having to re-enter the instructions repeatedly. All
that has to be entered is the information the program needs to work
on.
Thus, for regular tasks, a program is a great time and effort
saver.

The program is called the software, and the computer with all its
circuitry is called the hardware. Using a cassette recorder as an
analogy, the music one records is the software, the recorder itself is
the hardware. The tape cassette is the medium for carrying the
software: with Organiser Il, this medium is built in (the ROM and
RAM memory) — with provision for adding more (the Datapaks).

Programs have already been written and saved into your Organ-
iger II (in ROM), to provide you with the built-in facilities such as
the Diary and Alarm Clocks.

The interesting thing about programming is that, if you were to
give each of 100 programmers the task of writing a program to
handle a particular job on one particular computer, you would be
faced with 100 different programs. On the surface, they would all
perform the same job. But if you were to examine the actual
instructions, they'd almost certainly be completely different.

Some will require more memory space than others. Some will
operate faster when used. Some will be well planned and easy for
other programmers to understand. Some will be a hotch-potch of
instructions, Some will be more ‘user friendly’ - that is, will give
lots of prompts and help to guide the program user.

The reason why all the programs would be different is everyone
has their own ideas on how to tackle the requirement.

The truth of the matter is there is no righ! and wrong way to
write a program: only good ways and bad ways. If it works, it's
‘right’. If it doesn't, it's ‘wrong’. Later, when yvou become more
experienced, you will look back over your early efforts and think T
could have written that better — to take up less space, to work
faster, to be neater and more understandable, to be more user
friendly"”.

When you write programs for yourself, you can make them as
‘friendly’ as you wish: making them sherter and less space cons-

81



Programming Organiser Il

uming comes with skill, practice, and a deep understanding of the
language used.

Don't be put off by that word language: when you use a cale-
ulator, you are in effect programming 1t as you go along, using the
language of mathematics: ‘ +°' to add, -’ to subtract, and so on. The
difference between a calculator and a computer is that a computer
has many more instructions, and it lets you save your instructions
for future use.

The programming language built into Organiser II has about 120
different words, each one being a different instruction for Organ-
iser to do something. That may sound a lot compared with the
number a calculator has, but when compared with a foreign lang-
uage, you can see that it shouldn’t take too long to learn them.

In any event, you don't need to know all the words in order to write
a program. Just as with a foreign language, you can get by with
only a handful. (Many of the words in Organiser’s programming
language you may well never use anyway). The more you know, of
course, the more ‘fluent’ you will be as a programmer, and the
better your programs will be.

In addition to the program words, you need to know the grammar
and punctuation of the language - better known as the syntax. On
this score, computers can be unforgiving. They have been ‘told’ to
expect their instructions to be given according to specific rules. If
these rules are not obeyed, they don't know what to do, and will
either stop to report a programming error, give the wrong results,
or ‘crash out’ — that is, appear to be completely out of control and,
in the vernacular, ‘doing their own thing'.

There is one thing a program can never do — and that’s harm or
damage the hardware of the computer.

Defining the requirement

The first thing to do when writing a program is to define the
requirement completely, and as precisely as possible. Not in your
head — on paper. Make sure you have covered all aspects of the
requirement, including how you want to use the program.

If you want to use the program as a function when making
calculations, your requirement may well be no more than a
formula. Suppose, for example, you wished to write a function for
converting litres to gallons, or for calculating the percentage one
number is of another.

In both cases, a simple formula is used. Write the formula down,
se that you can see what the program has to do. Thus, for Litres to
Gallons you would put ‘Number of Litres x 0.22". For the Percentage
a first number is of a second number function you would put ‘100 x
First number/Second number’. Notice that the ‘unknown quan-
tities’ are defined as words — to be replaced by figures when the
program is actually used.

82

3.1 The principles of programming

If you want the program to perform a more complex task — to look
after club membership details, perhaps, or to help budget your
domestic accounts — the requirement will need to be more explicit.
You will need to set down quite clearly what the program has to do,
what you expect from it, and what information is needed to provide
the required results.

Let us take an example for demonstration purposes. We will plan a
program to calculate the materials required to decorate a room,
whether we choose to paper the room, or emulsion it.

First, let us set down the program requirements — the brief. We
want the program to tell us:

a) How many rolls of wallpaper we'll need.

b) How much emulsion we’ll need for the walls.
c) How many rolls of ceiling paper we'll need.

d) How much emulsion we’ll need for the ceiling.

Now we must set down the information that we're going to need in
order to make the necessary calculations.

a) The length of the room.

b) The width of the room.

c) The height of the room.

d) The length and width of the wallpaper,
e) The coverage of the emulsion.

Question: Do we want to take into account windows, alcoves and
doors? At the end of the day, window and alcove areas tend to
cancel each other out - with the error falling on the side of too
much of the material, rather than too little. So we will ignore them.
(Allowances can always be made when using the program).

Question: What units of measurement are we going to use — feet
and gallons, or metres and litres. Or a mixture? If we want both,
then we'll need to add to our program specification a way of
knowing which type of unit is being entered, and checks to ensure
that all the units used in any calulation are of the same {ype. For
demonstration purposes, we shall restrict our program to feet and
gallons: to use metres and litres, the figures can be converted before
they are entered into the program.

Now we need to put down the calculations that will be necessary.
First, to evaluate the amount of emulsion needed, we simply divide

the area by the coverage per gallon — both being measured in square
feet. Thus:

Gallons required = areafcoverage

We can go further: the area of the ceiling is simply the length of the
83



Programming Organiser Il

room multiplied by its width. The area of the walls is the area of the
long wall twice, plus the area of the short wall twice (ignoring
windows), or

2*length*height 4+ 2*width*height

This can be ‘simplified’ if we consider the area of one long wall and
one short wall together — height*(length + width). Our room has
‘two’ of these, so we can write

2*height*(length + width)

As you can see, this is a shorter way to writé down the required
calculation. Now, for the wallpaper calculation. Wallpaper rolls
are about 33 feet long and between 1ft 8 inches and 1ft 9 inches
wide. Assuming we want only whole lengths on the wall, we can get
the number of pieces that can be cut from a roll by dividing the
length of the roll by the room height, and ignoring any ‘remainder’.
We can get the number of pieces required to go round the room, by
dividing the distance round the room by the roll width. Thus:

Pieces per roll = integer (roll length/room height)
Pieces required = room perimeter/roll width

‘Integer’ in the first calculation simply means ignore any fractional
part the answer may have,

The number of rolls needed will be the total number of pieces
required, divided by the number of pieces that can be cut from a
roll. (These calculations ignore any pattern drop there may be on
the paper — this will tend to be allowed for by the fact that we've
included the windows in the measurements). If we take the roll
length to be 33 feet and the width to be 1ft 9 inches (1.75 feet), the
calculation becomes

Rolls required = (Room perimeter/1.75) [ integer(33/room height)
The perimeter of the room is, of course, 2*(length + width),

This will give you some idea of the information that you need to set
down at the initial stage of planning your program. Without a full
specification at the outset, you will find yourself trying to add bits
at a later date — not impossible, of course, but the more you try to
add, the more difficult it can become, and the program will be more
prone to error when it is first used. Also, by setting out any
calculations that are needed, you will be able to see common
elements.

Plan the program flow
This stage — called flowcharting — is rather like drawing up the

84

3.1 The principles of programming

blueprint for your program. It defines the way you are going to
provide the program requirement, step by step. It's a stage that
many programmers tend to ignore. A small proportion of them can
afford to - they can call upon previcus experience to know what
they're doing. The rest believe they belong to the small proportion,
and find their programs don’t run the way they should first time
round. They then waste time debugging their program - finding out
why it doesn’t work, and correcting it.

(Debugging comes from the days when computers used valves and
relays: insects were attracted to the light emitted by valves, sizzled
themselves on the hot glass, and inconsiderately dropped as corpses
into the delicate circuitry, causing all kinds of problem. It is
alleged that such an event occured to one of the computer pioneers
- who found a moth stuck between contacts of a relay. Thus, if
anything ever went wrong, it was blamed on a bug).

For you, the beginner, the message is clear: prepare a flowchart
?r at least a plan of action, however unecessary it may seem to be at

rst,

A flowchart sets out the sequence of instructions that the program
must follow. Quite often, a point will come in the sequence when
there is a choice of routes to be taken. In our ‘Decorarting mater-
ials' program, for example, if we decide on wallpaper, the program
will take one route, if we decide on emulsion, it will take another
route. A lest or an answer to a question is needed to ascertain
which route should be taken.

The sequence of events to calculate what percentage a first
number is of a second number is very simple:

Get the first number
Get the second number
Work out the answer
(Put the answer where it is wanted)

This is a straight plan, with no tests. But supposing we said that
our program should alweys find what percentage the smaller
number is of the larger number - so that it didn't matter what order
they were entered into the program. The flowchart could then be as
shown in Fig.3.1.1 (a) or (b).



Programming Organiser Il

a) b)
GET FLRST GET FIRST
HURBER MUMBER
GET GET
SECOND SETOND
WUREBLR NUNBLR

EHAP

THE WURBERE CALCULATE CALEULATE
ROUND

100" ELCOND .
FIRET et H‘%HEIQ

CALCULATE

100" FIRST
BETORD

Fig. 3.1.1 Flowcharts to calculate what
percentage a smaller number is of a larger
number, irrespective of input order.

Both the flowcharts show that having obtained the two numbers
needed to perform the calculation, a test must be made to see
whether the first number entered is larger than the second number
entered.

If it isn’t larger, we can make the calculation

100 * First number [ Second number

If it is larger, then in order to use the same part of the program for
the calculation (Fig 3.1.1 (a), we must change the two numbers over
— make the first number the second, and the second number the
first.

The alternative to swapping the numbers round is to perform a
different calculation if the first number entered is larger (Fig 3.1.1

(b)): 100 * Second number / First number

Already, we have two ways to solve the requirement! You can
understand now, perhaps, how different programmers arrive at
different solutions to the same problem. Both methods will work, so
neither is ‘right’ or ‘'wrong’. Furthermore, when we get to actually
writing out the program instructions, there will be even more
alternatives — all of them ‘right’, provided they work.

The important point to remember is that, with a flowchart, the
program sequence is made abundantly clear.

With large programs — or even moderately sized programs - the
first flowchart may simply outline the broad structure of the
program: each segment of it can then be broken down into its own
flowchart, and the segments of these broken down even further if
necessary. For example, a flowchart for an ‘arcade’ type of game
(such as the infamous Space Invaders) could be as shown in Fig.
3.1.2.

86

3.1 The principles of programming

¥

GET UP
GAME
CONDITIONS

MAKE MOVE
AHD
DIGPLAY 1T

UPDATE
ME
FATTERK

UPDATE
THE
ECORE

UPDATE
GAME
PATTERN

END THE
GAME

Fig. 3.1.2 Typical Arcade game flowechart

Most of the ‘boxes’ in this flowchart would need a further
flowchart to define more closely the actual programming sequence;
for example, the box to ‘Update the Score' could well become the
flowchart shown in Fig. 3.1.3.

Notice how the game keeps ‘looping’ back to the ‘Get Player’s
Move’ box until all the ‘lives’ are lost, and then there’s the option
to go and play the whole thing again. Notice, too, that one box —
‘U]_}dat.e.{]ame Pattern’ - appears twice: there will be no need to
write this part of the program twice. It can be written as a separate
program, and called when required from the main Game program.

87



Programming Organiser Il

Fig. 3.1.3
‘Update the Score’ flowchart

INCRERBE
SCORE WY
FOINTE
arLINED

DISFLAY
™E
ECOME . .. .
RAXE BOIRER

1

In fact, the way the programming language in Organiser IT works
means that every small ‘chunk’ of the overall program can (and
should) be written as a separate program — called a procedure. We
will come back to this in more detail later. It means that the main
program — which follows the framework devised for the master
flowchart — virtually just ‘calls up” all the sub-programs, and these
in turn call up smaller chunks, until you get to the short pro-
cedures, which do all the work. (See also Chapter 1.4 — Obeying
Program Instructions).

Not all programs will need lots of parts, of course — some will be
complete in themselves. The evaluation of percentages discussed
earlier would need only one procedure. Once written, this procedure
could be called by any other procedure — and so become part of a
larger program,

This is, in fact, one of the most valuable features of the Organ-
iser's programming language: it allows you to build up a library of
often used procedures, so that writing larger programs becomes a
simpler task. You can, in effect add words to the programming
language to suit your own needs.

Now, what about a flowchart for our demonstration program - to
calculate the quantity of materials needed when decorating. It's
worth spending a few minutes to see if you can devise an outline
flowchart for yourself. One possible solution is shown in Fig. 3.1.4.
Notice how, in this solution, the ‘guestions’ that need to be
answered by the program user - ‘ceiling or walls’ and ‘emulsion or
paper’ — are grouped together: when we program this part, we shall
cover them all in one procedure, and store the answers for subse-
quent use,

88

3.1 The principles of programming

Notice too how, after the required calculation has been comp-
leted, provision is made to

a) repeat the program for the same rocom without having to
re-enter the dimensions (you may wish to test out the
alternative material, or get the calculation for the other
part of the room),

b} repeat the program for a new room.

c) finish using the program,

GET ROOM
HEAGUREMENTS
LENGTH

ENULE ION

GET
COVERAGE OF

HALL EMULG1ON

CEILING

CEILING

CALCULATE CALCULATE CALCULATE CALCULATE
PAPER FOR PAFER FOR EMULGION EMULE10H
HALL CEILING FOR HALL FOR CEILING

DI1GPLAY
AHEHWER WITH
EULTABLE
HEEEAGE

MCGRE?

‘ SAME ROOM HEW ROOM

EAME ROCH,
HEH ROOM

L J

HO HORE

Fig. 3.1.4 Calculation of
Decorating Materials flowchart.

89



Programming Organiser ||

Summary

In this Chapter, we have seen that before starting to write out
program instructions, it is strongly advised that you take certain
steps:

a) Prepare a specification of all the things you want your
program to do, with as much detail as possible.

b)  Prepare a master flowchart, and if necessary ‘sub’ flowcharts:
when you come to actually writing out the instructions, this
will make your life very much easier — and will help to
eliminate bugs.

Naturally, at this stage of learning to program, it will all seem a
little mysterious to you. You will probably find it difficult to define
your program requirements, and even more difficult to prepare a
flowchart or to ‘structure’ it to achieve the desired results.

Take heart. When you understand what the actual instructions
are and know how to write them into the Organiser, you will
understand better what 1s required when making vour initial plans.
Come back to this Chapter after you have learned some of the
language, and it will undoubtedly make far more sense.

3.2

USING THE PROGRAM MENU

The Programming options

It would make for very slow and cumbersome reading if, through-
out the Chapters on how to use the language to write programs,
explicit instructions were given every time to explain how to enter a
program, save it, test it and so on.

It would be rather like giving someone directions to drive to a
particular town, and telling them where to change gear en route,
when to stop for a break, and go on.

Consequently, this Chapter is devoted entirely to how to use the
options provided from the Programming Menu. Refer to it as and
when necessary: gradually, the mechanical process of writing and
proving a program will become second nature - like driving a car -
and you will be able to concentrate more and more on the actual
programming process. Instructions will be given where necessary in
the language Chapters, particularly the earlier ones, to save you
too much turning back and forth.

The Programming Menu is selected by PROG on the main Menu,
and offers the following options:

EDIT LIST DIR
NEW RUN ERASE
COPY

To return to the main Menu from the PROG Menu, press CLEAR/
ON. Briefly, the options provide facilities as follows:

NEW Allows you to start work entering instructions on a new
program procedure, that is, one that you haven’t worked
on before. When you have finished entering instructions,
you can save your program ready for RUNning or
EDITing.

EDIT Allows you to go back and do some more work on a
program procedure that you already saved, perhaps to
make changes or corrections. When you have finished
your work, you can save it for RUNning and/or EDITing
again.

RUN Allows you to execute a previously translated and saved
procedure or program, either to test it or to actually use
it.

91



Programming Organiser i

ERASE Allows you to delete a procedure from wherever it has
been saved (RAM or a Datapak).

COPY Allows vou to copy a procedure or procedures from one
location to another — from RAM to a Datapak, for
example.

DIR Enables you to see a list of all the procedures vou have
written and saved in RAM or on a Datapak.

LIST Allows you to list the instructions that you have entered
to a peripheral device such as a printer. (You can, of
course, see the instructions when you choose the EDIT
option).

The NEW option

You would choose this option whenever you wish to create a new

program procedure.

a)

b)

c)

d)

Select NEW from the PROGramming Menu. :

The screen will display NEW followed by the letter indicating

the last location worked on - A: B: or C. It is strongly

recommended that you select RAM (A:) when writing and
editing programs (use the MODE key to change the location).

You must now enter the name of your program procedure.

The rules governing this name are:

1) It must be no more than eight characters in total.

2) It must start with a letter.

3) It can comprise only letters or numbers, except for the
last character which must be $ or % if the procedure is to
‘return’ a character string or an integer. (See the
examples below).

4} Tt must be different from any other name you have given
to a program procedure, (and any of the main Menu
option names, if you wish to install your program there).

Choose a name that will help you to identify the purpose of

the program procedure at a later date.

You can edit the name by using the LEFT and RIGHT keys to

postion the cursor, and the DEL key or DEL plus SHIFT keys

to erase unwanted characters.

When you are happy with your entry, press EXE.

The screen will display the name you entered, followed by a

colon.

If a parameter is to be passed l¢ your procedure from the

Calculator or from another procedure, enter the name you

intend to use for that parameter within this procedure, within

brackets. If more than one parameter is to be passed to the

procedure this way, separate each from the previous one by a

comma. The kind of value or information being passed in must

be followed by its type identifier.

92

3.2 Using the program Menu

e)

Example 1: If you were writing the procedure for percentages discussed
in the previous Chapter, which is to ‘return’ a floafing point value, and
you chose the names for the First and Second floating point input
parameters as ‘F" and 'S’ respectively, your entry would then be as
follows:

PERCENT: (F.S)

Exemple 2: If you write a procedure called TEXT, which is to ‘return’ a
character string, and you wished to pass in an integer parameter called
‘W, the procedure name must end with §, and the input parameter must
end with %:

TEXTS: (Wh)

If you are not passing a value into the procedure es a
parameter (there are alternative methods), simply press EXE.
In any event, you can always add or change the parameter
input information when EDITing your procedure. What you
cannot do is change the procedure name - so be sure it is has
the correct identifier if the procedure is to relurn a value or a
string.

Entering the program from here on, editing it and saving it when
you are ready, is identical to the EDIT option.

The EDIT option

You would choose this option whenever you wished to change or
add to a program procedure that you have previously saved. You
must, of course, know the name you gave the procedure and the
location where it is saved. (See The DIR option).

a)

b)

Select EDIT from the PROG Menu.

The screen will display EDIT followed by a letter indicating
the last location worked on.

Select the location of the program procedure you wish to edit
(A:, B: or C:) by pressing the MODE key. (If Datapaks are not
connected, MODE will have no effect),

Enter the name of the program procedure you wish to edit. If,
for example, you wish to make some changes to a procedure
called 'TEXT$’, previously saved to RAM, the screen would
look like this after your entry:

93



Programming Organiser Il

EDIT A:TEXTS%

It doesn't matter whether you use capital or lower case letters.
You don't enter any ‘bracket’ information.
(If you wish to clear the program name to enter another, press
CLEAR/ON: pressing CLEAR/ON a second time will cancel
the edit operation and return you to the PROG Menu).

d) Press EXE.
The screen will display, on the top line, the name of your
program procedure followed by a colon: if you are using the
parameter method of passing values to the procedure, these
uirjill be shown, in brackets, after the colon just as you entered
them.
The second line of the display will show the first line of your
program.

You are now in a position to edit your program procedure. The use
of the keys during editing is as follows.

UpP This moves the position of the cursor to the star! of the
previous line.

DOWN This moves the position of the cursor to the start of the
following line.

LEFT This moves the position of the cursor one character to
the left — moving to the last character of the previous line
when the beginning of a line is reached.

RIGHT This moves the position of the cursor one character to
the right — moving to the beginning of the next line when
the end of a line has been reached.

DEL This deletes the character to the left of the cursor.

If the cursor is positioned at the extreme left of a line,
pressing DEL causes that line to be shifted up to join the
end of the previous line. All the following lines are
moved up.

If DEL and SHIFT are pressed together, the character
under the cursor is deleted. If the cursor is at the extreme
right of a line, the next line down is brought up so that
the two lines become one, and all the ensuing lines are
moved up.

EXE This key produces the effect of a ‘carriage return’ on a
typewriter: it ends the entry on the current line and
places the cursor at the beginning of the next line down.
It is used to produce the following results.

Ending a program procedure line
Each complete program line should be terminated
by pressing EXE when the cursor is at its end.

94

3.2 Using the program Menu

Breaking a line
If EXE is pressed while the cursor is in the middle
of a line, a new line will be created below that line,
and all other lines following it are moved down. The
new line will contain all the characters that were
under and to the right of the cursor on the original
line.

Inserting a new line
If EXE is pressed while the cursor is at the end of a
line, all following lines will be moved down and a
space created for a new line to be entered: the
cursor will be positioned at the start of this new
line, ready for your entry.

CLEAR/ON
This key clears all the characters from the line on which
the cursor is placed, and leaves the line blank ready for a
new entry. If the line is already empty, it deletes the line.

To make an entry

Press the required character key, as normal: the entry will be made
at the cursor position, and the cursor shifted right one place to
mark the point for the next entry. Note that if the cursor is a
flashing block, you will be entering letters, if it is an underline, you
will be entering the characters printed above the keys.

When you have finished editing
Press MODE. The screen will then display a further Menu:

TRAN SAVE QUIT

You make your selection from this Menu in the same way as you do
from other Menus. The options are;

TRAN This option TRANslates your program from the Organ-
iser's programming language to a language that the
machine uses. You must choose this option before you
can run the program. A message is displayed on the
screen telling you that translation is in progress.

If you have made a syntax error in your program (a
spelling mistake in one of the language words, for
example), it will be found during this translation process
— which then stops, and the secreen will display an
appropriate message. Pressing SPACE returns you to

95



Programming Organiser Il

the program procedure in the EDIT mode, with the cursor
positioned on the line where you have made a mistake,
ready for you to make the correction.

When the translation process has finished, the screen
will display the message SAVE, followed by a location. If
Datapaks are connected, you can select these to save
your written instructions (the source instructions) and
the translated program (object code), by using the MODE
key. You are strongly advised to select ‘A:" — to save your
program in RAM — until it has been thoroughly tested and
you are sure you will not want to change it. (See Chapter
1.2).

Press EXE to save your program.

SAVE This option enables you to save a program without
having it translated first. You may choose to do this if
you have entered only part of the program procedure,
and wish to continue at a later time. Programs saved
without being translated first cannot be run.

Note: When saving an untranslated program, be sure you are saving it

in RAM —"A:", You will lose memory space in your Datapaks very
quickly if you don’t.
A program procedure saved in RAM overwriles any existing
procedure with the same name. A procedure saved to a Datapak
does not overwrite any existing procedure of the same name: the
existing procedure is ‘locked up' so that it cannot be used again,
and only the newly saved procedure can be accessed.

QUIT This option allows you to cancel your entire edit. It does
not erase any previously saved versions of the program.
You may choose to QUIT a program if you have merely
examined it to see what it contains. When Q is selected,
the screen displays the message:

ouIT
ARE YOU SURE Y/N

Pressing N or CLEAR/ON returns you to your program.
Pressing Y returns you to the PROG Menu.

The RUN option
This option enables you to run a trensleted program either for
actual use or for test purposes.

a) Press R to select RUN from the PROG Menu.
b) Use the MODE key, if necessary, to select the location of the
saved program,

96

3.2 Using the program Menu

c¢) Enter the name of the program procedure you wish to run,

Note: 1) Your program procedure may call other procedures: this doesn't
matter — only the location of the named program procedure is required.
2) If your program procedure uses the parameter (brackets) method of
passing information to it, it cannol be run by using the RUN option.
You must write a test program which calls the procedure, correctly
passing the required values within brackets. Alternatively, you can
return to the main Menu and enter the CALC mode to test the
procedure, Thus, if your procedure is 'PERCENT:(F,SY, vou would
enter CALC and type in ‘PERCENT:(2,")' - with actual numbers in the
brackets, separated by a comma.

d) Press EXE.
Your program will run, and when finished, you will be
returned to the PROG Menu.

To pause the program while it is running, press CLEAR/
ON: this ‘freezes’ the program. It can be re-started by pressing
any other key.

To quit the program, press CLEAR/ON followed by Q. The
screen will display the message ‘ESCAPE’, followed by the
location and name of the procedure that has been interrupted.
Pressing CLEAR/ON or SPACE returns you to the Menu.
This facility can be extremely useful to abort a program that is
‘running wild’ — provided you have not disabled the ‘escape’
facility within your program, and provided that the program is
not waiting for a character INPUT.

During the running of your program, if there are any programming
errors (rather than syntax errors, which are usually detected at the
Transslation stage), Organiser will stop and report the error, an”
will tell you in which procedure the error occured. On pressin
SPACE, if the source of the procedure is available (you
inatructions), the top line of the sereen will display the location anc
name of the offending program procedure, and the bottom line will
display the message ‘EDIT Y/N".

If you choose to edit the procedure {(press Y), you will be put in the EDIT
mode, usually with the cursor flashing at the point in the program
where the error was detected. This enables you to study the line
and correct it (if indeed the error is there).

If you do not choose to edit the program at this time, press N.

The ERASE option

This option allows you to remove a program procedure from
memory. If the procedure is in RAM, the space it occupied is made
available for further use. If it is on a Datapak, the space it occupied
is ‘locked up’ and cannot be used again.

a) Select ERASE from the PROG Menu.

97



Programming Organiser Il

b} Press MODBE, if necessary, to select the location of the saved
procedure,

¢}  Enter the name of the procedure you wish to erase.

d) To abort the erase operation at this stage, press CLEAR/ON
twice. You will be returned to the PROG Menu.

e) Press EXE.
The second line of the screen will display the message "ERASE
Y/N'. Pressing N or CLEAR/ON returns you to the PROG
Menu. Pressing Y erases both the translated version, if pro-
duced, and your written version of the named program, then
returns you to the PROG Menu.

The DIR option

This option enables you to see a list (DIRectory) of all the program
procedures saved to a particular location.

a) Select DIR from the PROG Menu.

b}  Press MODE if necessary to select the location of the program
procedures you wish to list.

¢) Press EXE repeatedly to display each procedure name in turn.
Pressing EXE when you reach the END OF PACK message will
take you back to the beginning of the list.

d) Press CLEAR/ON at any time to return to the PROG Menu.

The COPY option

This option enables you to copy one or all of the program pro-
cedures in one location to another location. For example, you may
choose to transfer from RAM to a Datapak a program that you have
thoroughly tested, and know you will not wish to work on any
further.

The destination of the program(s) to be copied must be different
from the source: if you do not have a Datapak connected, you
cannot make copies.

Note that copying to a Datapak places a greater drain on the
battery supply: be sure your battery is fairly fresh before attempt-
ing to copy program procedures. Should you get the LOW
BATTERY message, switch off immediately and replace the
battery as soon as possible.

To make a copy:

a) Select the COPY option from the PROG Menu.
The sereen will display

cary
OBJECT ONLY Y/N

98

3.2 Using the program Menu

b)

c)

d)

e)

d)

Organiser is asking you whether you wish to copy just the
translated version of the program (the object code) or whether
you want to save the translated version and your written
program.

If you copy only the translated version you will not be able to
use the copied program for editing. Thus, if you then go on to
erase the program from its original location, you will not be
able to edit it again.

If you are sure that your program needs no further work, you
need copy only the translated version (the object code): this
will require less than half of the memory space needed to save
both the translated version and your own written version.
Press Y if you want to save the translated version only.

Press N if you want to save both versions.

Press CLEAR/ON {wice if you wish to cancel the copy opera-
tion.

The screen will display ‘FROM’.

Enter the current location of the program procedure(s) you
wish to copy (‘A:’, ‘B2’ or 'C:').

Enter the name of the procedure you wish to copy, 1rnmedl—
ately after the colon, then press EXE.

If you wish to copy all procedures from the specified location,
simply press EXE,

The screen will display ‘TQ’ on the second line.

Enter the location you wish to copy the program procedure(s)
to. CA:, ‘B or ‘C). This must be different to the current
location.

If you wish to rename your copied procedure, enter the new
name. But be careful: if the procedure is ‘called’ by other
procedures, its name will have to be changed in those too.
Press EXE.

The screen will display the message ‘Copying...". The time
taken by the process depends on the amount to be copied.
When copying is complete, you will be returned to the PROG
Menu.

Note: If a procedure of the same name already exists at the destination
location, that procedure will be deleted and the copied version will take
its place. There cannot be more than one procedure with the same name
at any location.

99



Programming Organiser Il

The LIST option

If you havq a peripheral device such as a printer connected to
Organiser via an RS232 Link, you can list a program procedure you
have written on that device.
a)  Select the LIST option from the PROG menu.
The screen will display ‘LIST A:' (or ‘B, or ‘C:).
b) Use the MODE key to select the location of the saved
: pEmg-ram you wish to list.
C nter the name of the program procedure you wish to list
d) PressEXE, d .

When listing is complete, you will be returned to the PROG Menu.

100

3.3

INTRODUCING THE PROGRAMMING
LANGUAGE

The types of instruction

Organiser II's programing language ‘OPL comprises a number of
words or abbreviations. An example of one of the words is PRINT,
and an example of an abbreviation is CLS - which stands for ‘CLear
the Screen’,

Each word or abbreviation tells the Organiser to perform a
specific task, and in many instances, needs to be followed by
information to enable the Organiser to perform that task.

PRINT, for example, tells the Organiser to ‘print’ on the screen
the information that immediately follows it. The instruction com-
prises the word PRINT and the information that follows it. CLS on
the other hand, is a complete instruction in itself - it needs no
further information. It says to Organiser - clear the screen of
whatever is currently displayed, and position the cursor at the top
left hand corner of the screen.

Some of the words work in ‘pairs’ or groups. D0 and UNTIL are an
example of a pair of words. When Orpganiser sees the instruction
DO, it expects to find, later on in the same program segmenlt or
procedure, the word UNTIL. If UNTIL is not found, it has problems.
And so will you.

Some of the words need to be followed by information or para-
meters contained in brackets. If you have read Chapter 2.6 (Using
the Calculator), you will have met a few of these already — SIN(),
LOG{), and so on. These are numeric functions, because they work
something out and give a number as a result.

There are also functions that work on letters or characters. They
work something out and give a character or characters as a result.
One example of this type of function is ‘UPPERS ()". This function
needs text or characters as the parameter in the brackets, and it
instructs Organiser to - “look at the characters, and turn every
lower case letter into a capital letter”,

Did you spot that $ sign after the word UPPER?. It is not a
mistake. It identifies the fact that UPPER is a language word that
returns characters and not numbers. All of the OPL functions that
return characters rather than numbers are identified this way - just
as your own functions have to be so identified.

Why the § sign? In computer terminology, a series of characters
is called a string. One cannot use 'S’ to identify a a function that
works with a string — it could be confused with something else. So
the $§ sign is used. When you see this sign, don't say ‘dollar’, say
‘string’. We'll be discussing strings in greater detail later on,

101



Programming Organiser Il

Thus, in OPL, there are words that are complete instructions in
themselves (CLS), there are words that need information of some
kind after them to complete the instruction (PRINT), and there are
words that work in pairs or groups (D0 and UNTIL). These types of
word are called Commands.

There are also words that need parameters contained in brackets
after them to complete the instruction (SIN{} and UPPERs ()): this
type 1s known as a function. A function returns a value or a string
(whereas a Command doesn’t return anything). If a function
returns characters rather than numbers, its name will end with a §,
and it is known as a string function. Not all functions require
parameters as part of the instruction: some, such as GET and
DATIMS, get the information they need from other sources - such as
the keyboard, or RAM.

The parameters that a function needs are also called its argu-
ments.

Separating the instructions

Each OPL word and the information it may need associated with it
is one instruction or statement. A program is a series of statements,
written in sequence to produce the required result.

However, Organiser needs to know where one statement ends and
another starts, For example, if you wrote ‘PRINT something CLS' -
meaning “display something on the screen and then clear the
screen’” (not a clever sequence if you want to read what was
displayed!), Organiser would be confused. It would print
‘something’, and then go on and try to print ‘CLS’, rather than clear
the screen, as you wanted. It would see all the instructions as one
statement.

Consequently, each statement must be separated from the next.

There are two ways of achieving this in Organiser II,

The first and simplest way is to ensure that each statement is on
its own line. You achieve this by pressing EXE after entering each
complete statement into Organiser. Pressing EXE acts like a
carriage return on a typewriter. It finishes the line, and puts you
down to the next line. More than this, it actually puts a special
character at the end of the line (which you cannot see) — a
character that Organiser recognises as marking the end of a
statement.

So, using this method for the (silly) ‘PRINT something CLS'
example, you would enter each complete instruction or statement
and press EXE so that it appears on its own line:

PRINT something
CLS

The second method is to enter a space folowed by a colon after the
instruction, then enter the next instruction. Thus:

102

3.3 Introducing the programming language

PRINT something :CLS

You can put (almost) as many instructions on one line as you like
using this method — always finishing with an EXE keypress at the
end. However, it makes your programs less easy to read when
editing them (some of the instructions will ‘vanish’ off the screen,
and you will have to keep using the cursor keys to scroll them back
into view). Furthermore, your program instructions will take up
slightly more room in Organiser II: instead of needing memory
space for one EXE character, as in the first method, each instr-
uction needs memory space for a space character and a colon
character, to mark its end. The space required by the translated
program is not affected.

Many programmers like to keep related statements on one line.
Some have access to a printer to list their programs, so the number
of statements one line doesn’t matter — they will all be ‘on view'.

But for those learning to program, the advice is — one statement
per line. It is less likely to produce errors.

The way you end an instruction mus!? always be one of these two
methods. It is one of the ‘rules’ of the language. Like most rules,
there is one exception - EXE need not be used to terminate the very
last instruction of a procedure,

The unknown quantities — variables

When you write a program or procedure, you will undoubtedly
want it to work on different sets of figures or characters each time
you use it. You could re-enter the program to edit the values you
wish to change - just as you can change the numbers when using
the Calculator — but this, obviously, would be an extremely slow
and laborious process. And quite unnecessary.

Organiser II allows you to set aside memory boxes to hold your
‘unknown’ quantities, and to give those boxes names. You then use
those names to identify the unknown quanities.

The unknown quantities are called variables.

We have already seen variables ‘in action’ in Chapter 3.1, when
discussing for example the ‘percentages’ calculation: we called the
two numbers involved ‘First Number’ and ‘Second Number',

The names given to memory boxes that are going to store
variables must obey certain rules. Organiser must know, for
example, what type of information is being stored in the boxes.
(This was covered in Chapter 1.2).

The way you tell Organiser to reserve memory boxes will be
discussed later: here we shall concern ourselves with the different
types, and how they are identified by their name.

The types of data information that can be stored are

Floating point numbers.
Integer numbers,

103



Programming Organiser I

Character strings.
Each of these types is stored in a different way in the Organiser.
The identifier you give to a variable name tells the Organiser what
type of information it can expect to find in the associated memory
boxes.

Floating point variables are those that have — or can have — a
decimal point in them somewhere. The names for memory boxes set
aside for floating point numbers have no identifier; the lack of an
identifier in a variable name tells Organiser that the name refers to
a floating point value.

When writing programs, actual numbers (rather than variables)
must have a decimal point to identify them as a floating point type.
Thus, 10.0 is seen to be a floating point number, but 10 is not.

Every floating point number or variable takes up eight memory
boxes. Calculations made with floating point numbers are to 12-
figure accuracy, and the numbers can (virtually) be of any magni-
tude.

Integer variables are those that can never have a decimal point in
them. An integer variable is identified by a % symbol at the end of
its name (NUMBERY,’ for example).

When writing programs, an actual number 1s identified as an
integer if it doesn’'t have a decimal point. Thus, in a program, ‘10’ is
seen to be an integer, and ‘10.0’ is seen to be floating point.

If one integer number is divided by another, only the ‘whole’ part
of the answer will be given - any fractional part is lost. In other
words, the answer is also an integer.

On the other hand, if an infeger number is used with a floating
point number in a calculation such as multiplication or division -
the answer produced will be a floating point number,

When programming, this is true whether the numbers are
‘variables’ referred to by their name, or actual numbers. For
example, if a program includes an actual calculation such as 9/7,
the answer will be 1: Organiser sees both of these numbers as
integers and produces an answer that is an integer. To get the full
floating point answer, one of them must have a decimal point in it -
thus either 9./7 or 9/7. would do.

(Note that when using the Calculator, all numbers, with or
without decimal points, are treated as floating point numbers.
Program procedures intended for use in the CALC mode must take
this into account if they contain integer values).

Each integer number or variable requires two memory boxes only
(compared with eight for floating point numbers). In addition to
needing less storage space, calculations made using only integer
numbers are considerably faster. However, in Organiser Integer
numbers can be in the range -32768 to + 32767 only. Values outside
this range will produce an INTEGER OVERFLOW error message.

104

3.3 Introducing the programming language

Character strings are a sequence of characters. The maximum
length of a string variable — that is, the maximum number of
characters the string variable can contain - is decided by you when
you tell the Organiser to reserve space for the variable, The highest
number you can specify is 2535.

A character string variable is identified by a § symbol at the end
of its name. Thus ‘TEXT$' 1s recognised by Organiser as a string
variable.

A sequence of actual characters used in a program is identified by
placing the sequence in quotes. Thus, the actual character string
HELLO, if used after, say, a PRINT command, would be identified as
a string as follows

PRINT “"HELLO"

If quotes are not used for this string, Organiser would identify
‘HELLO' as a floating point variable — and if you haven’t reserved
space for it, you would get an error. The maximum length of a
string within quotes is 255 characters.

If the character string contains numbers, Organiser cannot use
those numbers in a calculation: they are seen to be characters and
not a value. OPL has provision for converting numbers in a char-
acter string to actual numbers, for calculation purposes — and for
converting actual numbers to a string for combining perhaps with
other characters.

Array variables

The variables discussed in the previous paragraphs were of the
‘single’ type - that is, each name related to one item of information.
There are many instances, however, when you will want to have a
group of closely related variables with the same name.

For example, you may have a series of costs related to one
particular project. You could give the variable for each cost a
different name - COST1, COST2, COST3, and so on. This could,
however, make writing the program lengthy and tedious.

Organiser provides a solution for this type of problem by
allowing you to have an array variable.

An array variable is one where each individual item of infor-
mation is identified by an index number, enclosed in brackets after
the main name for the variable.

Taking the ‘cost’ example again, the variable for each individual
cost would be identified as COST(1), COST(2), COST(3) and so on.
(How you tell Organiser to reserve space for an array variable will
he discussed later — it is actually easier and shorter than telling it
to reserve space for each variable as an individual item).

On the face of it, these array variables don’'t seem to be any
advantage — they appear to be longer, for a start. However, the
number in the brackets can itself be a variable — and this can make

105



Programming Organiser |l

for much shorter programs. This will become clear when we start
preparing some sample programs. But to give you an idea now, let
us suppose that it is necessary to make a fairly lengthy calculation
on each of the cost items in turn.

If each item has its own name — COST1, COST2 and so on — the
calculation would have to be made each time, with the appropriate
variable name used in each calculation. Alternatively, the cale-
ulation could be a separate procedure — and it would then be
necessary to pass the value of COST1, COST2 ete into that pro-
cedure. Both of these alternatives would entail repeating a series of
instructions with only minor changes each time.

If an array is used, however, the calculation can be performed on
the array, with an integer variable within the brackets as the index:
the calculation would use something like COST(N%,) as the variable
on which it works. Now all that is needed is to repeatedly perform
the calculation, just changing the value of ‘N%,’ each time. This, as
we shall see, can be accomplished very easily with just one set of
instructions.

Array variables can be of exactly the same types as ordinary
variables - floating point, integer and character string - and are
identified in the same way. The only difference is they have
brackets after them, enclosing the data that identifies their pos-
ition in the array. Examples of array variables are

Floating point COST(3)
Integer CARD%(5)
String MESSAGES(T)

Thus 'COST(3)" is the third element in the floating point array
COST(): the total number of elements in the array will have been
determined by you when telling Organiser to reserve space for the
array.

Choosing variable names

The rules governing the choice of the name you give to a variable
are very simple:

a) They must contain no more than eight characters, including
the identifier.

b) They must start with an alphabetic character.

¢} They must contain only alphabetic characters and numbers.

d) They must end with the appropriate identifier — % for integer
variables, § for character string variables.

These rules apply to both single variables and array variables: with
array variables, the brackets and anything in them does not count
towards the maximum of eight characters permitted in the name,

106

3.3 Introducing the programming language

This allows you to choose names which will help you to identity
the purpose of the variable when you are writing your program. For
example, CHEQUE?,, AMOUNT and NAMES$ could identify three
variables for holding a cheque number (which will never have a
decimal point — so it can be an integer type), the amount a cheque is
made out for (which could have a decimal point - for pence - and so
must be a floating point type), and the name of the person it is made
out to (which will be a character string).

You can, if you wish, use the same name for variables with
different identifiers. In the above example, you may for instance
choose to call them PAYOUTY, (for cheque numbers), PAYOUT (for
the amount) and PAYOUTS$ (for the name). Organiser Il will recog-
nise these as different variables, because their identifiers are
different.

When you become more experienced, you may choose to use
shorter names - down to single or double letters: longer names
obviously take up more space within Organiser. However, at first
clarity and understanding of your program is meore important, so
choose names which suit your purposes best.

LOCALs, GLOBALs and parameters

When you write your programs, vou must tell Organiser what space
to reserve for the variables that you wish to use. You will recall,
from Chapter 1.4, that each program procedure is brought into RAM
for '‘processing’ only as and when it is needed. That is the time
Organiser needs to know what space is required for the variables,
or where to find them if space has been reserved elsewhere.

Organiser will reserve space for a variable in one of three
different ways, depending on how the variable will be used. It is up
to you, the programmer, to tell Organiser which way to use. The
decision is yours entirely — Organiser obeys your instructions
implicitly. But it expects you to follow the ‘rules’ of the way you
select: if you don’t, when you come to use a variable, Organiser may
not be able to find it, and an error will occur when the program is
used.

The three different ways are as LOCAL variables, as GLOBAL
variables, and as parameters.

LOCAL variables are used only in the procedure in which they are
named or ‘declared’. They are declared at the beginning of the
procedure, and space is reserved for them for as long as the
procedure is in its ‘running position’ in RAM. When all the instr-
uctions in the procedure have been completed, the procedure is
removed from RAM - and the space reserved for the LOCAL
variables is cleared, ready for further use. If two or more pro-
cedures are in the ‘running area’ at the same time (because an
instruction in one procedure tells Organiser to perform another
procedure), each procedure has its own memory boxes reserved for

107



Programming Organiser ||

Can use
GLOBALS B.C.E

Procedure 3
GLOBAL E

Procedure 1 | CALLS Procedure 2
GLOBAL B GLOBAL C
CALLS
Procedure 4
Can usa Can usa GLOBAL D

GLOBAL B GLOBALS B.C

Can use
GLOBALS B.C,D

Fig. 3.3.1. The use of GLOBAL variables

its own LOCAL variables. ‘

This means that if the same name is given to a LDCAIL variable
in two different procedures, then the variable will be quite dl_stmct
in each procedure. Thus, a LOCAL variable called COUNTY, in one
procedure would be quite different — and unaffected by — a LOCAL
variable called COUNT?, in another procedure. Each would have
space reserved for it by Organiser, and the two would be treated as
separate entities.

%Iowever, it is possible to pass the value held by a LOCAL
variable on to another procedure as a parameier. For example, if
LOCAL variables in one procedure are called ‘WEE’ and ‘BIG’, the
values held by those variables can be used as parameters when
calling the procedure named ‘PERCENT:’ (by entering them within
the brackets — ‘PERCENT:{(WEE,BIG)'. We will discuss parameters
later on,

GLOBAL variables can be used in the procedure in which they
are declared, and in any procedures successively called by that
procedure. A GLOBAL variable cannot be used in any procedure
that comes earlier than the one in which it is declared. This is
illustrated in Fig. 3.3.1 which shows a possible sequence of
Procedures.

108

3.3 Introducing the programming language

In this sequence, the GLOBAL variables B, C, D and E can be used
in the Procedures as follows:

Variable B can be used in all Procedures.

Variable C can be used in Procedures 2, 3 and 4.

Variable D can be used only in Procedure 4.

Variable E can be used eniy in Procedure 3.

Variable C cannot be used in Procedure 1 because space will have
been reserved for it after Procedure 1 has been put into the running
area of RAM. Organiser looks back to find the variable, not forward:
to find Variable C when cbeying the instructions of Procedure 1, it
would need to look forward to Procedure 2, (In actual fact, if Fig
3.3.1 represented the entire program structure, there would be no
point in making Variables D and E ‘GLOBAL’, since each can be
used only in the procedure in which it is declared.)

Just as with LOCAL variables, the information contained in
GLOBAL variables can be passed on to other procedures as a
parameter,

Whereas it is fine to use the same name for LOCAL variables in
different procedures, it can be dangerous to repeat the name given
to a GLOBAL variable in more than one procedure.

Parameters are the variables that appear in brackets immediately
following the name of a function type of procedure,

When you write such a procedure, you give these variables names
(e.g. ‘F' and ‘S’ in PERCENT:(F,S)). When Organiser loads the
procedure into the running area of RAM, it looks back at the
‘calling' procedure to get the information to be used, and copies it
into memory boxes reserved for the parameter names you chose.

Thus, when you want to use the PERCENT:(F,S) procedure from
the Calculator (say), you would enter ‘PERCENT:(35,90)' — or
whatever numbers you choose — to ‘call’ that procedure. Organiser
will place the procedure PERCENT:(F,S) into the running area of
RAM, and will reserve memory boxes for the parameter names ‘F’
and 'S’ for use in the procedure. It will copy into the memory boxes
reserved for ‘F' and 'S’ the actual information ‘35" and ‘90",

The memory boxes reserved for parameter names within a
procedure cannot be used anywhere else except in that procedure —
just as with LOCAL variables. The difference is, whereas the
conténts of memory boxes reserved for LOCAL variables can he
changed, the contents of parameter memory boxes carnot be
changed.

Normally you would use different variable names when calling
the procedure — 'PERCENT:{(WEE,BIG)', for example. In this inst-
ance, Organiser uses the memory boxes allocated to the names ‘F’
and ‘S’ to store the information it finds in the memory boxes
allocated to “WEE’ and ‘BIG".

It is important to remember that this type of procedure can be
run only by being called from other procedures (or from the
Calculator, if it is a numerie function), and that the input para-

109



Programming Organiser |l

meters — whether values or variables — cannot be changed by the
procedure.

The way Organiser IT works when it reaches the name of a variable

when running a program is this.

a) It first tries to find the variable's name among the parameter
names (if any) and the LOCAL variables declared at the
beginning of the current procedure.

by If the variable’s name is not found, it then searches among the
GLOBAL variables declared in the current procedure,

c)  Ifit still cannot find the named variable, it looks back at the
GLOBAL variables declared in previous procedures still in
RAM. Remember that, if one procedure ‘calls’ another, the
‘calling procedure’ will still be retained in the running area of
RAM because it hasn’t yet been completely processed. When a
procedure has been completed , it is removed from the
‘running area’ of RAM to make room for another procedure.
(See Chapter 1.4).

If Organiser still cannot find the named variable, it stops pro-
cessing the program to announce MISSING EXTERNAL -
followed by the name of the variable it couldn’t find. Organiser
assumes that the missing variable should have been declared by a
previous procedure, This may not always be the case: the missing
name may be that of a LOCAL variable that you mis-spelled,
declared as a different type, or simply forgot to declare.

Non-declared variables

Before we leave the subject of variables, it should be mentioned
that there are two types of variable that do not have to be declared
as GLOBAL or LOCAL.

The first of these relates to the memories used by the Calculator -
designated ‘M0’ to ‘M9’. These are accessible to programs at any
time, by simply writing their ‘name’ (e.g. ‘M3'). Any information
you store in a caleulator memory stays in that memory — for use
when in the CALC mode. Similarly, any information stored in such
a memory whilst in the CALC mode is available for use in a
program. These memories are of the floating point type.

The second type of variable — or more strictly, parameter — is used
when creating, opening and using files. As you will see, when
creating or opening files, part of the process entails defining or
naming fields: the field names are used as variables controlling the
input and output to the files, and are considered to be ‘declared’
when the file is created or opened, From that point, until the file is
‘closed’, these ‘field name' variables behave as GLOBALs. This will
be discussed in greater depth in the file-handling Chapters.

110

3.3 Introducing the programming language

When things go wrong

It would be as well to realise, at this point, that inevitably mistakes
will happen when you are programming. The programmer who has
never made a mistake doesn't exist.

Four kinds of thing can go wrong.

a) A command or instruction can be incorrectly written — spelled
wrongly perhaps - or incorrectly used.

b) Information hasn't been passed correctly from one program
procedure to another — variables are used incorrectly, or space
has not been set aside correctly for your variables.

¢} The logic of your program could be wrong: it doesn’t perform
the way you believe it should.

d) You make a spelling mistake in a message that is to be
displayed on the screen.

Mistakes in category (a) will be discovered by Organiser when your
program is TRANslated into the instructions that Organizer uses to
run your program. In most instances, it will announce precisely the
type of mistake you have made (NAME TOO LONG, BAD
IDENTIFIER, SYNTAX ERR and so on), and, on pressing SPACE,
will return you in the EDIT mode to your program listing, with the
cursor at the point where the mistake was found. You can then
examine your entry in the light of the error message supplied, and
make a correction.

Mistakes in category (b) will usually be discovered when you run
your program: the program will stop running, and the screen will
display an error message related to the problem it encountered. It
will tell you which procedure contains the error and, on pressing
SPACE, will ask you if you wish to EDIT that procedure. If you
press Y, you will be put in the EDIT mode, with the cursor flashing
ut the point in the procedure listing where Organiser could no
longer obey vour instructions because of the error. In most inst-
ances — but not always — this will be close to where an error has
been made.

Mistakes in category (¢) are more tricky ... the nightmare of all
programmers. All you can do is check back over your flowcharts
(provided you prepared them!), check back over your logic, and try
lo analyse, from the way the program is running, what is going
wrong. Sometimes it helps to write extra fest programs to see
exactly what is occurring when your program is running.

The worst thing that can happen when a logic error occurs is that
Organiser appears to have a mind of its own - wild things
nppearing on the screen, perhaps, or it may even seem to ‘go dead’.
This is the dreaded crashing out you may have heard about. In these
circumstances,

111



Programming Organiser Il

Keep cool.
Press CLEAR/ON.
Press Q (for Quit).

This should cause the program to stop, and the message ESCAPE
to be displayed followed by the procedure in which the break
occurred. Pressing CLEAR/ON again will return you to a Menu,
and you can start making your investigations. If you cannot stop
the program running this way, you have but one recourse ... remove
the battery and press CLEAR/ON for a second or two. You will
completely reset Organiser, and lose everything in RAM (but not on
Datapaks) in the process. Oh dear.

Note; 1) If you have used the ESCAPE OFF command in your program, you
will not be able to stop it the way just described and you will definitely
have to remove the battery. Take heed!

2) Programs can also be locked into ‘infinite’ loops by careless use of
the OPL instructions ONERR label and DO/UNTIL, discussed in later
Chapters.

Errors in the logic of a program can produce the most obscure
results, often in a different part of the program to where the error
has actually been made. Sometimes the error will occur only under
certain conditions — when a variable has one specific value, for
example. Locating such errors needs careful analysis of the pro-
gram step by step. This is discussed in more detail, together with

methods that can be used to avoid errors developing, in Chapter
3.17.

Errors in category (d) are simple. Enter the EDIT mode and correct
your mistake.

112

3.4

FROM KEYBOARD TO SCREEN

OPL words covered
AT, CLS, GET, INPUT, PRINT, RETURN

Creating a Procedure

We are now in a position to start putting an actual procedure

together. The first thing to be determined is the type of procedure it

is going to be — and how information is to be passed into and out of

it. A procedure, remember, can be a discrete part of a program or a

complete program in itself,

Information can be passed into a procedure five different ways:

a) From the keyboard.

b) As GLOBAL variables, declared in a previous procedure.

¢) As parameters, enclosed in brackets after the procedure name
when it is called.

d) By accessing one of the CALCulator memories (floating point
numbers only).

e¢) Froma file.

Information can be passed out of a procedure six different ways:

a) Direct to the screen.

by Asa GLOBAL variable declared within the procedure, orin a
previous procedure.

¢) Asa'‘returned’ value.

d) Through one of the CALCulator memories (floating point
numbers only).

¢) Intoa file.

f Through an external device such as a printer.

In this Chapter, we will deal with the first three ways to get
information in and out of a procedure.

Naming the procedure

The name that you give to a procedure must obey certain rules — as
detailed under the heading The NEW option in Chapter 3.2, The
important points to remember are that the name must be no more
than eight characters long — including any identifier for the type of
parameter to be refurned by the procedure — and that only letters or
numbers can be used, starting with a letter.

To demonstrate the process we will create a program which will
be n useful addition to your Organiser — to calculate any per-
centage of any number (e.g. 159%, of 34.56). We will create this

113



Programming Organiser |l

program two different ways: first, as a function type of procedure -
requiring the values to be passed to it as parameters, and giving the
answer as a relurned value. Secondly, we will develop the pro-
cedure into a complete program — which could be run from the main
Menu. This will demonstrate both approaches.

For the first approach, we shall call the procedure PF, the ‘F’
indicating to us that it is to be a function, and to differentiate it
from any name we give to our second approach: when naming
procedures you can, of course, choose any name you wish —
provided that it obeys the ‘rules’. The name for this procedure has
been kept short deliberately — to make it easier to use.

We will be ‘returning’ a floating point value from the procedure -
so an identifier (% or $) is not needed at the end of the procedure
name. (That’s why the % sign isn’t used in the name — it doesn’t
mean percentage to Organiser, it means integer).

The first step is to get into the programming mode - by selecting
PROG from the main Menu. The PROGramming Menu will then be
displayed, and since we wish to create a new procedure, we select
the NEW option.

The screen will now display the message NEW A:. If another
letter follows the word ‘NEW’, it means that Organiser plans to
save the procedure, when finished, to one of the Datapaks: when
initially writing and developing programs and procedures, it is
advised that you save your work in RAM. So, if the screen is not
displaying ‘A:’, press the MODE key until it does.

You must now enter the procedure name. Type in ‘'PF’, so that the
screen looks like this:

NEW A:PF

Now press EXE. The screen will display the name of the procedure,
followed by a colon, and the cursor will be flashing in the space
after the colon,

This is where, when using the parameter method of passing
information to the procedure, we must ‘declare’ our variables. That
is, tell Organiser to expect values to be provided as parameters
when the procedure is used, We need two variables — for the
percentage and for the value, and we shall call these ‘P" and ‘V’
respectively. As parameters, they must be entered within brackets,
so now enter ‘(P,V)' immediately after the colon, so that the screen
display is

PF: (P.V}

114

3.4 From Keyboard to Screen

Notice that, where more than one parameter is being declared, each
must be separated from the one preceding it by a comma.

This is the first line of our procedure. We have named it, and we
have declared our parameters. The line is complete: no more must
be entered on this line, so press EXE.

The cursor will now jump down to the beginning of the second
line. We have ‘entered’ the first line as an ‘instruction’: we have
told Organiser to reserve space for the parameter variables ‘P’ and
V.

We must now tell Organiser to reserve space for any other
variables we wish to use in this or subsequent procedures. We can
write this particular procedure in a way that doesn’t need any
further variables - but first, we will use a variable to help with the
calculation, and to demonstrate the process.

Declaring numeric variables

Since we are going to use the variable to ‘assist’ in making the
necessary calculation in this procedure, and since we have chosen
to return the answer, our variable will be a LOCAL one. We shall
call it ‘RESULT": as it will be used for a floating point number, it
doesn't need an identifier.

We must now declare the variable — tell Organiser to reserve
space for it. All variables - LOCAL or GLOBAL — must be declared
at the beginning of a procedure, immediately after its name. To
declare variables, you enter first the appropriate word LOCAL or
GLOBAL and then the list, separated by commas, In this instance,
we have but one variable (RESULT), and so we enter LOCAL
RESULT. The screen will now look like this:

PF:{P.V)
LOCAL RESULT

Again, this line is now complete, and so you press EXE. The line
‘LOCAL RESULT" will move up to the top line of the screen, and
the cursor will be flashing at the beginning of the next line. If there
were any GLOBAL wvariables to be declared, they would now be
entered in a similar way — first the word GLOBAL, followed by the
variable names separated by commas, It doesn’t matter whether the
LOCAL variables are declared before or after the GLOBAL vari-
ables, although it is probably better practice to declare the
GLOBAL variables first.

Array variables are declared in the same way — but in this instance,
it is necessary to tell organiser exactly how many ‘elements’ there
are in the array, enclosed in brackets after the name. For example,
if you decide to have a set of five variables called 'COST(1),

115



Programming Organiser |l

COST(2)-COST(5), you declare the array as COST(5). This tells
Organiser that there are five variables with the name ‘COST', and it
will reserve space for them accordingly. It also knows that a
specific variable will be identified by a number enclosed in
brackets: thus, if you wanted to work on the third variable in the
“COST’ array, you would name the variable as ‘COST(3)".

We are now ready to write the actual instructions to perform the
calculation. You will recall that we are going to evaluate a
percentage ‘P’ of a number or value ‘V’. The formula is V*P/100 -
the Value multiplied by the Percentage as an actual number of
hundredths.

Assigning values to numeric variables

To simply enter the calculation as it stands would not mean much
to Organiser; it wouldn't know what to do with the answer. We
must tell Organiser what to do - and in this instance, we want
Organiser to store the answer in our variable called ‘RESULT".

This is a process called assigning a value to a variable: the value,
in this instance, is obtained as the result a calculation. Let us take
a look at how a value is assigned to a variable.

If you took algebra at school, the expression

X=X+1

would be absolutely meaningless: in algebraic terms, it is saying
that ‘a number is equal to itself plus one’ - which is patently
impossible. However, in computer languages, the = sign is used to
mean holds the result of or is to be. It is an assignment.

Thus X=X+1 says to Organiser: “I want you to store in the
memory boxes allocated to the variable ‘X', the result of what is
already in there plus one. Organiser, on seeing this instruction,
goes to the memory boxes allocated to the variable ‘X', takes the
value it finds there, adds one to it, and puts it back. The value has
been increased by one.

We could write down

X =42

In this instance, we are telling Organiser that we want the value
‘42’ put into the memory boxes allocated to the variable ‘X': it is a
direct assignment. Whatever happened to be stored in the memory
boxes before will be replaced by ‘42’

When making numeric assignments, you must be very careful
that you get the right fype of number - floating point or integer.
You will recall from the discussion on floating point and integer
numbers in Chapter 3.3 that, in programs, Organiser treats any
number without a decimal point as an integer. So if you wrote, for

116

—_——— e —

3.4 From Keyboard to Screen

example,
X = 5/2

the variable ‘X' would be storing 2 as a result of the calculation, not
2.5 as you expectgd (or hoped). The reason is that Organiser sees
the 5 and the 2 as tnteger values because they do not have a decimal
point. Even though ‘X’ is a floating point variable, Organiser still
d_w}des one integer by another before it saves the result: integers
divided by integers produce integers. To get the required result you
would ha}re to include a decimal point after either one of I:he' two
pumhers in the calculation. Thus, X=5./2 or X=5/.2 would result
n a floating point number - 2.5.

_ Similarly, if instead of ‘X' the variable were called Xo -
indicating that it is an integer variable, all that can be stored in the
memory boxes allocated to it is an integer number. So

X% = 5/2

will always result in an answer of 2, whether decimal po;
y : oints are
mcl_uded aft_:er thle numbers 5 and 2 or not. ¢

Finally, if using variables in the calculation, then the result

%ri:pends on the variable types, rather than the values they contain.
1S

X% =F/S will always store the integer result,

X =F%/S will always store the floating point result.
X=F/S% will always store the floating point result.
X=F%/S% will store the integer result as floating point.

Organiser makes the calculation before making the assignment. So
in the first case, although it makes the calculation as floating
point, when it comes to make the assignment, it finds that the
result must be stored as an integer — which doesn't allow for
decimal boints or fractional parts. In the last case, it makes the
;:ﬁ;ufl‘_at{llorgton mtteger :}?lues - s0 any fractional part is ignored. It
1nds 1t must save the integer i 1 ] i

Rt il g ger result in a floating point variable

The reason for using integer values and integer variables,
remember, 1s that they occupy only a quarter of the memory space
floating point values need, and calculations with them are much
faster (not that you'd notice the difference at the speeds Organiser
works!). However, as we shall see, there are many occasions when
tnteger numbers are more useful,

Returning now to our procedure, we have set aside i

! ; : the variable
RES:ULT to hold the answer to our calculatic.., so we now enter
the line RESULT-V*P/100. This is a complete instruction to Organ-
1ser, and so we terminate it by pressing EXE again.

117



Programming Organiser I

Our procedure is now complete except for one thing — we want to
pass the answer, held in the variable ‘RESULT’, back so that it can
be displayed (in the CALCulator mode, for example) or used by
another procedure.

The RETURN command

The OPL word RETURN tells Organiser to leave the procedure, and
go back to the previous procedure or, if none exists, to stop running
‘the'program and return to a Menu.

It is not a mandatory command; when Organiser reaches the end
of the instructions in a procedure, it ‘returns’ anyway.

However, if we want to pass a value back, then RETURN must be
ua;&d, followed by the particular value - or the variable holding the
value,

To complete our 'PF’ program, therefore, we need to enter one
more line: RETURN RESULT,

As this is the last line of our procedure, there is no need to press
EXE. No harm will be done if you do, however: all that will happen
is that the cursor will be shifted to the start of the next line down.

The complete program should now look like this:

PF:{P. V)

LOCAL RESULT
RESULT=V*P/100
RETURN RESULT

Program 3.4.1. *PF’ Percentage function.

We will now put it to the test. First, we must translate it and save
it: press MODE, and the screen will display the options TRANS
SAVE QUIT. Select TRANS (press T), and after a moment, the screen
will display SAVE A:. Make sure it does in fact say ‘A7 (indicating
the program will be saved to RAM), then press EXE. The procedure
instructions that you have written and the translated version will
be saved, and you will be returned to the PROG Menu,

As a function type of procedure requiring parameter inputs, it
cannot be run directly from the PROG Menu;: to do that, it must be
‘called’ from another procedure. Before we write that, however, let
us see if our procedure works as a function in the CALC mode: press
CLEAR/ON to return to the main Menu, then select CALC.

We are now going to ‘call’ our procedure. Enter after ‘CALC!’
PF:(15,200) (don't forget to use the SHIFT key for letters in this
mode). Then press EXE.

You should get the answer 30, indicating that 15% of 200 is 30.

118

3.4 From Keyboard to Screen

PF:(15,200)
=30

(If you get the message BAD IDENTIFIER, check that you
entered the colon after the procedure name — it tells Organiser that
the function ‘PF’ is one of yours). Pressing EXE will return you to
the calculation line - and you can now experiment with different
percentages of various values by simply editing the numbers in the
brackets. When you have had enough, press EXE once or twice to
return to the main Menu, then select PROG again ... we are going to
shorten our procedure!

From the PROGramming Menu, select EDIT: the screen should
display EDIT A:. Enter ‘PF" and press EXE. You will now be back in
the EDIT mode, at the beginning of the procedure.

Earlier, it was mentioned that the OPL word RETURN iz used to
return a value to the ‘calling’ procedure. We used it to return the
value contained in the variable ‘RESULT’. We could, however,
have used RETURN to return the result of a calculation. We will
now edit our procedure to do just that.

Use the DOWN key to position the cursor at the start of the line
LOCAL RESULT, then press CLEAR/ON to delete the line. This will
leave a blank line, which we do not want. So press DEL {or
CLEAR/ON again), and this will ‘pull up' the next line and
position the cursor at the end of the first line again. Use the
DOWN key to re-position the cursor at the beginning of the next
line — which reads RESULT=V*P/100

We are going to change this line to read RETURN V*P/100, so first
use the SHIFT and DEL keys to erase the characters RESULT=
and then, with the cursor at the beginning of the line, type in
RETURN and a ‘space’. Do not press EXE - it is not necessary: the
line has already been ‘entered’ — all we have done is to change it.
What we must de now, however, is remove the superflucus RETURN
instruction on the next line down. Press DOWN to position the
cursor at the start of the next line - which should read RETURN
RESULT, and press CLEAR/ON to delete the entire line. Your
procedure should now look like this:

PF: (P V)-
RETURN V*P/100

Program 3.4.2. ‘PF’ Percentage function, shortened version.

As you can see, we have no need for a LOCAL variable, and the
entire procedure occupies no more than two lines. Notice too that,
since there is no identifier at the end of the procedure name, the
parameter returned will be a floating point type (which is what we

119



Programming Organiser |l

want). If the procedure name had ended with a % sign, then an
integer value would be returned irrespective of whether the cale-
ulation produces an answer with a decimal point. In other words —
don’t try to use the % sign to indicate that the procedure 1s
working out percentages!

Press MODE and translate and save the procedure as before,
then test it to make sure it works (enter the CALCulator mode).

Calling one procedure from another

The procedure we have just written — which performs a numeric
function — can be used only by being called from another procedure,
or by being called from the Calculator. We have seen it work from
the Calculator: now let us write a procedure to call it —a procedure
that you can install on the main Menu, if you wish.

A procedure is ‘called’ by simply naming 1t, followed by a colon.
This says to Organiser — “go and collect that prm':edure' from
wherever it is in memory and run it, then, when you've finished,
come back and do the next instruction”.

If the procedure being called requires input parameters, then
these must be included in brackets, after the name and colon — the
same way as you would call the procedure or function from the
Calculator. .

Enter the PROG mode, select NEW from the Pljr.OGr;melng_Menu,
and enter the following procedure exactly as it is written, using the
process previously described (see also Chapter 3.2).

PC:

LOCAL PER.VA

CLS

PRINT "PERCENTAGE=";
INPUT PER

PRINT "OF VALUE=";
INPUT WA

CLS

AT 7.1

PRINT PF:{PER, VA)."%"
GET

Program 3.4.3. ‘PC’ Percentage program.

There are quite a few new words in this pmcedure: before we
discuss them, you may like to translate and save it as before, and
then test it by selecting RUN from the PROGramming Menu. The
screen will display RUN A:, followed by the procedure name PC.
How did Organiser know that we wished to run that particular
program? It is a pretty safe bet: we have just been writing and
editing the procedure, and Organiser assumed that any further
work will be undertaken on the same procedure. So it saves us the
bother of having to type it in again. Of course, it isn't always right

120

3.4 From Keyboard to Screen

- in which case, press CLEAR/ON to delete the entire procedure
name, and enter the name of the procedure you do wish to run.
Check too that the correct location is displayed: use the MODE
key if the procedure you wish to run is on a Datapak.

Notice that, this time, you do not enter any parameters: the
required values will be entered while the program is running.

Press EXE. The screen should display the message
PERCENTAGE= on the top line. Type in the percentage you want —
and note that the keyboard is already set for numeric inputs, and
that the number you type appears immediately after the = sign.
Press EXE, and on the second line the message OF VALUE = will be
displayed. Type in the value you want the percentage of, and press
EXE. The screen will immediately clear, and the answer, followed
by a % sign (to indicate you have just calculated a percentage) will
be displayed. To return to the Menu, press any key.

You can run this program from the Calculator — by entering only
‘PC:" (don't forget the colon). You will be proempted for the numbers
you have to enter — remember to press EXE after entering each
one. Pressing any key after you have seen the result will cause the
top line to display the procedure name, and the bottom line to

display =0. Pressing EXE will return you for a repeated calc-
ulation.

To use the program from the main Menu, you will have to install it
there first. This process is described in Chapter 2.2., under the
headings Customizing the main Menu - Restoring (or adding) an
option: note that when installing a procedure on this Menu, you
enter only its name, without the colon. Having installed it, you can
select it just like any other main Menu option. The way to remove
it from the main Menu is also covered in Chapter 2.2,

The new OPL words used in this procedure will now be discussed.

CLS
This is a complete instruction, telling Organiser to clear

the screen and to position the cursor at the top left
corner.

PRINT

This command tells Organiser to print on the screen,

starting from the current cursor position, the infor-

mation immediately following it.

a)  With one exception (see (b) ), there must always be a
space following the word ‘PRINT’.

b)  If the information is enclosed in quotation marks, it
is treated as a string — and whatever is in the
quotation marks is ‘reproduced’ on the screen.
When a quotation mark follows the word PRINT,

121



INPUT

Programming Organiser Il

there need not be a space (thus PRINT"G00OD" would
be acceptable). However, it is probably better
practice at first to always include a space after
PRINT.

c) If the information is in the form of a variable, the
value of that variable is printed. Thus, if a variable
called COST has a value of 7.9, then PRINT COST
results in 7.9 being displayed on the screen.

d) If the information is a calculation, then the cale-
ulation will be evaluated and the result printed on
the screen. Thus, PRINT 4+5 results in 9 being
displayed on the screen.

A number of items can be printed, provided they are

separated by a semi-colon or a comma. With a comma, a

space will be displayed between consecutive items. With

the semi-colon, there will be no space between cons-
ecutive items.

Thus, PRINT "5+6=":5+6 would result in 5+6=11 being

displayed - with no spaces between items.

PRINT "HELLO","WORLD" would display the two words

separated by a space - HELLO WORLD. Using a semi-

colon to separate the two words would result in

HELLOWORLD being displayed.

If no information follows a semi-colon in a PRINT instr-

uction, then after the instruction has been executed, the

cursor is positioned at the next available space to the
right on the screen,

If no information follows a comma in a PRINT instr-

uction, then after the instruction has been executed, a

space is left after the last character printed, and the

cursor is positioned in the next space after that.

If neither a semi-colon or a comma is used after print

information (or if PRINT is used on its own, without any

information after it), the cursor is positioned at the
extreme left of the next line down after the instruction
has been executed.

This word instructs Organiser to get an input of char-
acters from the keyboard, and to display them on the
screen as they are entered, finishing when EXE is
pressed. The entered information is also stored for use in
the program. If CLEAR/ON is pressed during the input
of information, the information entered to that point is
cleared and the entry can start again. The LEFT and
RIGHT keys and the DEL key can be used to ‘edit’ the
information during the entry process.

Organiser needs to know where to store the entered
information, and so INPUT must always be followed by a

122

3.4 From Keyboard to Screen

variable (INPUT NAMES, for example).

The variable must have been declared, either as a

LOCAL in the same procedure, or as a GLOBAL in the

same procedure or a ‘calling’ procedure. You cannot use a

variable that has been declared as a parameter.

The type of variable determines the type of characters

that will be input:

a) If the variable is a floating point or an integer {%)
type, the keyboard will be set for numbers, and a
numeric value will be entered. If a character is
entered instead of a number, an error will occur.

b)  If the variable is a string type ($), the keyboard will
be set for characters: in this instance the number of
characters that can be entered is limited to the
number declared for the variable (see the next
Chapter).

INPUT can also be used with program files — which are

discussed in a later Chapter.

AT column?%,line%

GET

GETS

This OPL word needs two parameters (no brackets),
separated by a comma. It positions the cursor on the
screen at the specified column and line position, so that
any display starts from that point. The column?, value
must be from 1 to 16 inclusive, and the line%, value must
be either 1 or 2 (for the top or bottom line respectively),
The two parameters can be integer variables, actual
values, or a calculation. If floating point values are used,
Organiser will convert them to integer values.

This word instructs Organiser to wait for one key to be
pressed, and to return the ASCII value of that key. (The
ASCII value is the pattern number - see Chapter 1.2,
under the heading Storing characters).

Organiser needs to know where to store the ASCII value,
and so the complete instruction usually takes the form
VAR%-GET. Notice the use of an integer variable: ASCII
numbers can never have a decimal point.

However, this word can also be used on its own, to simply
hold up the processing of instructions until a key is
pressed. This could be necessary, for example, after a
PRINT instruction, otherwise immediately after the instr-
uction has been obeyed processing will continue — and
the display could be cleared before it has been seen!.

There is also a GETs instruction, which returns the
character associated with the pressed key. Like its int-

123



Programming Organiser |i

eger counterpart, the complete instruction is usually
VARS=GETS,

Let us now examine each line of this second procedure in turn.

FC: )
The first line is simply the name of the procedure — but this

time you'll notice, we have no parameters in brackets. This
procedure is going to get its information from the keyboard.

LOCAL PER, VA ) ) . o
This instruction declares the floating point variables
and ‘VA’ — which are going to be used to store the numbers

we wish to work on.

CLS
Clears the screen.

PRINT "PERCENTAGE="; o
This displays the prompt “PERCENTAGE=" on the screen.

The semi-colon means that the cursor will be positioned
immediately after the = sign, ready for the entered value.

INPUT PER ) 2 x i i
This instructs Organiser to wait for numeric information to be

input from the keyboard, accepting n_umbers until EXE is
pressed. The numbers entered will be displayed on the screen,
and stored on the EXE keypress in the floating point variable
‘PER’.

PRINT "OF VALUE=";
INFUT VA
As above.

CLS _ .
Clears the screen ready for the display of the answer. If this

were not done, the answer would appear on the next line
down, and the screen display would scroll upwards — which is

messy.

AT 7,1 -
This places the cursor at the seventh character position along
on the top line of the screen, ready for t‘r_ie display of infor-
mation in the next instruction. This will set the answer
roughly in the middle of the screen.

PRINT PF: (PER,VA) :"%" _ _ _
This instruction tells Organiser to gilsplay the rresu]t D‘f cal’img
the procedure ‘PF: using the variables ‘PER’ and VA’ as

124

3.4 From Keyboard to Screen

parameters. Note that, generally, these do not have to be the
same names as the parameter variables used in the procedure
FPF:!+

The semi-colon tells Organiser to carry on with the PRINT
instruction - without leaving a space — to display the next
item of information. This is the ‘%’ symbol, within quotation
marks, and so it is displayed as it is,

GET

This instructs Organiser to wait for a key to be pressed, and
since we have not told Organiser to store the information, it is
effectively ignored.

This instruction is necessary at this point in the program to
prevent Organiser returning immediately to a Menu (which it
would do having finished processing our instructions), so that
we have time to see the answer displayed on the screen,

We have now written two procedures to form one program. In fact,
the procedure ‘PF:(P,V) was not absolutely necessary unless we
wished to use it in other programs or as part of a Calculation. The
line in procedure ‘PC:', which reads

PRINT PF:(PER,VA),"%"
could have been written as
PRINT VA*PER/100: "%"

to produce the same result. Here, Organiser sees the instruction
PRINT, and looks for the first item to display on the screen. It finds
wealeulation — which it performs so that it can display the result. It
then looks on to see if that is the end of the instruction: it finds a
nemi-colon so, without leaving a space, it looks on to the next item
to be displayed. This time it finds information within quotes — so it
lisplays the information just as it is written,

These two procedures have, it is hoped, demonstrated a number
of the principles involved in writing procedures. They provide
ndditional facilities to your Organiser, for use either when making
enleulations, or to evaluate a particular percentage of a number.

I'or example, suppose you want to know what the price of an
nrticle would be with VAT added at 159, if the article costs £34.56.
You would select the CALCulator mode from the main Menu, and
onter your calculation as:

34.56 + PF:(15,34.56)

Pressing EXE gives the answer — 39,744,
Warning: Don't try to evaluate the original price of an article
thit costs £39.744 including VAT at 15%,, by subtracting 15%, of

125



Programming Organiser Il

39.744 (a common mistake): you'll get the wrong answer. The
formula for this type of calculation is

Original price = Cost*100/(100 + percentage)

If you need to make such calculation, you can write another
function type procedure, It would look like this:

OPF:(P.C)
RETURN C*100/(100+F)

Program 3.4.4. ‘OPF® Original price function.

‘OPF’, the name of the procedure, stands for ‘Original Price
Eﬁ:iti?ns’, and the variables P and C stand for ‘Percentage and
‘Cost’ respectively. You could eliminate the percentage paran'lleter
‘P’, and replace ‘P’ in the calculation by a fixed percentage value -
15, for example — but this would restrict the use of the procedure.

126

3.5
HANDLING CHARACTERS AND STRINGS

OPL words covered
CHR$, LEFT$, LEN, LOC, MID$, OFF, RIGHTS, RND

Declaring ‘string’ variables

In the last Chapter we dealt entirely with numeric variables. We
saw that to ‘declare’ a numeric variable in a procedure, all that is
required is to name the variable after the OPL word GLOBAL or
LOCAL. Organiser knows exactly how much space to reserve for a
numeric variable when it is declared. If it is an integer type
Organiser will reserve two boxes to store whatever number the
variable represents. If it is a floating point type, Organiser will
reserve eight boxes.

This is not the case with string variables — identified by a § sign
after their name.

A string variable, remember, is one that contains characters
(letters, numbers or symbols) - and each character needs one
memory box. (See Chapter 1.2). The maximum number of characters
allowed in a string is 255, and so Organiser could reserve 255
memory boxes for every string variable declared, However, this
would be extremely space-consuming, since you will rarely need to
have strings anywhere near 255 characters long. With only four
string variables, for example, you would set aside over 1000 memory
boxes — and probably actually use less than 100 of them.

Consequently, Organiser II allows you to decide how many
memory boxes are reserved for each string variable, and this you do
when you declare it.

When you decide to use a string variable, you must evaluate the
maximum number of characters it is likely to represent. For
example, if you are going to use a string variable to hold the name
of a weekday, it need never be longer than the longest name -
Wednesday — which has 9 characters. On the other hand, if you are
going to use the variable to store an address, then you have to
allow for what may be the longest address: usually around 50
characters,

Organiser will not let a string variable store more than the
declared number of characters. It can’t: it wouldn't know where to
put them. If an attempt is made to store more than the specified
number an error will occur and the program could stop running.
(The clever people who developed Organiser built in a way to help
you ‘catch’ such errors for action within your program, so that it
needn’t stop running. This is dealt with in a separate Chapter).

So, to declare a string variable vou must include, in brackets
after the variable name, the number of characters you want set
aside in memory.

Thus, if you were declaring ‘WEEKDAY$' and ‘ADDRESS$' as
LOCAL string variables at the beginning of a procedure, and you

127



Programming Organiser Il

decided that they need 9 and 50 memory boxes respectively, you
would enter

LOCAL WEEKDAY$(9),ADDRESS$(50)

Any numeric variables would be declared on the same line, just as
before, separated by a comma. )

Array variables, you will recall, have a number in a bracket after
them anyway: ‘COST(5), for example. How then do you declare a
string array variable? In this instance, fwo numbers are included in
the brackets, separated by a comma. The first number defines the
number of elements in the array, and the second numl_]er specifies
the maximum number of characters that any element in the array
can hold. . _

Suppose, for example, we decide that we are going to have an
array called “WEEKDAY$()’, each element of which is to hold ti_me
name of one of the days in the week. We will need seven elements in
the array, and the maximum number of characters needed will be
nine. Consequently, this array would be declared as a LOCAL

variable (for example) as
LOCAL WEEKDAYS$(7,9)

Here is a short procedure to demonstrate how arrays can be used.
The procedure can be used to switch off Organiser (as an altern-
ative to using OFF on the main Menu) so that, when it is sub-
sequently switched on again, one of three messages will be dis-
played on the screen. :

Even if you subsequently ERASE the procedure, 1t would be well
worth entering in order to gain ‘hands on’ experience.

Enter the procedure as described in the previous Chapter.
Briefly: select NEW from the PROGramming Menu, enter the name
(GO — without a colon), press EXE twice (there are no parameter
inputs), then enter the instructions, pressing EXF_J at the end_ of
each line. (You can type in your own messages, within quotation
marks, provided they are not more than 16 characters long -
including the spaces).

GO:

LOCAL M5{3,18).N% ’
M$(1)="HI THERE..."
M5(2)="WELCOME BACK"
M$(3)="READY OH MASTER"
OFF

N%=1+RND*3

FRINT Ms(N%)

GET

Program 3.5.1. ‘GO’ Switch off and ‘welcome back’.

128

3.5 Handling Characters and Strings

This procedure introduces two new words and some new tech-
niques. Before we examine the new words and each line of the
procedure to see what it is doing, press MODE, TRANslate and
SAVE the procedure, then RUN it, from the PROGramming Menu.
As soon as you press EXE to run the procedure, Organiser will
switch off. Press CLEAR/ON to switch it back on again, and one of
the three messages will be displayed. Press any key, and you will be
returned to the Menu. If this program is installed (as ‘GO") on the
main Menu, you will be able to use it to switch off your Organiser
by selecting GO instead of the OFF option - so that a message is
displayed when you next switch on. Pressing any key will then
display the main Menu.

Later on, we will use this technique to develop a ‘Password’
procedure which will allow you - and only you - to use your
Organiser I1.

Now, here are the details on the two new words used in this
procedure,

OFF

This word, in a procedure, acts just like the OFF option on the
main Menu. The difference is the procedure is still in memory —
and Organiser is waiting to perform the next instruction
following the OFF instruction. It patently cannot do this until
it is switched on again, using the CLEAR/ON key. So instead
of ‘waking up' to display the main Menu, it continues with the
procedure.

RND

This word is one of the numeric functions. It ‘returns’ a
random number belween (but not including) 0 and 1 - to 12
significant figures. Thus it will always give a decimal number
between 0.000000000001 and 0.999999999999: this number can
be used to provide a random number between any limits.
Multiplying the random number by 5, for example, will make
its range 0.000000000005 to 4.99999999995, If we take only the
integer part and ignore everything after the decimal point, we
get the range of random numbers 0 to 4. By adding 1, we get
the range of random numbers 1 to 5. Thus 1+ RND*5 will yield
a random number between 1 and 5.

Now let us examine the procedure.

GO:

This is the name of the procedure: note that when you type in
the procedure name after selecting NEW, you do not enter the
colon - Organiser puts that in for you when you press EXE to
‘enter” the line.

LOCALMS(3,16) . 1%

129



Programming Organiser Il

There are no other procedures to this program, so all the
variables are LOCAL. The M$(3,16) declares a string array
variable that has three elements, each of which can be up to 16
characters long.

M$(1)="HI THERE..."

Ms({2)="WELCOME BACK"

M$(3)="READY OH MASTER" '
These three lines assign actual strings to the three string
variable elements M$(1), M$(2) and M$(3).

OFF
When Organiser reaches this instruction during the running
of the procedure, it will switch off. The program is still
‘running’ however — that is, it remains in memory. When
Organiser is switched on again (CLEAR/ON key), it cont-
inues with the next instruction.

N%=1+RND*3

This assigns a random number to the integer variable N_%.
RND generates a number between 0 and 1 (but never including
0 or 1), which is multiplied by 3 and added to 1. The number
generated will therefore lie between the values 1.0000000003
and 3.99999999997. This number is then assigned to an integer
variable — and consequently the decimal part is lost
completely: only a value from 1 to 3 is stored in N%.

PRINT M5 (N%)

This demonstrates how a variable can be used to select an
array element. The value of N% will be 1, 2 or 3. Whichever 1t
is, Organiser will print the corresponding array e]eme_nt -
M$(1), M$(2) or M$(3). Thus, one of the three messages will be
displayed at random whenever the Organiser is switched on
again - there is no knowing which of the three messages it
will be. Fun, huh?

GET

You should be familiar with this instruction now. It tells
Organiser to wait for a keypress (and so give you time to read
the displayed message). When any key is pressed, the pro-
cedure is finished and Organiser returns immediately to the
Menu. If you install this procedure on the main Menu, the
main Menu will be displayed ready for you to seléct the
application you wish to use on Organiser.

Note that this procedure can be shortened — to eliminate the need
for the LOCAL variable ‘N%,’, and the line ‘N%=1+RND*3’ — by
re-writing the ‘PRINT Ms(N%)’ line as ‘PRINT M$(1+RND*3)". The
random number calculation will produce a floating point number,

130

3.5 Handling Characters and Strings

but this will be converted to an integer by Organiser to determine
which array element is required. We used ‘N2’ in the procedure to
demonstrate how integer variables are defined alongside string
variables, and to make the procedure easier to understand.

Joining strings together

There are a number of ways - including special OPL words - to
manipulate strings of characters. You can join them together, to
form a longer string, or take small sections out of them in various
ways. We're going to look first at how you join strings together.

When dealing with numeric variables, to add two of them
together you simply write, for example, '"VAR1+VAR2’, Organiser
must be told what to do with the answer. If you wish to keep it for
further use, you would assign it to another variable. Thus you
could write ‘VAR3=VARI1+VAR2’ as a complete instruction.

The same applies to string variables, If the variable ‘STRING1$'
held the word ‘LIGHT", and ‘STRING2$’ held the word ‘HOUSE',
then writing STRING3$ = STRING1$ + STRING2% would result
in STRING3$ holding the word ‘LIGHTHOUSE'. The two word
strings have been added together (a process called concatenating) to
form one longer string. Sufficient memory boxes must be available
to ‘'STRING3%', of course, to store the longer string: if only five
memory boxes are reserved when it is declared, then an error will
occur, because the two strings together contain more than five
characters.

The facility to add strings enables you to put together messages
from various component parts. For example, you could have a
string array ‘WEEKDAY$(7,9)", each element of which holds the
name of one of the days in the week — ‘WEEKDAY$(1)’ holding
‘SUNDAY’, ‘WEEKDAY$(2) holding ‘MONDAY', and so on.
Another variable — say ‘'MESSAGES$’ could hold the string ‘TODAY
IS *. (Notice the space after’ 'IS’). Adding together the strings
MESSAGE$ + WEEKDAY$(1) would produce the longer string
'‘TODAY IS SUNDAY'. Thus, an instruction such as

DAYS=MESSAGES+WEEKDAYS (N%)

would save, in the string variable ‘DAY$’, the message ‘TODAY IS’
followed by the name of the weekday as determined by the value of
N%. N% must be no greater than the maximum number of elements
declared for the array ‘'WEEKDAYS$', of course.

You can then write ‘PRINT DAY$’, to display the whole message.
There are alternative ways to display the whole message:

PRINT MESSAGES +WEEKDAYS (N%)
PRINT "TODAY 1S" WEEKDAYS (N%)
PRINT “TODAY IS “:WEEKDAYS (N%)

131



Programming Organiser Il

The first of these tells Organiser to add the two strings together
and to print the result — without using a further string variable to
hold the result. The second and third metheds use an actual string
followed by a comma (which tells Organiser to leave a space after
printing the first message) or a semi-colon (which tells Organiser
not to leave a space — so it has to be included as part of the message)
to separate it from the second string. In the last two instances the
strings are not actually added together, but are displayed in
sequence.

If you wanted the message “TODAY IS “ to appear frequently
throughout a program, then it is more economical on space to
assign it to a string variable: it is then stored in memory only once,
and can be called up whenever you wish to use it. If, however,
“TODAY IS “ appears only once in the program, then there is no
point in assigning it to a string variable.

Any number of strings can be added {or concatenated) together,
provided the result does not exceed either 255 characters or the
maximum length declared for a string assigned to hold the result.
You cannot add string variables to integer or floating point vari-
ables — these numeric variables must be converted to strings first.
Similarly, if a string variable is holding a number (NUM$="1234",
for example), Organiser cannot use that number to make cale-
ulations: the string variable must be converted to a numeric
variable first. These ‘conversions’ are dealt with in a later Chapter.

Finally, you cannot subtract one string from another
‘STRING1$ = STRING2$ — STRING3$' would result in a syntax
error. There are other ways of ‘extracting’ one string of characters
from another,

Non-keyboard characters

Not all of the characters available in Organiser can be accessed
direct from the keyboard. A form of £ sign, for example, is in the
Organiser, available for display, but it is not obtainable by pressing
any of the keys. Any of the characters not available from the
keyboard can be selected by the OPL word CHR$ — which must be
followed by an integer number in brackets. This number relates to
the ASCII number or pattern number for the desired character. The
pattern number for the £ symbol for example, is 237, and so to
display a £ sign, you would write

PRINT CHR$(237);

in a procedure. The semi-colon ensures that any value or variable
to be printed follows the £ sign.

A full list of the characters and their pattern or ASCII numbers is
given in the Appendix: note that there are no characters for pattern
numbers from 8 to 31, or 128 to 159. These numbers are reserved for
special actions by the Organiser: pattern number 16, for example,

132

3.5 Handling Characters and Strings

produces a short ‘beep’ from the Organiser’s sound system. You can
create your own characters for pattern numbers from 0 to 7 through
a procedure (given in Chapter 3.18): to display those patterns, you
must use the ‘CHR$()’ instruction.

There may be occasions when you wish to display a quotation mark
on the screen. Normally, quotation marks are used to define the
start and end of a string — and the marks are ignored when the
string is displayed. Thus PRINT “HELLO" will result in HELLO
being displayed, without the quotation marks. You have two
options. The pattern number for quotation marks is 34, so you could
write

PRINT CHR$(34) "HELLO":CHRS(34)

Organiser gives you an easier way, however, and that is to write
the quotation mark twice where you want it displayed. This is in
addition to any gquotation marks that define the start and end of a
string. So to print “HELLO", you would write

PRINT *""HELLO"""

Similarly, to assign the string “HELLO’ to a variable called
‘STRINGS', you would write

STRINGS="""HELLD"""

Cutting the strings

Just as there are ocecasions when you will wish to join strings
together, there will be times when you want only a part of a string.
For example, one string variable may hold the character string

JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC

This is the first three letters of every month, in order. As we shall
soon see, from such a string, you can ‘pick out’ the appropriate
three letters as and when you want them,

The advantage of this is that one string variable is holding all of
the month information — you don't need to have a separate string
for every month name. However, to be useful, all the names must be
of the same length.

Equally, you can ‘pick out’ a sequence of characters from the left
or the right side of the string — you could pick out LIGHT and
HOUSE, for example, from the string LIGHTHOUSE. Three OPL
words allow you to do perform all these operations. These are now
described:

133



Programming Organiser Il

LEFT$(string$,length%)

This OPL word needs two parameters: the name of the string
variable or an actual string (string$), and the number of
characters required from the left side of the string (length9}).
The ‘length%,’ parameter can be an actual number, an integer
variable, or a calculation producing an integer result.

It tells Organiser to take, from the specified string, the
gpecified number of characters, starting from the left. Thus

LEFTS$(“LITMUSPAPER",3)

would tell Organser to take the three leftmost letters from
LITMUSPAPER - in other words, LIT. Organiser also needs
to be told what to do with these letters, to complete the
instruction. Just as before, they can be assigned to another
string variable, displayed, or added to other string variables.
Here are three examples:

SHORTERS=LEFTS(string$, length%)
SHORTERS=LEFTS (string$, length%) +ANOTHERS
PRINT LEFTS${string$.length%})

RIGHTS(string$,length%)
This is similar to LEFTS, the difference being that Organiser
takes the rightmost number of letters. Thus

RIGHT$(“LITMUSPAPER",3)
would tell Organiser to take the letters PER.

MID$(string$,start%,length%)
This OPL word operates in the same way as the previous two.
This time, however, three parameters are needed - the string,
just as before, followed by the start position and the length
required. The ‘start position’ tells Organiser where to begin
taking the characters, the number taken being determined by
the ‘length%,’ parameter. Thus

MID$(*“LITMUSPAPER",7,3)

would tell Organiser to take three letters from
LITMUSPAPER, starting from the seventh — in other words,
to take the three letters PAP,

The following short procedure demonstrates how entering the
number of a month can result in a display of the first three
characters in that month's name: note the use of 'CHR$(63)' to
produce a question mark after the word ‘MONTH’,

134

3.5 Handling Characters and Strings

MONTH ;
LOCAL M5 (36).N%
Ms="JANFEBMARAPRMAY JUNJULAUGSEPOCTNOVDEC®

CLS

PRINT "MONTH";CHRS(63)

INPUT N%

PRINT "That 1s" MIDS(Ms, (N%*3)-2, 3)
GET

Program 3.5.2. ‘"MONTH" Month name from its number

Note the ‘start point’ calculation in the ‘MID%’instruction -
(N%*3)-2. (The brackets in this calculation are not really needed:
they are included to help you understand it). When you enter a
month number during the running of this procedure, that number
must be related to the actual position of the month’s name in the
string M$. Each name takes up three characters, and so the month
number, N%, is multiplied by three. However, this would put the
start position for the first month at character 3 instead of 1, so we
deduct 2 from the result. Now, whatever number N%, is given
(between 1 and 12), the correct start position for that month will be
located in the string M$. Test it for yourself by choosing a month
number, multiply it by 3 and deduct 2 from the result, then count
that number of characters along the character string assigned to
M$. You will get the first character of the name of the selected
month.

When taking chunks out of a string using any.of the three OPL
words LEFTS, RIGHT$ and MID$, the original string is left intact. In
the ‘MONTH’ procedure, for example, the string assigned to M$ is
unaffected. However, just as with numeric variables, it is possible
to store a new string back in a string variable used to make the
selection. For example, if M$ has been assigned the character
string ‘LIGHTHOUSE’ then the instruction

MS=RIGHTS (M$,5)

would result in M$ holding the character string ‘HOUSE": the
previous assignment is completely overwritten by the new char-
acters, even though there are fewer of them.

You may wonder if that means ‘blanks’ are placed in all the
remaining boxes. The answer is no: when Organiser saves char-
acters in memory boxes allocated to a string variable, it also
records the number of characters saved. It does this because you
may not completely fill the number of boxes reserved — and it needs
to know where to stop displaying characters when called upon.
Thus, when it stores ‘LIGHTHOUSE' in the string variable M3, it
records the fact that there are ten characters in the string. When it
stores ‘HOUSE’ it records the fact that there are five characters,
Perhaps now you can guess why the maximum number of char-

135



Programming Organiser ll

acters there can be in a string is 2557 It’s the largest number a
single memory box can contain (see Chapter 1.2).

How long is a string?

There are often occasions when you need to know how many
characters are actually being stored in a string variable. For
instance, suppose you wanted to display the contents of a string
variable centrally on Organiser’s screen, however many characters
(up to 18) it contained. For this, you would need to know the
number of characters in the string.

Just like the Greeks, OPL has a word for it ...

LEN(string$)
This OPL word ‘returns’ the number of characters in 'string$’,
which can be an actual string contained within quotations, or
a string variable, or several string variables concatenated
(added) together.

The following function-type procedure uses ‘LEN(string$)’ to
display

a string centrally on Organiser’s screen. It is a procedure that you
may wish to use in various different programs, and so it uses a
parameter type input: that way, you do not have to be concerned
with what variable you use to pass the information into the
procedure. The procedure also uses the OPL word AT to position the
cursor,

CNTR: (M$, L%)
LOCAL W$(16)

Ws=LEFTS (MS,16)

AT 1+(16-LEN(Ws)) /2, L%
PRINT W$

Program 3.5.3. *CNTR’ Function to centralise a display,

Notice that when declaring a string (‘M$’) as a parameter, it is not
necessary to tell Organiser how much space to reserve for it. This is
because the space is reserved automatically, according to the
length of the actual string or string variable in the calling pro-
cedure — where memory space will already have been reserved for
it.

Why have we introduced another string variable - W§ - into this
procedure?, To avoid errors, we have to ensure that the first
parameter in the AT instruction is not zero or less — which it could
be if the input parameter M$ is longer than 16 characters. Organ-
iser will not let you re-assign an inpu! parameter, s0 we cannot
have an instruction such as ‘M3=LEFT%(M$,16)’ in the procedure
to ensure that M$ is never more than 16 characters long. One

136

3.5 Handling Characters and Strings

solution to this is to introduce another string variable — ‘W§', to
‘pick off’ the leftmost 16 characters of M§. If M$§ is shorter than 16
characters, it doesn’t matter: just as many characters as are
available in M$ will be copied into W§. W$ is then used for the
calculation of the start position for the subsequent display instr-
uction.

To centralise the display of W$, we need an equal number of
spaces each side of it. (Obvious?). To find the total number of spaces
needed, we subtract the number of characters in W$ (as given by
‘LEN(WE)') from 16 - the maximum that can be displayed on one
line. This result is then divided by two, to get the number of spaces
needed ‘each side’. Adding one to this will give us the starting
position for the display — the position at which the cursor is placed.

This procedure includes a 'line%,’ input parameter, so that when
it is called, you can determine whether you want the information
displayed centrally on the top line or the bottom line. Notice that
the ‘GET' instruction i1s not used in this procedure: that is left to the
calling procedure to do, in case other instructions (perhaps to
display on both lines) are required.

As we are not ‘returning’ a parameter, we do not have to worry
about adding a $ symbol after the name ‘'CNTR’.

This procedure cannot be run in the Calculator mode. Con-
sequently, we need another procedure to ‘test’ that it works. The
following will demonstrate how to prepare such a procedure:

TEST1:

LOCAL WS(16).L%
PRINT "ENTER WORD(S)"
INPUT Ws

PRINT "LINE 1 OR 2"
INPUT L%

CLS

CNTR: (W5, L%)

GET

Program 3.5.4. 'TEST1" Test CNTR procedure

Note that this procedure is not error-proof when running: you can
enter a number greater than 2 for the line number variable, L%,.
This will cause an error in ‘CNTR:’, since ‘2’ is the maximum that
Organiser will accept for the line number in an AT instruction.
While one tries to make procedures as fool-proof and as potentially
error-free when running as possible, when they are used to test
other procedures, the degree of error-prevention is up to the
individual. As yet, we have not dealt with the OPL words that will
allow us to check that numbers fall within specific limits: this is the
subject of another Chapter.

Notice how the ‘CNTR:’ procedure is called by simply ‘naming’ it,
with the appropriate parameters.

137



i

Programming Organiser Il

Once ‘CNTR: has been tested by running the “TEST1’ procedure,
the ‘TEST1’ procedure can be erased. You may like to try the
‘TEST’ program without the ‘CLS’ instruction, entering ‘1’ for the
line number. In this instance, the word or words you enter will be
centrally positioned — but any other characters on the selected line
will remain on display if they are not overwritten. In other words,
the ‘AT’ instruction doesn’t clear the line — it merely positions the
cursor in it. This can be useful sometimes to save reproducing an
entire display when only one or two characters or numbers are
being changed.

Where’s that string?

In some types of program, it is useful to know whereabouts one
character string occurs within another. Take for example the

JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC
string again. During the running of a program it may be necessary
to know what number the month of “JUN" is. One could have an
array of month names, and search the array for the element number
corresponding to “JUN". However, as you have no doubt guessed,
Organiser has an alternative method. The OPL word is LOC (short
for LOCate).

LOC(long$,short$)

This instruction returns the position of the ‘short¥’ string in
the ‘long$’ string. As with other OPL words, Organiser needs
to be told what to do with the answer — which will always be
an integer value. As before, it can be assigned to an integer
variable, displayed through a '‘PRINT' instruction, or returned
as a value. If the ‘short$’ string cannot be found in the ‘long$’
string, then the value returned is ‘zero’.

Thus, a procedure to determine the month number, given the
three-letter name of the month, could look like this:

MONTHNO%: (M5)

LOCAL Ys(36)

Y$="JANFEBMARAPRMAY JUNJULAUGSEPOCTNOVDEC"
RETURN LOC(¥5.MS$)/3+1

Program 3.5.5. 'MONTHNO%' Find month number from its name.

We want an integer number returned, so a % symbol is added to the
procedure name: it then doesn't matter if the calculation in the
‘RETURN’ instruction line produces a floating point number. The
‘LOC’ instruction gives the position of the first character of the

string M$ (our chosen month) within the longer string Y$ - i.e. how"

many characters along from the left the chosen month name starts.

138

3.5 Handling Characters and Strings

Since each month name is three letters long, we divide this
position number by 3. This gives an answer of one less than the
actual month number, so to get the right month number, we add
one. (Try it for ‘FEB’": the LOC instruction would yield ‘4’, which
divided by 3 gives 1.33333333333, and adding 1 gives 2.33333333333.
The integer of this is ‘2', the actual month number).

The input parameter to this procedure must not be more than 3
characters long — otherwise an exact match will not be found. The
procedure is not error free: if a matech is not found, then the Month
number returned will be ‘1’. That’s because of the way the cale-
ulation is made: if there is no mateh, ‘LOC(Ys, M35} will give ‘0,
which is then divided by 3 (still giving ‘0") and ‘1’ is edded. Hence
the error. If this procedure were part of a serious program and not
just for demonstration purposes, it would be necessary to prevent
such an error occuring: as yet, we have not dealt with the words
that allow us to do this.

The ‘MONTHNO%.:" procedure can be tested from the CALC
mode, since a value rather than a string is being returned. For
exa?ple, after ‘CALC: you would enter MONTHNOS:("JUN")
(an
press EXE) to find the number for the month of June, Altern-
atively, you could write a short test procedure:

TEST2:
LOCAL M$(3)
PRINT "MONTH NAME™

INPUT M$
PRINT "Month No=" MONTHNO%: (MS)
GET

Program 3.5.6. ‘TEST2' Test MONTHNOY% procedure.

It would be well worth your while to enter the the MONTHNO?%,
and the TEST2 procedures, in order to get the ‘feel’ of how
Organiser handles searches. For example, when running TESTZ,
try entering just two letters for the search — Organiser will find the
first match, and evaluate the month number accordingly.

If you do enter these procedures to gain experience in pro-
gramming (how wise), you can easily erase them: they don't have to
stay in your Organiser cluttering up valuable space.

139



3.6

DECISION MAKING

OPL words covered
IF/ELSEIF/ELSE/ENDIF, GOTO, AND, OR

Comparison operators >, <, =

Putting things to the test

In all the procedures that have been discussed so far, Organiser II
has not been called upon to make any tests and act according to the
result. Program 3.5.5 - to find the month number from three letters
of its name — 1s an example where a test could eliminate the
possibility of an error. You will recall from the description of this
program that an error will occur if a match for the month name is
not found, because '’ (indicating ‘January’) is added to the zero
returned by the OPL word LOC.

What we want to say to Organiser in this program is “'If you can't
find a match for the letters that have been given, don't return a ‘1’ -
return a zero”. To do this, the result of the LOC operation needs to
be tested, and acted upon if it is ‘0",

You may wish to write a program that finds the cheapest item
from a whole range of items. To do this, you need to compare each
with the next, discarding the most expensive one each time. To
make the comparison, you need to test whether one value is greater
than another — and act according to the result.

Similarly, you might want to have a program that sorts a series of
names into alphabetical order. To do this, you need to test one
name against the next, to see which should come first.

These are just a few of the many, many tests that need to be made
in programs — tests which ean result in a course of action.

Organiser IT gives us all the ways we need to test the result of
virtually everything it does. More than this, it gives us ways to act
accordingly — branching out to take alternative actions if certain
conditions are met, or not met, as the case may be.

We shall look first at the ways Organiser can perform tests.

The Test operators

Just as there are ‘operators’ which tell Organiser to perform
mathematical tasks — such as + to add, - to subtract and so on, so
there are operators which tell Organiser to make comparisons.
These are <, =, and =.

That last one, the = sign, will undoubtedly cause some troubled
frowns. Didn't we use = to make assignments — such as ‘X=X+1',

140

3.6 Decision making

and ‘X% =42, and ‘M$="WELCOME BACK"'?. We did indeed, but
we are now going to use it in a different context — that is, in a
different kind of instruction statement. The comparison operators
are only part of the instruction.

These operators are used in the same way as mathematical
operators: they separate two values {or two strings). They make
statements about the two values, which Organiser is asked to
check:

A<B The value of variable A is less than the value of variable
B.

A-B The value of variable A is greater than the value of
variable B.

A=B The value of variable A is equal to the value of variable
B.

Having made the comparison, Organiser needs a way to respond
that's true, It does this by returning -1. If on the other hand
Organiser finds the comparison statement to be untrue, it returns 0,

We can put these comparisons to the test in the CALC mode.
Select CALC from Organiser’s main Menu, then enter 4<5 and press
EXE:

CALC:4<5
-1

You have stated that ‘4’ is less than ‘5', and asked Organiser to
check it out. Organiser has responded with “that’s true”, indicated
by ‘-1°. Press CLEAR/ON, then enter 4>5 and press EXE. This time
Organiser will respond with ‘0’ — indicating that the comparison is
not true: ‘4’ is not greater than ‘5’. Try other numeric values for
yourself, using each of the comparison operators in turn. Every
time, Organiser will respond with ‘-1’ if the comparison statement
is true, or ‘0’ if it 1s untrue.

Having satisfied yourself that Organiser II gets it right every
time where numbers are concerned, enter “A”<*B' and press
EXE.

This time you have said that the letter ‘A’ is less than the letter ‘B’
or, to express it differently, comes before the letter ‘B'. Organiser
agrees with the statement,

Now try “ABC”<**ABD”. That, too, Organiser will agree with.
But Organiser will not agree with “ABC"<*“AB": there are only
two
characters in 'AB’, and so ‘AB’ is less than ‘ABC’. Finally (unless
you wish to continue experimenting), try ‘“AAA”<“AB”.
Organiser
will agree, because even though there are three characters in

141



Programming Organiser Il

“AAA", the first two are ‘less than' the first {and only) two char-
acters “AB”: if you were preparing an alphabetic listing, that's the
way you would want it to be.

Thus, as far as strings are concerned, Organiser is capable of
detecting whether they are the same, or if not, which should come
first alphabetically, no matter how many characters (up to the
maximum of 255) the strings contain.

Actually what happens is Organiser ccompares the patiern
numbers or ASCII values of each pair of characters in turn.

The comparison operators can also be used in pairs, to make other
statements:

>= Means ‘equal to or greater than’ or ‘not less than'.
<= Means ‘equal to or less than' or ‘not greater than’.
<> Means ‘greater than or less than' or ‘not equal to'.

Thus, 3<>4 means ‘3’ is either greater than or less than ‘4" or 3’
i8 not equal to ‘4™, Note the statement can be expressed positively
or negatively with equal validity.

The comparisons work on numeric or string variables, as well as on
actual numbers: with variables, Organiser checks the contents or
value of the variables of course — not the variable names.

However, it is important to note that, while comparisons can be
made between integer and floating point numbers or variables (e.g.
COUNT<MAXIMUM?%), comparisons caennol be made between
numeric values and strings. (Thus COUNT<TOTAL$ would pro-
duce an error). Even if a string is, in fact, holding a number, it must
be converted to a numeric variable first: conversions from one type
of variable to another are dealt with in a separate Chapter.

Having made the comparison and produced a result of -1' or ‘0,
Organiser can be told what to do by using the IF ELSEIF ELSE
ENDIF set of OPL words. But before we come to these, here is a trick
used by experienced programmers to save a lot of programming
space and often greatly simplify program structures — although the
‘trick’ eppears to be more complicated.

First, are you aware that ‘-1" multiplied by ‘-1’ gives a result of
‘+1'? If not, test it on the Calculator. If you are happy with the fact,
look at the following expression:

~1*(4=4)

Looks very complicated, doesn’t it — certainly like nothing you
were taught at school. Let us make some sense of it. Like Org-
aniser, we'll first examine the part in brackets. This is saying ‘4 is
equal to 4'. Organiser will check this out — and agree, which it
signifies by a ‘-1'. So the expression now becomes:

142

3.6 Decision making

—1%(-1)

The result of this calculation i1s +1. If in the brackets we had
written (4 =5), then Organiser would not have agreed with this and
the expression would have become:

~1%(0)

The result this time would be '0": any number multiplied by zero is
zero. Now, suppose instead of actual numbers in the comparison we
used a variable or a function, this expression is saying, in plain
English “If the test in the brackets is true, give a resull of "+1'.
Otherwise, if it is not true, give a result of ‘0™,

What use is this? Well, now have another look at the last line of
Program 3.5.5:

RETURN LOC(YS Ms)/3+1

Remember it was stated that if a match is not found, an error will
occur, because of that '+ 1" at the end. Now have a look at this
alternative:

RETURN {LOC({YS$.M3)/3)-1*{LOC{YS M3)<=0)

If you take it piece by piece, it is not really as bad as it looks. In fact
all we have changed is the last part of the instruction. If
LOC(Y$ M$) is not equal to ‘0, it means a match has been found for
the string M$ in the string Y$ — and so (LOC(Y5.M5) <=0}, as a true
statement, resolves itself to (-1). That multiplied by the ‘-1’ gives
‘+1" — and the correct month number will be returned from the
procedure. If, on the other hand, a match is not found then
(LOC(YS.M5)<>0) is not a true statement, and the end of the instr-
uction becomes —-1*(0) — which is zero. Adding zero to the zero
resulting from the first part of the instruction — LOC(Y$ ,Ms)/3 —
means zero is RETURNed, indicating "'no month". Just what we
wanted. .

If you have saved the procedure “MONTHNOQ%,"”, edit the last
line so that it is as shown above, then run the ‘TEST2' procedure
{(Program 3.5.6) and choose letters you know will not match. Now,
instead of getting a ‘1’ to indicate (incorrectly) ‘January’, you will
get ‘0.

What has been demonstrated here is a technique: it has been used
to add or not add ‘1’ according to the result of a test. Any number
could have been added, by simply replacing the ‘-1’ with the
appropriate ‘-’ number. Similarly, any number could have been
subtracted by replacing the ‘-1’ with a '+’ and the number. For
example, to subtract 5 if a comparison is true, you would have
‘+5*(comparison)’.

As mentioned before, this technique: is used frequently by

143



Programming Organiser |l

experienced programmers but rarely by novices. That is because
the alternative, which we are now about to discuss, is easier to
understand since it more closely follows the language we speak.

IF a comparison is true...

There is a group of words in OPL that allow you to tell Organiser to
test comparisons and take actions according to the results. They
are 1F, ELSEIF, ELSE, and ENDIF.

Of this group, if you use IF, you must always use ENDIF. You
cannot have one without the other. When you use IF, you can if the
procedure requires it also use ELSEIF as many times as you wish,
and/or ELSE once, before the ENDIF instruction.

IF

This tells Organiser to check out the comparison that immedi-
ately follows it. If the comparison is true, Organiser will obey
the next instruction(s), until it comes to an ELSEIF, or an
ELSE, or an ENDIF, Then, if it hasn't reached an ENDIF, it
Jumps all the intermediate instructions and goes straight to
the ENDIF. i

If the comparison is not true, Organiser will look through the
following instructions until it comes to an ELSEIF or an ELSE,
or an ENDIF. It will miss out the instructions immediately
following the ‘IF comparison’ instruction.

ELSEIF
This is similar to IF — it needs to be followed by a comparison.
The result is treated the same way as the result of an ‘IF
comparison’. If the comparison is true, it carries on with the
next instruction(s). If it is not true, it searches for the next
ELSEIF, ELSE or ENDIF.

ELSE
This says to Organiser — “the previous IF and possibly ELSEIF
comparison instructions have all been untrue, so what I want
you to de is this ...". Thus Organiser will perform the instr-
uctions following the ELSE instruction if all previous IF and
ELSEIF comparison instructions in the group proved to be
untrue,

Let us look at an example, using actual values rather than vari-
ables, so that you can see what is happening.

IFTEST:
IF 4-4

PRINT "FOUR=FOUR"
ELSEIF 4-6

FRINT "FOUR=-SIX"
144

3.6 Decision making

ELSEIF &=5
PRINT "FIVE=FIVE"
ELSE PRINT "THE COMPARISONS
PRINT "FAILED"
ENDIF

First of all, notice all the indents. You don't have to enter the spaces
when typing such a procedure into your Organiser. They are there to
help you see what is happening: this will be even more useful later
on, when we nest IF instructions. You can enter the spaces, if you
wish, when typing in your programs, to make them easier to
understand — and indeed, many programmers do. It can actually
help to eliminate errors of ommission.

Now, let us examine this little part of a program. The first
instruction says to Organiser, “If the comparison ‘4 is equal to 4’ is
true .."”. Before Organiser goes any further, it checks out the
comparison. Lo! It is true. Organiser then looks to the next instr-
uction, to see what it should do. That says PRINT "FOUR-FOUR",
So it displays “"FOUR=FOUR" on the screen. Now what? It looks
to the next instruction ... and that is an ELSEIF. Thus, it has
completed all of the instructions it must do ‘IF 4=4". So now it
looks for the ENDIF instruction, and continues obeying instr-
uctions from that point on — missing out completely all the inter-
mediate instructions without even looking at them.

If the first line had read IF 4<>4, then things would have been very
different indeed. This time, Organiser would not agree that 4<>4 (‘4
is not equal to 4"), and would look through the next instructions
until it came to an ELSEIF, an ELSE or an ENDIF. In this example,
it would come to ELSEIF 4-6. It wouldn't agree with that either. So
the search continues for the next OPL word in the series ... and so it
comes to the ELSEIF 5-5 comparison instruction. This it will agree
with — and so it will carry on with the next instruction, PRINT
"FIVE=FIVE". Then it reaches the ELSE - so it has done all it has to
do if the comparison is true, and it jumps to the ENDIF instruction.

If the ELSEIF 5=5 instruction had read ELSEIF 5>5, Organiser
would not have agreed (‘5 is greater than 57— not true), and so the
search would have continued. In our example, it comes to the ELSE
instruction. This is what it must do if all else fails — which this time,
will be the case. So it obeys the next instructions to display a
message on the screen. It then reaches the ENDIF and all of this
part of the program is over ... it continues obeying the instructions
following ENDIF. ENDIF is a complete instruction, requiring one
line to itself (or which must be followed by a space and a colon, if
more than one instruction is being entered on the line).

As mentioned earlier, the only two words of this group that must
go together are IF and ENDIF, The other two words ELSEIF and
ELSE are optional: you use them according to program require-

145



Programming Organiser Il

ments. However, ELSE must be the lgst of the words used before an
ENDIF, and it can be used only once in a series.

Now let us take another look at Program 3.5.5. We can use the '[F’
construction to make the test of whether LOC{¥5,M5) is zero or not,
and tell Organiser to act accordingly. Thus, instead of the existing
last line, we could have the following:

IF LOC(YS, M5)=0

RETURN 0
ELSE RETURN LOC{Y$, M$)/3+1
ENDIF

That certainly looks easier to understand than the other ‘last line’
we developed earlier on, doesn’t it? However, as you can see, itis a
longer program.

We can shorten it slightly. We have already seen that when
Organiser makes a test on a comparison, it responds with -1’ for
true, and ‘0’ for not true. When it looks to see the result of a
comparison after an IF instruction, it takes 0 ic be untrue, and any
other value (o be true — not just -1, Thus, when LOC(Y$ ,M$) returns
a ‘0’, Organiser will regard that as being untrue, while any match
would be regarded as true. Consequently we could have written the
last few lines this way:

[F LOC(YS, M5)

RETURN LOC({Ys M5)/3+1
ELSE RETURN O
ENDIF

As you can see, the order of things has changed: when a match is
found for M$ in Y$, Organiser regards the result as being true — so
it will continue with the next instruction. If a match is not found
(‘0"), it will regard that as being untrue, and so will return a zero.

Finally, the ELSE instruction can be dropped completely from the
procedure, by writing these lines as follows:

IF LOC{YS MS)

RETURN LOCKYS ,MS)/3+1
ENDIF
RETURN O

This time, if the IF instruction is true, Organiser returns the month
number just as before. If it is not true - there is no match for M§ -
then Organiser poes to ENDIF, and continues the instructions. The
next instruction tells it to RETURN 0.

146

3.6 Decision making

We have now discussed a number of different ways to write one
small part of a program. They vary in length and understandability.
They will also vary in speed of execution — but the difference is so
small you'd never know it. However, if you were dealing with a
sequence which is repeated thousands of times in a ‘loop’, the
differences in time taken would become more significant.

Remember in Chapter 3.1 it was stated that there are many ways
to write a program? You will now understand why.

IF = IF - IF instructions

Sometimes one comparison test is not enough to determine a course
of action to be taken. For example, the pattern or ASCII numbers .
for the characters ‘0’ to ‘9" are 48 to 57 respectively: you may wish
to test that a character lies within this range. Your instructions to
Organiser would be something like: “IF the character pattern
number is greater than 47 and IF it is also less than 58, then it is a
number character, and here's what I want youtodo..."”.

In this example, {wo tests need to be made. First it is necessary to
check that the character pattern number is greater than 47: if it
isn’t, then it is not one that we require, so any further testing is
unnecessary. If it is greater than ‘47’ - that is, equal to a value of 48
or higher — it is then necessary to check that it is less than 58. If
this is also the case, then the character number lies within the
required range of 48 to 57. If the character pattern number is equal
to 58 or more, then it is outside the required range, and not wanted.

Organiser allows us to tackle this problem two different ways.
The first way uses the IF instruction discussed in previous para-
graphs, so we will examine this first.

IF instructions can be ‘nested’. That means within one set of IF
instructions, you can include another set. The following solution to
the above problem will demonstrate: in this, the character pattern
number is represented by the variable ‘CPN9%,'".

[F CPN%>47
IF CPN%<58
PRINT "CPN% IS A NUMBER"
ELSE PRINT "CPN% [S OVER 57"
ENDIF
ELSE PRINT "CPN% IS UNDER 48"
ENDIF

The first line says to Organiser “IF it is true that the value of
CPNY, is greater than 47, obey the next instruction. If not, go and
find an ‘ELSEIF’, ‘ELSE’ or ‘ENDIF" at this level of instruction.” So
far Organiser has encountered only one IF, and so it is at the first
level, If the statement is true, Organiser moves on the the next
instruction. That says to Organiser “IF it is true that CPN9, is less
than 58, obey the next instruction”. This is the second time Org-

147



Programming Organiser |l

aniser has encountered an IF instruction, so it is now at the second
level.

Let us assume, for a moment, that Organiser has reached this
point in the program (because it is true that CPNY%, is greater than
47), and CPN9%, is indeed less than 58. It obeys the next instruction
— which is to display the message “CPN9% IS A NUMBER" on the
screen — and then finds, at this level, the next instruction after that
starts with an ELSE. It has completed the instructions at this level,
and looks for the ENDIF — saying to itself “‘I've done everything
required at this level”. It will also have done everything required at
the first level — having obeyed one set of instructions, and so will
look for the ENDIF marking the end of the 1F sequence at the first
level. The procedure is completed.

If Organiser had reached the line I[F CPN%<58 and found that to
be untrue, it would look for the ELSEIF, ELSE or ENDIF instruction
at this level — and so reach the line ELSE PRINT “CPN% 15 OVER §7".
This it will do, then see that the next instruction is an ENDIF - for
this level — and will jump to the ENDIF at the first level, as before.

Now let us assume that Organiser found the comparisen in the
first line to be untrue: CPN%, is not greater than 47, because it is
either equal to 47 or less than 47. It ignores all the rest of the
instructions until it finds an ELSEIF, ELSE or ENDIF at the first
level — which it does at the line ELSE PRINT "CPN% IS UNDER 48",
It obeys that instruction (there is not a comparison test to make),
then finds an ENDIF, so all is complete.

You will now appreciate how indenting the IF statements and
their ensuing set of instructions helps to understand at which level
Organiser is operating. Every sequence must be complete, finishing
with an ENDIF. You cannot have a sequence such as

IF (comparison)
IF {(comparison)
PRINT "something”
ENDIF

The ENDIF in this sequence will relate to the second level, and the
first level has not been properly terminated. An error would occur.
Every level must be properly terminated with an ENDIF instruction.

As mentioned earlier, this process is called resting. You can have
up to eight nested sequences in Organiser — but this includes other
instructions which can also be nested. We'll be dealing with these
other instructions in a separate Chapter.

Using ‘AND’ and ‘OR’ to link comparisons

OPL has two words — AND, and OR - which are called logical
operators. They are used to combine two numeric values in a
special way — which depends on whether the numeric values are
floating point or integer types. We can use the logical operators

148

3.6 Decision making

AND and OR to link comparisons. There follows a description of
how the operators work. This is given for completeness, and so that
you may, at a later time, understand how to use them for more
sophisticated applications. It is not necessary to understand how
they work when using them to combine or link comparison tests,
and so you may choose to skip the next few paragraphs.

—o00o—

Floating point numbers can be linked by AND and OR to produce the following
results ('A' and ‘B’ represent floating point numbers}.

A ANDB Produces -1 if both A and B are non-=zero. (Nete: On some
versions of Organiser II, the test is made only on the least two
significant digits in the birary values of A and B. These must be
non-zero for a -1 result). Otherwise the result is zerc.

AORB Produces <1 if either A or B is non-zero. Otherwise, if both are
zero, the result is zero,

When used with integer values, these two words operate on the bifs in the binary
equivalent of the numbers. You will recall, from Chapter 1.2 under the heading
Computers count differently, we discussed how eight switches can represent any
number from 0 to 255, and that each ‘switch’ is, in effect, a binary digit. The switches
represented the values 128, 64, 32, 16, 8, 4, 2and 1 if "on’, and ‘0" if 'off".

The AND operator compares each ‘switch’ or binary digit for the two numbers. If
the same switch in both numbers is 'on’, the corresponding switch in the ‘result’ is
also switched on. If either is ewitched off, then the corresponding switch in the result
is also switched off. To demonstrate this, let us take two integer values, 23 and 14,
and examine how they are represented in binary digit form, and the result of 23 AND
14

Binary digit or 'switch value'™ 128 64 32 16 8 4 2 1

'23' represented in binary 0 o o0 1 0 1 1 1
'14' represented in binary 0 o o0 ¢ 1 1 1 0
Result of 'ANDing' the two 0 0 0 0 0 1 1 0O

As you can see, where both binary digits are ‘1’ there is a ‘1’ in the answer. Where
either or both is ‘0, there is & ‘0" in the answer. The decimal answer is found by
adding the values for the '1' binary digits - i.e. 4+ 2, which iz 6. Thus, 23 AND 14 is
equal to 6. You can test this out for yourself in the CALC mode, by entering:

INT(23) AND INT(14)

and pressing EXE. It is necessary to convert the values to integers, because in the
CALC mode, Organiser uses floating point numbers, whether they are entered with a
decimal point or not.

The value of making such combinations will become apparent to you only when
making sophisticated computations. The process is used, for example, to mask out
unwanted numbers. (Organiser uses this system to convert lower case letters to
upper case letters when you install a program onto the main Menu).

The action of the OR operator is similar; 1n this instance, the result of ORing two

binary digits will be a ‘1’ if either or both of them is a ‘1. 23 OR 14, for example,
would result in the binary digits representing the values 16, 8, 4, 2 and 1 being ‘on’" -

149



Programming Organiser ll

giving a decimal value of 31 (16 + 8 + 4 + 2 + 1). Again, you can put this to the test
in the CALC mode by entering INT(23) OR INT(14). Experiment with other values -
both ANDing and ORing - and see if you can deduce which 'switches’ or binary digits
are being tested.

—oDo—

The result of a comparison, remember, will always be -1 if it is true,
or 0 if it is untrue. AND and OR can be used to check the result of
two (or more) tests. If all the tests linked by AND are true, the
result is -1. Thus

(True comparison)AND (True comparison) AND (True
comparison)

would result in *-1’, but if any one or more of the comparisons were
not true, the result would be ‘0.

When linked by OR, any of the cnmparlsons being true — whether
it is one or more — would result in ~1. If all the comparisons are
untrue, the resultis 0.

The AND and OR words can be used in combinations, but it is
important that you enclose in brackets the parts you want treated
together. For example,

((Comparison A) AND (Comparison B)) OR (Comparison C)

would result in ‘-1’ if either
a) both Comparison A and Comparison B are true.
or b) Comparison C istrue.

In this next example,
(Comparison A) AND ((Comparison B) OR (Comparison C))

Comparison A must be true, and either Comparison B or Compar-
ison C — or both — must be true for the result to be ‘-1'.

How does all this help with our IF instructions? It means that two
Or more comparisons can be combined to produce a result that the
Ill: instruction can work on. Remember, Organiser looks to see if
the

result of any checks it has to make after IF is zero or a value.

Thus, an instruction line such as IF (A=B) AND (C>D) would
cause Organiser to obey the next instruction if it finds that A is
equal to B and C is greater than D. If either of these two
comparisong is not true, then Organiser searches for the next
ELSEIF, ELSE or ENDIF instruction.

If we look again at the problem of determining whether an ASCII
150

3.6 Decision making

number is for a numeric character (ASCII numbers 48 to 57), this
can be written as

[F (CPN%>47) AND (CPN%<&8)
PRINT "CPN% IS A NUMBER™
ENDIF

Notice that, this time, it is not possible to determine from the IF
instruction whether ‘CPNY%," is greater than 58 or less than 47: if
this is a program requirement, then the extra IF instruction will be
required, as given in the earlier program example. The first line of
this program segment says, in ‘English”: “IF the value of CPN9, is
greater than 47 and is also less than 58, (i.e. - if it is within the
range 48 to 57 inclusive), obey the next instruction”.

A ‘Password’ Procedure

Here is a short procedure that will enable you to prevent other
people from using your Organiser II - to protect confidential
information stored in it, for example. It operates in a very similar
manner to Program 3.5.1. When run, you will be asked to enter a
‘Password’ of no more than 16 characters (which you must be very
careful to remember!). Organiser will then switch itself off. When
you (or anyone else) switches the Organiser on, it will be necessary
to enter the Password. If it is entered incorrectly, Organiser will
again switch itself off. Once tested, you can install the procedure
on the main Menu: to use it you would select ' PASSWORD' instead
of OFF to switch off, then enter your password.

PASSWORD:
LOCAL Ps(16),15(16)
PRINT "PASSWORD";CHRS(63)

INPUT Ps
CLS
ouT::
OFF
PRINT "ENTER PASSWORD"
INPUT Is
CLS
IF [$<>P$
GOTO QUT::
ENDIF

Program 3.6.1 ‘PASSWORD' Security switch-off

Note that this procedure uses a label, (‘OUT::"): labels are discussed
in the next Chapter. Be sure to enter the label correctly — that is,
with two colons after it — in both places in the procedure.

It must be stressed again that you must remember your Password
- otherwise it won't only be other people that cannot use your
Organiser!

151



3.7

CREATING OPTIONS AND JUMPING
AROUND

OPL words covered
MENU, GOTO, ABS, INT, Labels

Offering a Menu

In Chapter 3.1 we discussed a program to calculate the rolls of
paper or emulsion required to decorate a room. This program could
now be written using only the OPL words that have been discussed
so far. However, with just one or two more words, the program can
be made easier to use — requiring less effort to enter the necessary
information.

You will recall that this program requires answers to various
questions (Fig. 3.1.4). Are you going to use paper or emulsion as the
decorating material? Do you wish to decorate the ceiling or walls?
Do you wish to make another calculation on the same room, a new
room, or have you made all the calculations you want?

All of these questions could have been answered by using the
*INPUT" instruction, but this would mean carefully analysing the
information entered at the keyboard. Not impossible, of course. It
just so happens there is a much easier way — and that is the way
that Organiser uses itself when offering you options. The Menu.

Organiser allows you to create your own Menus, and to act
according to the option selected. The OPL word, not suprisingly, is
MENU’,

The complete instruction looks like this:

integer% = MENU(options$)

‘Option$’ can be a string variable, or an actual string. Unless you
are going to use the set of options several times in different places
in the program, it is probably best to use an actual string — that is,
a series of characters enclosed in quotes.

This string lists all the options, each separated from the next by a
comma. Our decorating program requires three sets of choices —
between paper and emulsion, ceiling or walls, and same room, new
room or finish. The three ‘strings’ we will use, therefore, will be:

“PAPER,EMULSION"
“CEILING,WALLS"
“SAME,NEW,END"”

152

3.7 Creating options and jumping around

Now, how does this instruction work? Well, when Organiser meets
a MENU instruction, it displays the string on the screen, in capital
letters (even if you entered lower case letters), with spaces instead
of the commas. Organiser sorts out whether it can get two or more
words on a line without splitting them up — you don’t have to worry
about that. It may be, of course, that you have more words in your
option list than can be diplayed on the screen at a time. If this is the
case, then the words ‘off the screen’ can be brought into view by
using the cursor keys — in just the same way as the words on the
main Menu. In other words, your Menu will appear in the same
fashion as any of Organiser’s own Menus.

Selection of the required option is made in the same way too — by
pressing the key for the initial letter of the required option, or by
using the cursor keys to position the cursor over the required
option, then pressing EXE. It obviously makes sense to try to keep
the initial letters of the options different - so that pressing the
appropriate key immediately selects the option.

When an option is selected, Organiser looks along the list to see
which one it is. Organiser then returns a number related to the
position of the selected option in the list. Thus, if the ‘NEW’ option
were to be selected from the “SAME, NEW, END" Menu, Organiser
would return the value ‘2" - indicating that the second word in the
Menu string has been selected.

Organiser needs to know what to do with this number - hence the
complete instruction is

integer% =MENU(option$)
It places the number for the selected option in the wvariable
‘integer%’'. You can, of course, give this variable any name you
choose. But note it need only be an integer variable: decimal points
will never be involved.

You will now have a variable that you can examine and act upon
—using the [ F instruction, for example.

If CLEAR/ON is pressed while one of your own Menus is
displayed on the screen, then the value ‘returned’ will be ‘0. You
can use this to stop the program running and return to the main
Menu. Or you can ignore it in your program. Any other key has no
effect: the Menu remains displayed until an appropriate input has
been made.

Jumping away

There are numerous occasions in programming when, having
performed one or more tasks, you will then want to jump away to
another part of the program. Our ‘Decorating Materials’ program
has at least one example of this. At the end, when all the calc-
ulations have been made, we are offering options to make another
calculation for the same room, or to start again with another room,
or to finish altogether. If, say, another calculation for the same

153



Programming Organiser |

room is required, we need a way to get back to the relevant part of
the program - the choice between ‘Paper’ or ‘Emulsion’ (see Fig.
3.1.4) — so that room dimensions don't have to be re-entered.

Organiser provides the solution for us, with the OPL word
‘GOTO’, and by the use of labels.

Let us look first at ‘labels’. A label is simply a marker in the
program. It has a name — that we give it — and it is identified as a
label to Organiser by following the name with two colons, The label
acts as one complete instruction. It says to Organiser “Mark this
place in the program: I shall be using it from time to time”. The use
of two colons is important: remember that Organiser identifies one
colon after a name as an instruction to ‘call’ or run the procedure
with that name.

To jump from any point in the same procedure to the label, you
simply use the GOTO instruction, followed by the label name and
the Lwo colons. Note that you cannot jump to a labelled point in any
other procedure - only to a labelled point in the same procedure.
This means you could use the same label name in several pro-
cedures, should you so wish. But for clarity, you would probably
not want to do so.

Thus, part of a procedure might look like this:

instructions
ENCORE: :
instructions
GOTO ENCORE : :

The ‘jump’ can be made either back to an earlier part of the
procedure, or forward to a later part of the procedure. If jumping
back, it is important that you have a way out of the procedure in the
intermediate instructions — otherwise the program would never
end! You will be in a continuous loop, and the only way out then is
to press CLEAR/ON followed by @ — which breaks into the
prcedure and quits it completely. This is not a satisfactory way to
exit a procedure — it is an ‘escape route’ should things go wrong.

Beforg we learn any more words in OPL (and there are still plenty
to come), let us put those we know into practice, and write the
‘Decorating Materials' program.

The Decorating Materials program

We have already defined what we want this program to do, and we
have prepared a flowchart of the way we are going to approach the
problem (Fig. 3.1.4).

Let us now dot a few i's and cross a few t's.

We know that we will want to jump back from the last Menu to
either the very start (to calculate for a new room) or to the point
where a choice is made between Paper or Emulsion. We also know,
now, that jumps like this can be made only in the same procedure.

154

3.7 Creating options and jumping around

So our program down to at least the ‘Paper/Emulsion’ decision, and
the Menu offering the choice of further calculations or finishing,
must be in the same procedure. It would make sense, too, to keep
the display of the answer in the same procedure.

You will notice that there are two ‘boxes’ in the flowchart where
a decision has to be made between ‘Ceiling’ and ‘Wall'. There is no
point in writing this part twice — so we will make it into a separate
procedure, and ‘call’ it when it is required.

You will also notice that there is a box to calculate the emulsion
required for the walls, and a box to calculate the emulsion required
for the ceiling. The actual calculation in each instance is the same:
area divided by coverage. The areas are different, of course, but if
we used a function type of procedure, passing the area in as one of
the parameters, then one procedure would cover both of these
calculations,

The same is true with the calculations for the number of rolls of
paper required: we have already ascertained that the rolls required
for the walls can be calculated by

Rolls = (Room perimeter/1.75) / integer(33/room height).

For the ceiling, the number of pieces that can be cut from one roll is
given by the integer of ‘the roll length divided by the room width
(or its length)'. The number of strips required altogether is the room
length (or width) divided by the width of the roll. The number of
rolls required is the total number of strips needed, divided by the
number of pieces we can get from a roll.

We have set values for the length and width of a roll, in feet, as 33
and 1.75 respectively. So the calculation of the number of rolls
required for the ceiling becomes

Rolls for ceiling = (room length/1.75) / integer(33/room width)

You will see the similarity between the two ‘paper required’
calculations: providing we pass in the correct parameters, we can
use one procedure to cover both.

That leaves us with just one item not covered — getting the
coverage of the emulsion. As this is used only once, we may as well
include it in the main ‘start and finish’ procedure. .

We thus need to prepare four procedures: the main ‘control’
procedure, the ‘Ceiling or Wall?' procedure, the calculation of rolls
required, and the calculation of emulsion required. These will
contain the instructions as follows (compare the procedures with
the flowchart of Fig. 3.1.4):

Main procedure
DECOR:
NEW: :
Get room measurements.

155



Programming Organiser Il

Calculate room perimeter and areas.

MORE: :

Get the option — Paper or Emulsion,

1F Emulsion, get coverage of emulsion,

‘Call’ the ‘Ceiling or Wall’ procedure.

1F Ceiling, ‘call’ Calculate Emulsion, for ceiling.
ELSE ‘call’ Calculate Emulsion, for wall area.
ENDIF

ELSE ‘Call’ the ‘Ceiling or Wall’ procedure.

1F Ceiling, ‘call’ Calculate Paper, for ceiling.
ELSE ‘call’ Calculate Paper, for walls.

ENDIF

ENDIF

Display the answer with appropriate message.
Get the option — Same, New, or End.

I F Same, jump back to MORE: :

ELSEIF New, jump back to NEW: :

ELSE End.

ENDIF

Note how we have already started paving the way for qctually
writing the program by including some of the IF instructions, in
broad terms. Note too how the labels have already been positioned.

Ceiling or Wall
COW9,:
Get — and return — the selected option (as a number).
Calculate Emulsion
CALEMY,:
Calculate and return gallons/pints required, (area/coverage),
using input parameters for the area, and coverage per gallon.

Calculate Paper
CALPAPY: .
Calculate and return the number of rolls required, using input
parameters: we want the answer to the nearest next whole

number.

Before we actually start entering our programs procedures, we
should consider the variables required. We also need to have some
messages ‘up our sleeve’ when we display the answer. We have two
choices of material, and two choices of ‘part of the room’: to
demonstrate the use of array variables, and the use of edding
strings, we will put the messages into two arrays, and combine
them as needed.

How about the variables — for room height, width, length, area,
and so on: should they be LOCAL or GLOBAL? We are going to
pass parameters into and return values from of all of the ‘sub’
procedures — and so we need use only LOCAL variables in each

156

3.7 Creating options and jumping around

procedure.

As you can see, we have pretty well buttoned up the entire
program requirements before we start to write the actual instr-
uctions. All we need to do, now, is dream up names for all the
variables and so on. We can do that as we go along.

The ‘Ceiling Or Wall’ Procedure — which we have called ‘COW?9;’
— is going to be a simple MENU instruction, returning the integer
number relating to the choice. It is because we are returning an
integer value that the % symbol is included after the name.

COW%:
RETURN MENU({"CEILING, WALLS")

Program 1.7.1 ‘COW?%" Ceiling or Walls?

You can test this procedure by entering the CALCulator mode, and
typing in COW%: (don't forget the colon). The screen will clear
and the two words ‘CEILING' and ‘WALLS' will be displayed. Use
whatever method you like to select one of them — and you will be
returned to the CALC mode, with the lower line displaying a
number corresponding to your choice: ‘1’ for ‘CEILING’, and ‘2’ for
‘WALLS’ (provided you entered them in that order in the MENU
instruction!). Note what happens if you press any other key — and
what happens if you press CLEAR/ON. When you are satisfied that
everything works, return to the PROGramming Menu, to enter the
next procedure.

The ‘Calculation of Emulsion’ Procedure - which we have
called '‘CALEMY,’ - needs some discussion. First, note that the %
symbol is used after the procedure name — to indicate that we wish
to return an integer value: we don't really want to know we need a
fraction of a pint, since we would have to buy another whole pint if
a fraction is involved. What we do need, however, is a way to round
up any fractional part of the answer.

Organiser has a function word INT, which gives the integer value
of any number contained in brackets after it. This number is always
rounded down: thus, INT(8.3) gives a result of 8. This is not what
we want. However, negative numbers are also rounded down — thus
INT(-8.3) gives a result of -9. (You can test these out in the
CALCulator mode, if you wish).

Making the number negative gives us the value we want — but we
don’t want it to be negative: Organiser has the answer with another
OPL word — ABS (short for ABSolute value). This function takes the
number in brackets, and whether it is positive or negative, it will
always return the number as a positive value. Thus ABS(-8.3) will
give 8.3.

By using the two words, and by making the answer negative, we
can now force Organiser to give us an integer value, rounded up.

157



Programming Organiser Il

Thus, let us say the calculation of pints required produced an
answer of ‘8.3". We can get the answer we want - ‘9" — by making
this value negative, then taking the absolute value of the integer.
Thus ABS(INT(-8.3)) gives 9. (Test it in the CALCulator mode).

The other point to be made before writing this procedure is that
we have decided the input parameter for the coverage of the
emulsion will be square feet per gallon. We will need to convert this
to pints (by dividing the coverage per gallon by eight).

So that you can understand the operation of this procedure, we
will write it first using a LOCAL variable to help with the calc-
ulation. Then we will shorten it to a two-line procedure that doesn't
need the intermediate variable.

CALEM%: (AREA , COVER)
LOCAL V

V=COVER/8

V=AREA/V

RETURN ABS(INT(-V)}

Program 1.7.2 “‘CALEM%" Calculation of Emulsion, long version

(Remember that you enter the name first, press EXE, then enter the
input parameter names in brackets: the input parameter names do
not form part of the procedure name).

The variable ‘V’ is first used to hold the coverage of a pint of the
emulsion — ‘COVER/8' — and is then used for the calculation of
number of pints used — ‘AREA/V'. Note the complete instruction
says to Organiser “Take the value stored in memory boxes called
‘V’, divide it into the value stored in memory boxes called ‘AREA’,
and put the answer back into memory boxes ‘V'". The last instr-
uction we have discussed — it rounds up the answer to the next
whole number.

The entire calculation can be achieved in the last line, thus:

CALEM%: (AREA.COVER)
RETURN ABS(INT(-AREA/{COVER/B)))

Program 3.7.3 ‘CALEM®%" Calculation of Emulsion, short version.

Make sure you get the correct number of brackets at the end! If you
are ever in doubt, the total number of right brackets should always
be the same as the total number of left brackets.

Again, this procedure can be tested in the CALCulator mode, by
entering CALEM%:(value,value) — putting in your own values. If
all is well, you will find that you will always get a rounded up
whole number, indicating the number of pints required. Remember
that the second parameter represents the coverage per gallon).

The ‘Calculation of Paper’ Procedure — which we have called
‘CALPAPY,’' —is very similar to the previous procedure, in that we

158

3.7 Creating options and jumping around

wish to return the next whole number up, so that we get the
required number of rolls. Depending on whether the calculation is
for the walls or the ceiling, the input parameters will be ‘room
perimeter or length’, and ‘room height or width’. So we shall eall
them ‘POL’ and ‘"HOW'. We will miss out writing a long version of
this procedure, and go straight into the two-line version:

CALPAP%: (POL, HOW)
RETURN ABS(INT(-(POL/1.75)/INT(33/HOW)))

Program 3.7.4 'CALPAP®%’ Calculation of Paper

Make sure you enter the brackets correctly in this procedure. As
before, you can test that the procedure works without errors from
the CALCulator mode, using your own values for the input para-
meters. You can, of course, check that it gives the right number of
rolls, by using parameters for a room you have already decorated (if
you can remember how many rolls of paper you used!). Remember
that this calculation just takes room width and length, and ignores
alcoves, windows and doors: usually, these tend to balance each
other out.

The main Decorating Program Procedure - which we have
called '‘DECOR’ - can now be written, We are going to need
variables for room length, width, and height, to hold the room
perimeter, the wall and ceiling areas, to hold coverage per gallon of
emulsion, to hold the answers to our Menu selections and the
answer to the resulting calculation, and to hold our ‘messages’. We
will also have a variable to hold the ‘Question mark’ character.

We could cut down on the number of variables used, but for
understandability, we’ll allow each value to have its own variable.
When entering the following procedure, you do not have to indent
any lines: they are indented here to make the procedure easier to
understand. All other spaces, punctuation and so on should be
observed, however, in order to get a reasonable display on the
screen.

DECOR:

LOCAL WIDTH,HEIGHT, LENGTH, PERIM WALL,CEIL,COVER,PE%,
Cw% . ANS% . CWs(2.7) .PES(2.8).0Q5%(1)

CWS(1)="CEILING"

CWs (2)="WALL"

PES(1)="PAPER"

PES(2)="EMULSION"

Q5=CHRS(63)

NEW: :

CLS

PRINT "WIDTH-IN FEET";03%

INPUT WIDTH

159



Programming Organiser |l

CLS
PRINT "LENGTH-IN FEET":.Qs
INPUT LENGTH
CLS
PRINT "HEIGHT-INCHES":0s
INPUT HEIGHT
CLS
HEIGHT=HEIGHT /12
FERIM=2*{ LENGTH+WIDTH)
WALL=PERIM*HEIGHT
CEIL=-LENGTH*WIDTH
MORE: :
PE%=MENU { "PAPER , EMULSION"}
IF PE%-0
RETURN
ELSEIF PE%~2
PRINT "S0.FT PER GAL";Q$
INPUT COVER
CWh=COW%:
1F CW%=1
ANS%=CALEM%: (CEIL,COVER)
ELSE ANS%-CALEM%: (WALL,COVER}
ENDIF
ELSE CW%-COW%:
IF CW%=0
RETURN
ELSEIF CW%=1
ANS%=CALPAP%: (LENGTH ,WIDTH)
ELSE ANS%=CALPAP%:(PERIM HEIGHT)
ENDIF
ENDIF
CLS
PRINT CWS5{CW%),PES(PE%);
AT 1,2
[F PE%=1
PRINT "ROLLS = " ANS%
ELSE PRINT ANS%/8;:"GALS + " ANS%-(8*(ANS%/8)),"PINTS"
ENDIF
GET
ANS%=MENL ( "SAME , NEW ,END"}
IF ANS%=1
GOTO MORE: :
ELSEIF ANS%=2
GOTO NEW::
ENDIF

Program 3.1.5 ‘DECOR’ The Decorating Materials Program
You should be able to understand most of this program, from the

160

3.7 Creating options and jumping around

previous descriptions. The first few lines simply set up the LOCAL
variables. Notice the use of two string arrays, to hold information
for subsequent display on the screen along with the answer. The
05=CHR$(63) line simply makes ‘Q% hold the character for a
question mark, for use when prompting for an input.

Following the ‘NEW: :’ label, we have the part of the procedure
that prompts and gets in the required room information. Note that,
for the length and width, the procedure expects the measurement to
be entered in feet (and a decimal part of a foot), but for the height, it
is entered in inches. You can change this, if you wish. Note the
length of the prompt strings: even with the question mark, they are
kept to less than 16 characters. This is to prevent the display from
scrolling.

After the measurements have been entered, the calculations are
made of the perimeter, and the wall and ceiling areas. The first
Menu is then offered, and this is followed by a check on which of
the options has been selected. The first check (IF PE%=0) tests
whether the CLEAR/ON key has been pressed, returning to the
Organiser Menu if it has been. If this were not done, an error could
arise later on in the program, since the value of the variable ‘PE%’
is used to select an element in a string array — and this must not be
IG’.

The routine to handle ‘Emulsion’ follows — starting with the
input of the coverage per gallon, and then, via the ‘Ceiling or
Walls’ Menu procedure, continuing with the appropriate cale-
ulation. Should this part of the procedure be selected when it is
run, program control will jump to the last ‘ENDIF’ after either
calculation has been made, ready to obey the 'display’ set of
instructions.

The routine for ‘Paper’ follows a similar pattern. Note that it is
not necessary to use an '‘ELSEIF PE%=1" instruction: if PEY, is not
equal to zero, and not equal to 2 (the previous tests), it can only be
equal to ‘1’ since no other values are possible as a result of the
MENU instruction. Hence an ‘ELSE’ can be used.

The necessary calculations having been made, the screen is
cleared and the selected options (CEILING or WALL, PAPER or
EMULSION) are displayed on the top line, by using the result of
the Menu selections (CW9, and PE9%) to identify the required
string array elements. The semi-colon at the end of this instruction
line prevents scrolling of the screen, which could happen when the
selections result in ‘CEILING EMULSION’ being displayed. The
next line ‘AT 1, 2’ is to ensure that the cursor is always positioned at
the start of the second line, for the display of the answer.

The answer is preceded by a message which depends on the
choice of materials. Note the calculation for Emulsion:

ANS%/8;"GALS + “;ANS%-(8*(ANS%/8));”"PINTS"
Although we have calculated how many pints are required, it is
more useful to know how many gallons are needed. This is achieved

161



Programming Organiser Il

through the ‘ANS%,/8" calculation. The result will be an integer —
that is, the decimal part will be ‘lost’. To get the decimal part, in
terms of pints, we take the total number of pints, and deduct from it
the number of pints there are in the number of gallons already
accounted for. The number of gallons already accounted for is

‘ANS%/8’: hence eight times this value is the number of pints’

already accounted for. This value is deducted from the total number
of pints needed, to give the additional number of pints. Thus,
instead of giving an answer such as 17 pints or 2.125 gallons, we get
a more meaningful answer of 2 gallons 1 pint.

You can adapt this program to suit your own needs: for example,
you may decide that you would rather calculate the number of litres
of emulsion required, rather than gallons/pints. This would involve
a simple change to the ‘CALEM®%,’ procedure (there would be no
need to convert from coverage per gallon to coverage per pint),
changing the message “SQ.FT PER GAL” to “SQ.FT PER LITRE",
and changing the display of the answer to ‘PRINT
ANS%;"LITRES” - cutting out all the conversion work to gallons
and pints.

162

3.8

MORE KEYBOARD AND SCREEN
HANDLING

OPL words covered
KEY, KEY$, PAUSE, KSTAT, CURSOR ON/OFF, VIEW

Has a key been pressed?

We have discussed two OPL words which enable information to be
typed in from the keyboard. These are 'GET’, and *INPUT'. Let us
look now at exactly how these two words work.

Organiser has a special area in RAM called the input buffer.
When keys are pressed, Organiser places the information about
those keys into the input buffer area. It will do this as an interrupt
operation. (See Chapter 1.3, “Excuse the interruption'”). Thus, if you
press keys whilst Organiser is performing a lengthy operation — and
is not ‘expecting’ an input from the keyboard - the information
about the pressed keys will be stored in the input buffer.

When Organiser meets a word requiring an input from the
keyboard — such as ‘GET’ or 'INPUT' — it looks first into the input
buffer area, to see if any keys have already been pressed: if it finds
information there, it uses that information for the instruction, and
removes it from the input buffer.

If it doesn’t find information in the input buffer it assumes that,
so far, a key has not been pressed and it waits at the keyboard to
obey the instruction.

'‘GET’, for example, causes Organiser to look into the input buffer
to see if a key has been pressed. If more than one key has been
pressed before the GET instruction is been reached, it takes the
information relating to the first key (GET accepts just one key-
press), and associates that with the GET instruction. If the instr-
uction had been KEYIN%-GET, it puts the pattern number or
ASCII value for the pressed key into the boxes reserved for the
variable 'KEYINY,'. The key information is then removed from the
input buffer: it is no longer needed.

‘GETS’ operates in a similar way except that this time, instead of
the input information being regarded as a value, it is regarded as a
character. You cannot mix the variable types: 'K$-GET" would
praoduce a TYPE MISMATCH error during the procedure trans-
lation process.

‘INPUT' accepts key-presses until it meets an EXE: in this
instance, it takes any values in the input buffer up to the EXE
‘character’, and places those in the variable associated with the
INPUT instruction. At the same time, it displays each of the values,

163



Programming Organiser |l

as a character, on the screen.

If Organiser finds the input buffer empty, it waits at the keyboard
until keys are pressed. It then places the information into the input
buffer and acts accordingly as just described.

There are two OFL words that look only in the input buffer, to see if
a key has been pressed: if the input buffer is empty, then Organiser
doesn’t wait for a keypress — it goes on with the next instruction.
These words are ‘KEY' and ‘KEYs'. For both of these words, you
must tell Organiser where to store any information it may find. The
complete instructions therefore take the form:

K%=KEY
K$=KEY$

KEY

When Organiser sees this instruction, it looks in the input
buffer and if it sees that one or more keys have been pressed, it
takes the pattern number or ASCII value of the first keypress,
and stores it in the allocated variable.

If it finds that no key has been pressed - the input buffer is
empty - it stores ‘0’ in the allocated variable, and continues
with the next instruction.

KEY$

This is similar to ‘KEY’ except that, this time, the character for
the pressed key is stored in the allocated var:able - which
must of course be a ‘string’ type.

If it finds that no key has been pressed, then it stores a null
character — in other words, nothing — which, in computer
language can be represented as “”. """ means ‘an empty
string’.

These instructions are used when you don't want to have Organiser
wait at the keyboard for a keypress — but you do want to know if a
key has been pressed, and if so, which one. (This will be demonstr-
ated in a program later on in this Chapter).

They are particularly useful for ‘games’ type programs, where
Organiser will be required to ‘do something’ — change the display,
for example - while waiting for a key to be pressed, and for
checking whether one of the control keys has been pressed.

These control keys - CLEAR/ON, MODE, EXE, DEL and the
cursor keys — do not produce a character, but nevertheless are
allocated a character pattern number. When one of these keys is
pressed, the corresponding pattern number is placed in the input
buffer before it is acted upon. The ‘KEY' instruction can be used to
examine the input buffer to see whether a control key has been
pressed during the execution of previous program instructions, just
as it can be used to see whether any other key has been pressed.

164

3.8 More Keyboard and Screen handling

The pattern numbers associated with the control keys are

CLEAR/ON key.

MODE key

UP cursor key

DOWN cursor key

LEFT cursor key

RIGHT cursor key

SHIFT and DEL keys, together.
DEL key

EXE key

L= e B =2 I =L B I S

[

These pattern numbers will also be returned if the corresponding
key is pressed during a GET instruction. During an INPUT instr-
uction, the effect of the key is obeyed if it is a permitted operation -
DEL for example will delete from the input buffer the information
for the character immediately before the cursor position.

Hang on a moment ...

So far, when we wanted to retain a display on the screen, we used
the 'GET’ instruction on its own. This tells Organiser to check if a
key has been pressed and, if not, to wait until a key is pressed.
Processing then continues with the next instruction.

This means that the display stays on the screen until a key is
pressed. But you may not always want to press a key to move the
processing on: you may wish to leave the display on the screen for a
few moments, and then have the next instruction obeyed auto-
matically.

There is a word in OPL that allows you to do this: it is ‘PAUSE’,

PAUSE
must always be followed by an integer value or variable. The
value represents a number of twentieths of a second. Thus a
value of ‘10’ represents half a second, ‘20" represents one
second, and ‘100’ represents 5 seconds.

If the value after ‘PAUSE’ is greater than zero, Organiser will
simply wait for the specified amount of time before performing
the next instruction. Thus PAUSE 20 tells Organiser to wait
for one second, then continue with the next instruction.

If the value after 'PAUSE’is negative (less than zero), then
Organiser will wait for the specified amount of time or until a
key is pressed — whichever comes first. As with the ‘GET’ and
‘INPUT' instructions, Organiser looks in the input buffer first.
If it finds a key has been pressed, it doesn’t wait at all. *PAUSE
-100°, for example, will cause Organiser to wait for five
seconds

165



Programming Organiser Il

before continuing with the next instruction — or to continue
immediately Organiser finds that a key has been pressed. If a
key is pressed before the PAUSE started or during the execut-
ion of the PAUSE instruction, the pattern number or ASCII
value for the pressed key is left in the input buffer.

If the value is ‘0", then Organiser simply checks the input
buffer and, if it is empty, waits until a key is pressed - the
pattern number or ASCII value for the pressed key is then left
in the input buffer. The difference between PAUSE O and GET
is that, with GET you can tell Organiser what to do with the
inputkey information in the same instruction. Thus
KEYIN%=GET, puts the pattern number for the pressed key
into the variable ‘KEYINS,'. With-PAUSE 0, if you wanted to
know which key had been pressed while the PAUSE instruction
is being executed, you would have to use the ‘KEY' instruction
to examine the input buffer.

If you simply want to keep the display on the screen until a key is
pressed, you can therefore use either ‘PAUSE @' or ‘GET’. However,
because the keypress information is left in the input buffer, a
subsequent ‘PAUSE’, ‘GET’ or 'INPUT' instruction will act on that
information. Here is a short procedure to demonstrate the use of
‘PAUSE’ with a negative value,

WAIT:

PRINT "I AM PAUSING..."
PAUSE -40

PRINT "OFF [ GO AGAIN®
GET

GET

Program 3.8.1 ‘WAIT’ Demonstration of *PAUSE' (1)

When run, Organiser holds up processing for 2 seconds (40 twent-
ieths of a second) or until a key is pressed, whichever comes first. If
a key is pressed during this 2-second period, the ASCII value for the
key will be placed in the input buffer, and Organiser will continue
with the next instruction ‘PRINT "OFF I GO AGAIN"’. It will then
arrive at the first 'GET’ instruction. It looks in the input buffer -
and finds information already there. So it moves onto the next
instruction - another ‘GET’. This time, the input buffer is empty,
and so Organiser once again waits for a key to be pressed, before it
exits the procedure.

If a key is not pressed during the 2-second delay period, then after
the 2 second delay, Organiser will continue automatically. This
time, when it reaches the first 'GET’ there will be no information in
the input buffer, and so it waits for a keypress before going onto the
next instruction — another ‘GET’. In these circumstances, two

166

3.8 More Keyboard and Screen handling

keypresses will be necessary to complete the procedure.

If you have entered this procedure, you can EDIT it so that it
reads as follows, to test the operation another way. (Alternatively,
ERASE the previous procedure and re-enter the new one). This
procedure also demonstrates the use of the ‘KEY’ instruction, to
examine the input buffer.

WAIT:

LOCAL KS(1)

PRINT "I AM PAUSING"
PAUSE -100 '
Ks=KEYs

CLS

IF K$=""

PRINT "OFF I GO AGAIN"
ELSE PRINT "YOU PRESSED ":K$
PRINT "WHILE 1 PAUSED"
ENDIF
GET

Program 3.8.2 “WAIT" Demonstration of PAUSE (2)

This time, if a key is pressed during the 5 second delay period
resulting from ‘PAUSE -100', it is retained in the input buffer, and
the next instruction ‘Ks=KEY$' is immediately obeyed. This exam-
ines the input buffer, sees a key has been pressed, and places the
character in K$. The screen is then cleared (‘CLS’), and a test is
made to see whether anything has been stored in K§ (‘IF Ks=""",
There will be something in K$ - so it will not be ‘null’ and the
comparison is not true. Organiser then moves on to the ‘ELSE'
instruction to PRINT the message "YOU PRESSED " followed by the
character for the key you pressed, and the rest of the message. The
input buffer will have been cleared by the ‘K5=KEYS' instruction,
and so when Organiser reaches ‘GET’, it waits at the keyboard for
you to press a key — and the display remains on the screen.

If a key is not pressed during the 5 second delay period, at the end
of it Organiser continues automatically with the next instruction.
This time, ‘K$=KEY$' results in a null string (“"") being stored in
K$, so that the comparison in the next instruction will be true.
Consequently Organiser will obey the next instruction to PRINT
"OFF I GO AGAIN", and will then (via ENDIF) obey the GET
instruction as before.

Setting up the keyboard

When the ‘INPUT’ or ‘GET’ instruction is used, the keyboard is
automatically set for the associated wvariable type. 'INPUT
NUMBER' or ‘INPUT NUMBER%', for example, sets the keyboard for
numeric inputs, whilst ‘INPUT NUMBERS' sets the keyboard for

167



Programming Organiser I

character inputs. During character inputs — to ‘“INPUT NUMBERS’ for
example - you may want to ensure that numbers are input. You may
be entering a telephone number, for example. Organiser’'s keyboard
will be set for character inputs, and so you would have to remember
to press the SHIFT key whilst making your number entry.

There is an alternative. You can set the keyboard to give any of
the possible inputs by using the ‘KSTAT’ (short for ‘Keyboard
STATus'") instruction. This must be followed by a number from 1 to
4. The keyboard is set accordingly:

KSTAT 1 Sets the keyboard for capital letter inputs.
Pressing: SHIFT and a key will produce the numeric
character printed above the key.

KSTAT 2 Sets the keyboard for lower case letters.
Pressing SHIFT and a key will produce the numeric
character printed above the key.

KSTAT 3 Sets the keyboard for numerie inputs.
Pressing SHIFT and a key will produce the capital letter
displayed on the key.

KSTAT 4 Sets the keyboard for numeric inputs.
Pressing SHIFT and a key will produce the lower case
letter displayed on the key.

Thus, you can ensure that the keyboard is set to the type of input
you want in your program,

The keyboard will remain in the '"KSTAT' state you set it, even if
Organiser is switched off. The operation is the same as if the SHIFT
and CAP or SHIFT and NUM keys had been pressed. You can
restore the state of the keyboard by using these keys, in the usual
way.

When an ‘INPUT NUMBER%' or ‘INPUT NUMBER' type of instr-
uction is used, Organiser expects an actual number to be entered at
the keyboard. The keyboard is consequently automatically set for
numeric inputs — you don't have to use the ‘KSTAT' command.
However, it is possible to make a nor numeric input — by pressing
the A key, for example. This would result in the < symbol (the
numeric character above the 'A’ key) being displayed. When EXE
is pressed, to complete the entry, Organiser will be puzzled: it is
expecting a number, and it has found a symbol. Consequently, it
will display a question mark, on the next line, and wait again for
you to enter a number.

When ‘GET' is used, Organiser looks at the pattern number or
ASCII value for the pressed key. This time, Organiser leaves the
keyboard in its current state: if you want to GET the ‘pattern
number’ for a numeric key, a capital letter or a lower case letter —

168

3.8 More Keyboard and Screen handling

and don't want to have to use the SHIFT, CAP or NUM keys in
order to make the input, then the KSTAT instruction is the answer,
The following procedure will allow you to experiment with this.

KTEST:
LOCAL PN%. K%
MORE : :
CLS
PRINT "KSTAT NO (1-4)":CHR$({63)
INPUT K%
IF (K%<1) OR (K%=4)
GOTO MORE::
ENDIF
KSTAT K%
CLS
PRINT "PRESS A KEY"
PN%=GET
CLS
PRINT “ASCII NO OF " ;CHRS(PN%)
PRINT "IS " ;PN% ¥
GET
PMN%=MENU({ "MORE ,END™ )
[F PN%=1
GOTO MORE:;:
ENDIF

Program 3.8.3 ‘KTEST' Keyboard input tester

This procedure should be fairly easy for you to understand. After
entering the required value for the ‘KSTAT’ instruction (via K9%), it
is tested to ensure it is within the permissible range of 1 to 4. If it
isn't, processing jumps back to ‘MORE::" — to get the input again.
Once a key has been pressed, the screen is cleared and the message
“ASCII NO OF " followed by the character for the keypress is
displayed, and the actual ASCII value or pattern number. Pressing a
key will then give you the option of further experimentation, or
ending. Note that it is necessary to test only if PN% =1 for the end
Menu: we want any other value to exit the procedure — which
Organiser will do if it reaches the last ‘ENDIF’ instruction. You will
notice too that it is not necessary to use a ‘RETURN’ instruction if
it will be the last instruction in the procedure — and a value is not
being returned.

Using the procedure, you can test out the ASCII values for the
control keys: there will be no (sensible) character patterns for these
keys, of course.

Where’s the cursor gone?
You may or may not have noticed that, when an ‘INPUT’ instr-

169



Programming Organiser Il

uction is used, a cursor is displayed on the screen - either a blob or
an underline, depending on how the keyboard has been set. When a
‘GET’ instruction is used, however, the cursor is not normally
displayed.

It may be that you would like the cursor to be displayed, perhaps
to indicate that Organiser is waiting for an input. There is an OPL
instruction that allows you to display the cursor on the screen, It is
(sur[?‘rise, surprise) ‘CURSOR ON', and is a complete instruction in
itself.

You could add the 'CURSON ON’ instruction in Program 3.8,3 —
immediately after the declaration of variables, for example — so that
the cursor will be displayed when the ‘PN%=GET’ instruction is
reached. Once ‘CURSOR ON' has been used, the cursor will be
displayed whenever a '‘PAUSE’ instruction is being executed, as
well as a ‘GET’ instruction.

To remove the cursor display from the screen during ‘GET' and
‘PAUSE’ instructions, the instruction is ‘CURSOR OFF'. Note that,
even if 'CURSOR OFF’ is used, the cursor will still be displayed for
‘INPUT” instructions. That’s so you can see what you're doing when
entering a series of characters.

Viewing a string
The ‘MENU’ instruction allows you to set up your own Menu, and
to devise a course of action according to the selected option: a
pressed key returns the position of the option within the Menu
string. Commas used to separate the options in the string are not
displayed, and the option words are displayed if necessary on
separate lines.

There is another OPL instruction - VIEW — which allows you to
display a string on the screen. The full instruction looks like this:

KEY% = VIEW(line%,string$)

With ‘VIEW, the string is displayed character by character as
written — and if it is longer than sixteen characters, then the display
will scroll to the left. This serolling can be controlled by the cursor
keys. The string can, of course, be an actual string, enclosed within
quotation marks, or a string variable.

The line%, value - an actual number or an integer variable —
determines the line of the screen on which the string will be
displayed. It must be either a ‘1’ for the top line, or a ‘2’ for the
bottom line,

When a key other than a cursor key is pressed, the ASCII value of
that key is returned. This could be used to determine a course of
action, just as with the MENU instruction.

However, the VIEW instruction is intended (as the name
suggests) more for viewing string variables — a file record, perhaps.

170

3.8 More Keyboard and Screen handling

Also, like the GET instruction, it can be used without allocating
the key-press information to an integer variable. Thus

VIEW(1,ADDRESS$)

is a valid instruction. In this instance the display will remain on
the screen until a key is pressed - scrolling, if it is longer than
sixteen characters.

The value of this instruction will become far more apparent when
we deal with the handling of files — an extremely powerful feature
of Organiser.

If a second 'VIEW' instruction is used, the second one can use ‘0’ for
the line number: however, if a different string is used for the second
instruction, strange displays can result — a mixture of the two
strings with an additional unusual character, perhaps. It is prob-
ably better to define the first or second line for subsequent ‘VIEW’
instructions, rather than use the ‘0’ facility,

171



3.9

LOOPING ROUND UNTIL THE JOB IS DONE

OPL words covered
DO/UNTIL, WHILE/ENDWH, CONTINUE, BREAK, REM

Keep going until...

There are many occasions when you will want to repeat a series of
instructions until certain conditions are met. This could be
achieved by having labels at the beginning and possibly at the end
of the instructions that need to be repeated, and using an 'IF’ test
within the instructions. Depending on the result of the test, you
would either jump back to the label at the beginning of the
instructions, or to the label at the end of the instructions.

For example, you may wish to write a program which calculates
the annual interest on an invested sum of money, and see how the
sum grows each year for five years. The framework for such a
program could look like this:

INTEREST:
YEAR=1
REPEAT::
Calculate interest on capital
Add interest to capital (= new capital)
Display answer (and hold it)
Add 1to year
IF YEAR=6
GOTO DONE::
ELSE GOTO REPEAT::
ENDIF
DONE::

This method will work, but Organiser provides two better methods
requiring less space and less programming effort. There are two
sets of OPL words which enable a set of instructions to be performed
in a ‘loop’ while or until specified conditions are met.

One set — ‘“WHILE/ENDWH' (short for ‘ENDWHile') - tests the
condition for obeyving the set of instructions at the beginning, while
the other set — ‘00/UNTIL’ — tests the condition for obeying the
instructions at the end.

Thus, with ‘WHILE/ENDWH’, if the test condition is not true, the
instructions are not obeyed. With ‘DO/UNTIL’, however, since the
test is made at the end, the instructions will always be obeyed at
least once.

172

3.9 Looping round until the job is done

The difference between these OPL words is quite small, and in
many instances a program can be written using either set.

WHILE a condition is true...

The WHILE instruction must be followed by a comparison state-
ment (just like the IF instruction). It says to Organiser, “"WHILE
the comparison is true, perform all the instructions that follow,
until you get to the ENDWH instruction. Then come back to the
WHILE instruction — and start again”.

Clearly, the in-between set of instructions must change the
values in the comparison test in some way — otherwise they will be
repeated indefinitely. Organiser will go into a continuous loop.

To demonstrate the use of this construction, let us create a short
procedure to display a multiplication table. We will allow the user
to enter any number (even decimal values), then Organiser will
display that number multiplied by 2, 3, 4— and so on — up to 12. If we
call the input number ‘N’ (a floating point value), and the multiplier
‘M%’ (an integer number), then we want the procedure to run for as
long as M9, is less than 13.

MTABLE1:
LOCAL N,M%
M¥%=2
PRINT "ENTER NUMBER"
INPUT N
WHILE M%<13
CLS
PRINT N:"x":M%:;"=":N*M%
M%=M%+1
PAUSE 30
ENDWH
PRINT "DONE"
GET

Program 1.8.1 ‘MTABLE® Multiplication Table using WHILE/ENDWH.

Note that, like the IF instructions, indents are used to help identify
the instructions that must be obeyed within the WHILE/ENDWH
loop: you do not need to enter the indent spaces when typing in
procedures.

When this procedure is run, M9%, is initially set to ‘2', and so the
WHILE comparison (M9%<13) is true. Within the WHILE/ENDWH
loop there is an instruction ‘M%=M%+1'. When ENDWH is
reached, Organiser immediately branches back to the WHILE instr-
uction, and again tests the comparison. This time, M9, is equal to
‘3" — which is still less than 13. And so the instructions are obeyed
again. While M% is less than 13, the process continues. When M9,
becomes equal to 13, the comparison ‘M%<13’ will be untrue, and so

173



Programming Organiser Il

Organiser jumps immediately to the instruction following ENDWH.

If the line 'M%=2' were to be re-written as ‘M%=13’, then the
instructions between WHILE and ENDWH would not be obeyed even
once.

Now let us look at the other pair of OPL words.

DO until a condition is true ...

With this pair of OPL words, 'D0' is a complete instruction
(although it can be followed by another instruction, on the same
line, without need for the ‘space and colon’). It tells Organiser to
obey the instructions that follow, until it comes to an UNTIL
instruction.

The UNTIL instruction must be followed by a comparison, just
like IF and WHILE. This time, if the comparison is not lrue,
Organiser goes back to DO and repeats the instructions down to
UNTIL again. Clearly, as with WHILE/ENDWH, the conditions for
the comparison must be changed during the set of instructions to be
obeyed — otherwise Organiser will keep going round and round the
instructions, ad infinitum,

Because the comparison test is not made until after the instr-
uctions have been obeyed, they will always be obeyed at least once.
Let us look at the multiplication table again, this time using the
DO/UNTIL words to control the loop.

MTABLEZ:
LOCAL N,M%
M¥%=2
PRINT "ENTER NUMBER"
INPUT N
DO CLS
PRINT N;"x" M%; "=" N*M%
M¥%=M%+1
PAUSE 30
UNTIL M%=12
PRINT "DONE"
GET

Program 3.9.2 '"MTABLEZ2" Multiplication table using DO/UNTIL.

Apart from the DO/UNTIL instructions, you will notice that the
comparison is different this time: instead of performing the instr-
uctions while M%,<13, we perform them until M%>12.

Why didn't we say ‘UNTIL M%=13"? That would work, but it
could lead to problems in larger programs. If, for some reason, the
instructions caused the value of M%; to become greater than 13,
then the condition ‘M%, = 13" would never be met — and Organiser
would go looping the loop indefinitely. By making the comparison
‘M%,>12', we have allowed for M%, taking on any higher value than

174

3.9 Looping round until the job is done

is regquired. In this procedure, that eventuality is extremely
unlikely (if not impossible!). Nevertheless, it is good programming
practice to protect against potential running errors.

This procedure will produce the same display as the ‘MTABLE1’
procedure. However, this time, if the line M%-2 is changed to
M%-13, then the instructions will be obeyed once — because
Organiser ‘sees’ them all before it reaches the test comparison at
the UNTIL instruction — and the display will show the entered
number multiplied by 13 before the message ‘DONE’ appears.

Nesting loops

Just as the IF instructions can be ‘nested’ — that is one set of 1F
instructions can be included within another set - so
WHILE/ENDWH and DO/UNTIL instructions can be nested.

You can have as many as eight loops (and IF instruction sets)
nested within each other — far more than you will normally require
even for the most complex procedure. Each ‘loop’ must be properly
terminated with an ENDWH or an UNTIL instruction, otherwise you
will get a STRUTURE ERR message during the TRANslation
process. With such an error, when you press SPACE to re-enter the
proceédure for editing, Organiser will generally be marking a line
near the end of the procedure, and not necessarily at the place
where you want the terminator instruction to appear.

Breaking out of a loop

We have seen that the instructions between both WHILE/ENDWH
and DO/UNTIL are repeated while or until the test comparison is
true. You may, however, want Organiser to break out of the loop if
another condition is met — perhaps if a particular key is pressed, or
if a specific value has been found, Or you may want Organiser to
miss out the loop instructions for as long as the additional
condition is met.

There are two OPL words to help you: 'BREAK', and ‘CONTINUE",
Usually these instructions — which are complete in themselves —
will follow an IF instruction which tests for the required condition.

BREAK
This causes Organiser to leave the loop altogether, and to
continue from the instruction followirg the loop terminator
(ENDWH or UNTIL).

CONTINUE
This causes Organiser to jump to the test comparison for the
loop, missing out all the instructions between CONTINUE and
the loop terminator. If the test comparison still requires the
loop to be repeated, it will be repeated. It is important that any

175



Programming Organiser Il

tnstructions changing the resull of the loop comparison test are
not amongst those that are skipped as o result of CONTINUE —
otherwise the condition for performing the loop will never
change, and it will be repeated endlessly.

Let us take a simple example by way of demonstration. The
following procedure will display all of the characters available
within your Organiser, These have pattern numbers from 32 to 127,
and from 160 to 255. We will use the WHILE/ENDWH type of loop,
angd we will allow for you to end the program whilst it is running,
by pressing the DEL key (Character ‘pattern’ number 8). Should
you wish to stop temporarily at the display for any specific char-
acter, press the CLEAR/ON key. To restart the program again,
press any key except @ — which quits the program altogether, This
is a built-in feature of Organiser, and doesn't need any prog-
ramming.

Note that the pattern number is updated before the test of
whether the number is outside the required range.

CHARDIS:
LOCAL C%.K%
C%=31
WHILE C%<255
C%=C%+1
cLs
K%=KEY
IF {C%=127) AND {C%<160)
CONTINUE
ELSEIF K%=B
BREAK
ENDIF
PRINT "PATTERN NO ":C%:"=":CHRS({C%)
PAUSE 10<-
ENDWH
IF C%=254
PRINT "DONE"
ELSE PRINT “YOU STOPPED ME"
ENDIF
GET

Program 3.9.3 'CHARDIS® Display of character patterns

When you run this procedure, you will notice that the screen
blanks out for a fraction of a second when the Pattern Number
reaches 128, and returns with the display for Pattern number 160.
Should you wish to have the patterns on display for a little longer,
change the value following PAUSE.

It is now time to introduce another OPL word that actually does
nothing!

176

3.9 Looping round until the job is done

Making a REMark

It can be very useful when writing and developing procedures and
programs to incorporate a ‘note’ to yourself — a reminder of what
you have done or the purpose of a particular set of instructions,
perhaps.

The OPL word for such a note is ‘REM’ — short for ‘REMark’.

You use REM as if it were an instruction, following it by any
message that you may want. When Organiser sees REM during the
TRANslation process, it skips on to the next genuine instruction,
ignoring the REM and anything that is incorporated within the
same instruction line. Thus, although the REM line occupies
memory space in the OPL procedure, the translated procedure takes
up no more space.

The use of REM helps to make programs easier to follow when
you are ‘debugging’ or changing them, and enables ‘markers’ to be
placed in the program to indicate where you may wish to add
instructions at a later stage.

In the game program that follows, for example, REM is used
extensively to explain the function of each instruction line.

A Target game program

The game about to be detailed encompasses most of the techniques
discussed so far. Indeed, it has been written to do just that. For
example, it uses the BREAK instruction to allow you to stop playing
at anytime — and get the score to date — by pressing the EXE key.

It also introduces some new techmques — in particular, ‘computer
animation’. Whilst you may not be into ‘game playing’, it would be
a worthwhile exercise to study the program and to enter it, even if
it is erased at a later date.

In the game, arrows will be made to travel across the screen, from
left to right, at increasing speeds. The object of the game is to stop
the arrow with a ‘bat’, controlled by the UP and DOWN cursor
keys. Two levels of play are provided. It is a very simple game, but
nevertheless will serve our purposes well.

The flowchart for the game is shown in Fig. 3.9.1: in this chart,
you will notice that there are ‘decision points’. All of these could be
written using the IF instruction: however, the program demonstr-
ates how DO/UNTIL and WHILE/ENDWH instructions can be
brought into use to cut down the number of programming lines
required.

177



Programming Organiser Il 3.9 Looping round until the job is done

¥ The game is written in one main procedure and two short
procedures, We will deal with the short procedures first.

During ‘game play’, we will require the arrows to be shot across
the screen at random intervals — and on either the top or bottom
INITIALISE line, also at random. The first procedure therefore returns a
T random number up to a specified limit — the limit being passed into
the procedure as a parameter.

v

VARIABLES

RND%: (N%)
= RETURN 1+RND*N%

4

Program 3.9.4a ‘RND%' Random numbers for Target game

FORITION

ARROu (Remember you press EXE after entering the procedure name
‘RND%,’, and then enter the parameter information — don't try to
enter the parameter information as part of the title). The % symbol
e at the end of the procedure name ensures that an integer will be
Anow returned from the procedure - so that all the decimal parts of the
number generated by RND will be ignored automatically, without
having to use the INT instruction.

Now for the second procedure. We want the arrows to start off by

traversing the screen at a fairly modest speed, and to get faster as
the game progresses. The shortest time delay that can be obtained
with the PAUSE instruction is one twentieth of a second: if we
moved the arrow at one-twentieth of a second for each character
g position, it would take nearly a second to traverse the screen — and
that is much too slow.
v The second short procedure provides a delay that depends on the
value of an input parameter to the procedure. It uses a simple
DO/UNTIL loop — which takes time to execute, but nevertheless is
considerably faster than can be achieved by using FAUSE. We also
want the arrow to be 'fired’ at random intervals (as determined by
the ‘'RND%,' procedure): we could use the PAUSE instruction for
this, but since we need a ‘DELAY’ procedure anyway, we shall
make full use of it.

AT START

aTor

DELAY: (P%)
LOCAL C%
C%=0
Do

C%=C%+1
UNTIL C%:=P%

Program 3.9.4b 'DELAY’ periods for Target game.

The line C%=-0 is not actually needed in this procedure: when a
variable is declared, it i1s automatically set to zero. The line is
included for completeness, to help you understand how the pro-
ErD cedure operates. The procedure simply keeps adding one to the
variable C9%, until it is one greater than the input parameter P%,.

OFDATE
SCORE

Fig. 3.9.1 Flowchart for the ‘Target’ game.

178 179



Each ‘loop’ takes only thousandths of a second to execute, but the
overall delay — depending on the value of P9, — will be sufficient for

Programming Organiser |l

our needs.

Now for the main procedure. This uses eight LOCAL variables: to
make it easier for you to enter, these are declared as single letters.

They are used to store information as follows:
The position of the arrow across the screen.
The line of the screen on which the arrow will appear.

The number of ‘lives’ left — you are allowed three, unless you

assign a higher number to L%,!

The line of the screen on which the bat is to be displayed.
The delay period for each movement of the arrow.

The player’s move of the bat.

59, The score, displayed after the game is over.
H9% The player's choice of a hard or an easy game.

The program includes ‘REMarks’: you do not need to enter these —
in fact to do so will consume a lot of memory space unnecessarily.
They make no difference to the running of the program: they are
included simply to help you understand how the program operates.
Where a REM is included on the same line as another instruction,
‘spaces’ and a colon separate REM from that instruction: these

should not be entered either.

Also, as before, you do not have to enter the spaces for leading

indents: they are there to help you see the program structure.

Finally, you will see a new OPL word in this program — ‘BEEP":
this is to add sound effects to the game. BEEP is covered in full

detail in a separate Chapter.

TARGET:

LOCAL X%, Y%, L%, B%,.D% Mk, S% H%

START: :
H%=MENU ( "HARD, EASY" )

REM Set up the game variables

B%=1 :REM
D%=50 :REM
L%=3 :REM
S%=0 :REM
AT 16,B%
PRINT CHRS(124) :REM
WHILE L%=0 :REM
DELAY : (RND%: (500)) ‘REM
X%=2 :REM
Y%=RND%: (2) :REM
oo :REM
AT X%-1.Y% :REM
PRINT " ";CHRS${126) :REM
BEEP 2.X%*100 :REM
Mi=KEY :REM

180

Bat on the top line
Initial delay period
Start with three lives
Start with a zero score

Display bat at top right
While player has a 1ife
Random delay for arrow
First position on screen
Random line number

Move arrow across screen-
Position cursor

Blank old/print new arrow
Sound effects

Key-pressed meantime?

3.9 Looping round until the job is done

I[F (M%-4) OR (M%=3) :REM Down/up cursor key?

AT 16,B% :REM Yes-clear o0ld bat
PRINT " ™
B%=M%-2 :REM New line for bat
AT 16,B%
PRINT CHRs(124) REM Print bat again
ELSEIF M%-13 :REM EXE pressed to exit?
L%=0 :REM Yes - make Tives zero
BREAK :REM and jump out of DO loop
ENDIF
DELAY: ({D%) :REM Slow up arrow
X%=X%+1 :REM New position for arrow
IF {X%=8) AND (H%=1) :REM Midway and Hard game?
AT X%-1.Y%
PRINT " " :REM Clear old arrow display
Y%=RND%: (2) :REM Get new 1ine number
AT X%, Y% :REM Position cursor
PRINT CHRs$({128) REM and print arrow again
ENDIF
UNTIL X%>16 ‘REM until arrow at end
AT 16.Y%
PRINT " ™ ‘REM Clear arrow display
IF Y%h<>B% :REM Bat/arrow on same line?
L%=L%-1 :REM No-lose a 1ife
ELSE S5%=S%+1 :REM Yes-increase score
D%=D%-10-10*(D%<10) :REM and shorten delay
AT 16,8% :REM Bat will be cleared too...
PRINT CHRS(124) :REM ...s0 re-display it
ENDIF
ENDWH :REM Three lives now lost
CLS
PRINT "SCORE=";5% :REM Display score
PAUSE 40 REM for two seconds
S%=MENU( "MORE,END")
IF 5%=1 :REM More wanted
GOTO START::
ENDIF REM otherwise, all done

Program 3.9.4c "TARGET" main game procedure
The ‘REMarks’ should make the operation of this program reason-
ably clear. The only line that may need further explanation is
D%=D%-10-10"{0%<10)

The first part of this instruction - D%~D%-10 — deducts 10 from the
delay period, so that the arrows get progressively faster. However,
we have to watch out for the value of D% becoming negative,
which could happen after a few arrows have been displayed. The

181



Programming Organiser |l

second part of the instruction ensures D%, is never negative. If D%,
is less than 10, then (D%<10) resolves to ‘-1’ (see Chapter 3.6)
which,

multiplied by -10" is equal to +10. Hence, the value of D% is
restored.

As well as testing for which cursor key is pressed, the program
also checks to see if EXE has been pressed — indicating that the
player wishes to stop. If EXE has been pressed, we wish to jump out
of both the DO/UNTIL and the WHILE/ENDWH loops. BREAK
enables us to jump out of the current DO/UNTIL loop. However, if
‘lives' are left, the program will still run within the WHILE/ENDWH
loop. Consequently, to ensure that this does not happen, L%, the
variable containing the number of lives left, is assigned the value
zero before the BREAK instruction. This ensures that the program
exits both loops, and continues with the score display.

You will notice that, in the ‘Hard’ version of this game, the arrow
may switch lines halfway across, just to make life more difficult.

Can you see the process for animating the arrow across the
screen? We start by actually printing the arrow in the first position.
Then, for each subsequent move, a space is printed at the arrow
location — visually removing it from the display, and a new arrow is
displayed at the screen location to the right. The visual effect is
that the arrow moves across the screen from left to right. When it
reaches the end, it has to be removed from the display — by
overwriting it with a ‘space’ character.

At the end, if the arrow is on the same line as the bat, the arrow
display will overwrite the bat display, and then the arrow display
will be removed: hence the bat is re-displayed if the arrow and bat
were on the same line.

This technique is virtually the same as that used in all the video
games to provide animated movement.

182

3.10
CONVERTING VARIABLES

OPL words covered
ASC, CHRS, FIX$, FLT, GENS, HEXS$
INT, INTF, NUM¢, SCI$, VAL

A change is needed

There are numerpus occasions when information stored in one type
of variable needs to be converted to another type of variable. A
typical example is when a number is stored as a string: if you wish
to make a calculation using the number, it must first be transferred
to a numeric type of variable.

You will recall that Organiser has three types of variable:

a) Floating Point variables, which occupy eight memory boxes,
can have a decimal value up to 12 significant figures, and can
be of virtually any magnitude. Values using ‘scientific
notation' (e.g. ‘1.2345E +03', which is the same as 1234.5) are
stored as floating point numbers.

b) Integer variables, which occupy two memory boxes, and can
have values between —32768 and + 32767.

c¢) String variables, which can occupy up to as many memory
b?xes as you allocate when writing a program, with a top limit
of 255.

Organiser can perform mathematical operations only on numeric
variables, and string operations only on string variables. Math-
ematical operations using only integer variables will produce
integer variables: any decimal part of the answer will be lost. If you
want to use a numeric value as part of a string, the way that the
value is stored must be converted first. Similarly, if you want to
make a calculation using a number stored as a string, it must be
converted to a form that Organiser can use.

In the descriptions that follow, unless stated otherwise, parameters
specified within brackets can be variables or actual values. Thus a
parameter denoted as ‘string$’ can be a string variable or an actual
string, such as '*123456.7"". Numeric parameters can also be express-
tons which will resolve to a value. Thus, for a numeric parameter,
you could write ‘4’ (an actual value), or 2*6 (an ‘expression’).

In the instruction examples, the converted information is
assigned to a variable. However, it is also possible to use the PRINT
.iIt.llfthtiﬂn to display the answer on the screen, without storing it.

us

C5=CHRS (65)
183



Programming Organiser Il

would store the letter ‘A’ in the string variable ‘C$’, whilst
PRINT CHR$(65)

would display the result of the conversion — the letter ‘A’ — on the
screen. If you wanted to store the information as well as display it,
you would assign it to a variable, and PRINT the variable. Thus

Cs=CHR%(E5) :PRINT C$

Converting a string to a number

Two requirements are catered for: converting one character to its
ASCII equivalent, and converting a series of numeric characters to
the equivalent floating point value. The instructions are as follows.

ASC(string$)
This returns the integer ASCII value (pattern number) of the first
character in the string. A typical instruction would be

VAR%=ASC("ABC")

This would store in the variable ‘VARY,’ the value 65 — which is the
ASCII value of the first character in the string, ‘A’. Note that
although ASCII values are always integers, the value can be
assigned to a floating point variable. Thus VAR-ASC("ABC") is a
valid instruction: this time, however, 65 will be stored as a floating
point value,

Organiser permits an alternative form of instruction, to handle
just one character. This is

VAR%=%A

This is exactly the same as the instruction VAR%=ASC("A"). The
character to be converted is preceded by a % symbol: quotation
marks are not required. The limitation on this instruction is, of
course, that only characters accessible direct from the keyboard
can be converted.

VAL(string$)
This is used to convert a number contained in a string to a floating
point variable. A typical instruction would be

VAR=VAL("123.4")

This instruction assigns the value ‘123.4' to the floating point
variable ‘VAR'. If the string value is assigned to an integer variable,
then any decimal part of the string will be ignored. Thus, if 'VARY,'

184

3.10 Converting variables

were to be used in the above example, ‘VARY%,’ would be assigned
the value '123".

The string must contain only number characters, otherwise a
STR TO NUM ERR will occur, The string can, however, be written
in scientific notation.

Converting numbers to strings

As with string to number conversions, two requirements are
catered for: the conversion of one value to the character pattern for
that value, and the conversion of a number into a string. Organiser
allows you to convert numbers into strings in a number of ways,
enabling you to determine how many decimal places will be con-
tained in the string, to position the number (i.e. justify it left or
right) within the string, and so on.

CHR%$(ascii%)

This gives the character pattern for the integer value contained in
the brackets. It converts a value stored in fwo memory boxes — the
integer value — into a one-character string, which is stored in one
memory box. Thus

C$=CHRS(65)
would store the character ‘A’ in string variable ‘C$’,

FIX$(value,dec-places%,length%)
This instruction converts a floating point or integer number into a
string - the number being the first parameter within the brackets.
The number of decimal places is determined by the second para-
meter contained within the brackets, and the length of the string
(including the decimal point) is determined by the third parameter.
If the length specified is insufficient for the string to cater for the
required number of decimal places plus the decimal point and the
integer part of the value, Organiser will return a string of asterisks.

If the length%, parameter has a negative value, the number will be
justified at the right of the string.

The following examples demonstrate the use of FIXs (in each
instance, F§ must have been declared to hold at least as many
characters as required by the length%, parameter, of course).

F$=FIX$(123.456,1,5) (F$ holds "123.5")
Fs=FIX$(123.9.0.5) (F$ holds "124")
Fs=FIX$(123,2.8) {F$ holds "123.00")
Fs=FIX${123,2,-8) (F$ holds " 123.00"%)
Fs=-FIX$(123.9.3.4) {(F5 holds "“=****"}

Notice that in the first two examples, Organiser rounds up the
value before storing it into a string. In the third example, the

185



Programming Organiser Il

request was for two decimal places — and since the value to h_e
converted had none, two trailing zeroes are added to the string. This
feature can be useful for converting values representing money to a
string for display. _

The fourth example shows what happens when a negative length
is specified: the numeric value is ‘justified’ to the right of a string
that is eight characters in length.

The last example demonstrates what happens when an insufficent
length is specified for the conversion. The number to be converted
has three integer digits. In addition to these, three decimal places
have been called for. String space is also required for the decimgl
point: consequently, a string length of at least seven characters 1s
required. Four only are specified — which is not enough. Organiser
shows that the number cannot be represented as a string according
to the requirement, by storing asterisks.

GEN$(value,length%

This fsf simi]&iu:j tog FI)(S), with one main difference. With GENS the
number of decimal places is not specified: all decimal places in the
value will be represented in the string, and trailing zeroes §u1il not
be added to ‘pad out’ the string, as with FIXs. Organiser tries first
to . .
represent the value as an integer, then as a floating point, then in
scientific notation. _ .
The length%, parameter can be specified as a negalive value: this
tells Organiser to ‘justify’ the converted value to the right. Thus if
the converted value has less digits than specified by the length%
parameter, the leftmost end or start of the string will be filled with
spaces. Typical examples are

G5-GENS(45.6.6) (Gs holds "45.67}
(G5=GENS(45.6, -8B} (GS holds " 45.6")

In the second example, there would be four spaces in the string
before the first digit.

NUMS$(value,length%) ‘ _ _
This is similar to GEN3, the difference being thpt the value is
turned in to an integer before it is converted to a string. Thus

N$=NUM5{123.456.5)

would result in ‘N$’ holding the string 123", If a negative length%
is specified, the string will be right justified, If the integer value has
more digits than specified by the length% parameter, the resulting
string will contain just asterisks. Thus:

Ns=NUMS({123.456.5) {N$ holds “123")
NS=NUMS(1.2,-5) {N$ holds " 1"}
NS=NUMS (12345.6,4) (NS holds "****")

186

3.10 Converting variables

SCI$(value,dec-place%,length%)

This is the same as FIXs, except that the value is changed to
scientific notation before being converted into a string. The
length?%, parameter must be at least six greater than the dec-place®,
parameter to allow for the integer part, the decimal point, and the
‘E+00" part. Otherwise a string of asterisks will be stored. If a
negative length% is used, the resulting representation is right
justified within the string. Typical examples are

S5=5C15(123456,2 8) {55 holds "1.23E+05")

Ss=-5CIs(12,3,12) {S$ holds "1.200E+01")

5$=5C15(12,.3.-12) {§¢ holds " 1.200E+01")

S$=5CI8(1,2,3) {S$ holds "***")
HEX3%(decimal®)

This is one for experienced programmers. It returns a string

%ontaining the hexadecimal value equivalent to the decimal value,
hus

HS=HEX$(32)

would result in H$ holding the string 20" - the hexadecimal
equivalent of decimal value 32. Positive decimal values must lie
within the range 0 to 32767 to give hexadecimal values from 0 to
‘7TFFF’. For decimal values from 32768 to 65535 (the upper limit),
deduct 65536 from the required value. Thus, to display the hexa-
decimal equivalent of 65520, you would enter

FRINT HEX${65520-65536)

The hexadecimal number displayed will be ‘FFF0’ — equivalent to
the decimal value ‘65520’.

In other words, negative values from —32768 to -1 will return
hexadecimal values from ‘8001’ to ‘FFFF'. Thus it is possible to
write a short procedure to convart any decimal value from 0 to
65535 to hexadecimal (note the use of a floating point variable to
cater for the higher numbers).

HEX :
LOCAL I
PRINT "Decimal=";
INFUT I
PRINT "HEXS$=";
IF 1<32768
PRINT HEXS(I)
ELSEIF I<65536
PRINT HEXS(I-65538)

187



Programming Organiser |l

ELSE PRINT "Over FFFF"
ENDIF
GET

Program 3.10.1 ‘HEX' Converting decimal to hexadecimal,

Converting one numeric type to another

As well as being able to convert numbers to strings and strings to
numbers, you can also convert one type of numeric variable to
another.

FLT(integer%)

This converts an integer value into a floating point value. It would
be used mainly with integer variables, since actual integer values
can be made into floating point values by merely adding a decimal
point. Thus ‘4’ is regarded as an integer value — stored in two
memory boxes when programming — and ‘4.’ is regarded as a
floating point value, stored in eight memory boxes. FLT allows two
integer values to be added together when the result would be
outside the normal integer range. A typical instruction would be

VAR=FLT(intgri%+intgri%)

If you have a procedure that is expecting a floating point para-
meter, but wish to pass an integer value to that procedure, you
would use the FLT instruction to convert the integer to floating
point.

INT(value) and INTF(value)

These instructions convert a floating point value to an integer
value. For floating point values in the range —32768 to + 32767, you
would use the INT instruction. A typical example would be:

1%=10"INT(value/7)

Floating point values outside of this range cannot be stored in two
memory boxes — so if just the integer part of the number is required,
the INTF instruction must be used:

[=INTF{value)

The INTF instruction can be used for any value — including those
within the range —32768 to 32767. However, the resulting number is
stored as a floating point variable — with the decimal part of the
value removed. If you had a procedure that expected an integer
value as a parameter, and you wished to pass to that procedure a
floating point value, you would use INTF to convert the integer to
floating point.

188

3.10 Converting variables

Hexadecimal to decimal
Organiser allows you to convert actual hexadecimal values to their

decimal equivalents, by prefixing the hexadecimal number with the
$ symbol. Thus

D%=$FF

would result in ‘255’ — the decimal equivalent of the hexadecimal
value ‘FF’ — being stored in the integer variable DY%,.

The $ prefix cannot be used with a variable, only actual hexa-
decimal values. Nor can it be embodied at the start of a hexadecimal
string variable, for use with the VAL instruction. Thus
1%=VAL("$FF") is not a valid instruction: it will produce a STR TO
NUM ERR.

189



3.11

BUILT-IN DATA AVAILABLE ON DEMAND

OPL words covered
DATIM3$.DAY,FREE HOUR,MINUTE, MONTH, PI
RANDOMIZE, SECOND, YEAR

Time-related information

As you know, Organiser has a built-in clock which, provided it has
been set, will keep you up to date about the current time, day of the
week, month and year. This information is stored in Organiser and
is continually up-dated, even when Organiser is switched off
(remember JIM?).

There are a number of OPL words which allow you to access this
information for use in your own programs. You may, for example,
write a program that keeps a record of car journeys — and wish to
tag each entry with the date. You could enter the date along with
the entry, but it is easier if the program is written so that the date is
added automatically. ’

The OPL words used to access the built in information are
reserved for OPL's own use: you cannot use them as your own
variables. For example, YEAR is an OPL word. You cannot name
one of your own variables as ‘YEAR' (although you could use
“YEARY%,", and you cannot assign any other value to YEAR.

It is assumed that you have correctly set the system clock: the
‘current’ time referred to in the following paragraphs means the
time in the system clock at the moment the instruction is executed,
If the system clock is incorrect, then the information derived from
the clock, obviously, will also be incorrect.

DATIMS$

This gives the current day of the week, date and time — including
the seconds. If the entire DATIM$ string is assigned to a string
variable, the variable must have been allocated at least 24 memory
boxes. However, it is possible to ‘pick out’ required elements of the
string, by using the various string handling instructions (Chapter
3.5). The DATIMS string is always in the form

SUN 17 AUG 1986 15:33:45

so if you wished to select simply the date part of the string —
without the name of the day — you would use an instruction such as

Ds=-MIDS({DATIMS .5, 11)
This would pick out just the ‘date’ part of ‘DATIMS' (starting from

190

3.11 Built-in data available on demand

the 5‘th ghfaract.er and taking in 11 characters altogether), and store
1t 1n ‘D¥’ in the form “17 AUG 1986”. Remember that ‘DATIMS’ gives

the current date and time information, and is continually bei
i ein
updated - every second. % d

YEAR

This gives an integer value representing the current year. A typical
instruction would be

Y%=YEAR

MONTH

This gives an integer value representing the current month. Thus,
if the current month is August, then

M%=MONTH
would store the value ‘8’ in M2,

DAY

This gives an'inte_ger value corresponding to the current date of the
month. A typical instruction would be

D%=DAY

HOUR

This gives an integer value corresponding to the current hour of
the day, using the 24-hour clock. A typical instruction would be

H%=HOUR

MINUTE

This gives an integer value corresponding to the current minute.
A typical instruction would be

M%=MINUTE

SECOND

This gives an integer value related to the current second. You

could use the MINUTE and SECOND instructions to create a simple
timer. For example:

TIMER:
LOCAL M%, 5%
PRINT "MINUTES-59 Max"

191



Programming Organiser Il

INPUT M%
M% =M%= (M%<60)-53° (M%>59)
CcLS

PRINT "SECONDS-53 Max"
INPUT S%

S%=5%" (S%<60) -59* (5%>59)
cLS

PRINT "ANY KEY TO START"
GET

CLS

M%=M%+MINUTE-1*( (S%+SECOND)>59)
M%=M%+60* (M%>59)

5%=5%+SECOND

S%=5%+60" (5%>59)

PRINT “STOPTIME=":M%,S%

WHILE (S%<>SECOND) OR (M%<>MINUTE)
ENDWH '

PRINT "TIME UP"

BEEP 800,800

Program 3.11.1 ‘TIMER’ A simple timing procedure

Some lines in this procedure may need explaining. Following the
inputs of the number of Minutes and Seconds to be timed, a check is
made to ensure that a value less than 59 (in each instance) has been
entered — and if not, the corresponding delay is made equal to 59.

Take the line
S%=-5%* (5%<60)-53*(5%=>0H9)

for example. If a value less than 59 has been entered into S?.-‘q, t.hen
‘S%<60)" is true, returning '-1’ which when multiplied by ‘-5%’ gives
S% — the original value. The second part opf the line will equate to
zero since it is not true that S% is greater than 59. If it were true,
then the situation would be reversed — the first part of the line
would result in zero, and the second part would result in a value of
‘+59'. Thus S% is never allowed to have a value greater than 59,
whatever is entered. _

Once a key is pressed to start the timing, the required Minute
and Seconds delay is added to the current time: if this results in a
value greater than 59, then 60 is deducted from the result. If it is
necessary to adjust the seconds value this way, then ‘1" must be
added to the minute value, to get the correct ‘stop time'. ey

A WHILE/ENDWH loop is used to keep Organiser ‘spinning
around’ while waiting for the system clock to catch up with the
required ‘stop time'. You could add an alarm signal at the end
instead of the simple BEEP — this is covered in the next Chapter.

192

3.11 Built-in data available on demand

How much memory is left?

Organiser will let you see exactly how many RAM memory boxes
you have left. The instruction is ‘FREE’, and it can be used in the
CALCulator mode by simply entering FREE. (You could write a
procedure to print the amount of memory space still available, but
there seems little point).

The use of this instruction will give you a more accurate picture
of l_'.he space available in Organiser than the INFO option on the
;nam Menu, which gives only the percentages of space used and
ree.

The FREE instruction cannot be used to ascertain how much
space is left on a Datapak: for this, there is another OPL word
‘SPACE’, which is covered in the Chapters on File-Handling.

Mathematical values

PI
Organiser has the value of the mathematical constant, ‘pi’, built in.
It can be accessed by ‘P1°, and used in an expression:

VAR=-4*P] /180

As with other OPL reserved words, you cannot change the value of
P1, or declare P1 as a variable in one of your own programs.

RANDOMIZE
Organiser allows you to generate a constant random number., We
have' already seen that the instruction ‘RND’ will generate a
decimal number between 0 and 1, at random, There is also an
Instruction, ‘RANDOMIZE’, which enables the same random number
sequence to be generated every time. You may want to do this, for
example, if testing out a program that uses RND, so that you can
repeat the program using the same sequence of random numbers.
RANDOMIZE must be followed by a value (any value you choose).
That value is then used as the ‘start’ point for generating random
numbers. Since the same start point would be used each time the
program is run, the same sequence of random numbers will occur.

Mathematical functions

A full range of mathematical functions is built into Organiser - for
evaluating square roots, sines, cosines and so on. The complete list
of these is given in Chapter 2.6, under the heading The built-in
functions.

193



3.12

THE SOUND OF MUSIC

OPL word covered
BEEP

Organiser’s beep show

You will undoubtedly have heard some of the sounds that your

Organiser makes — for alarm calls, perhaps. There is an OPL word —

BEEP — which enables you to create sounds for use in your own

programs. This Chapter is devoted entirely to the use of that word.
BEEP must be followed by two values, separated by a comma.

Thus

BEEP length%.note%h

The first value determines how many milliseconds the sound will

last.
The frequency of the sound produced is determined by the second
value, as follows

Frequency = 921600/(78+2*note%) Hz
This can be re-written as
note% = (460800/Frequency)-39

to enable us to determine what value we should give to the value
‘note?,’' for a given frequency.

Thus, to play a note that has a frequency of 800 Hz for a quarter
of a second (250 milliseconds), you would write

BEEP 250, (921600/800)-39

You will no doubt wish to hear the sounds that can be produced. A
very simple function type of procedure will allow you to test the
tones that can be created using ‘BEEP’, with the Organiser set to its
CALCulator mode. We will write the procedure so that you enter
the frequency of the note that you want:

BP:{L.F}
BEEP L, (921600/F)-39

Program 3.12.1 ‘BP' BEEP function'for frequency inputs
Having entered the procedure, set Organiser to the CALC mode,

194

3.12 The sound of music

then type in BP:(250,800) and press EXE. You will hear a short
tone at a frequency of 800Hz. Experiment by changing the length
and frequency of the note, so that you can hear the spectrum of
tonal sounds available from Organiser.

Keyboard music-maker

As a programming exercise, we will use ‘BEEP' to turn your
Organiser into a musical (?) instrument. Of sorts.

The Internationally accepted frequency for the note of ‘A’ is
440Hz. To find the frequency of a note one octave higher, the
frequency is doubled. Using this scant information, a formula can
be devised to determine the frequency of any note in the scale.

If we say that note ‘A’ is the start of the scale, then ‘A sharp’ is
the second note, B is the third and so on. Calling this the note
number, the formula is

note frequency = 440*2**(note number/12)

Thus, for the note of ‘C’ — the fourth note from ‘A’ - the frequency is
440*2**(4/12), or 5564.365.

Using this principle, Organiser’s keyboard can be converted into
a musical keyboard. There is no easy way to identify the 'black
notes’ — and so, for the purposes of demonstration, we ‘will simply
code each letter from ‘A’ to ‘Z’ as consecutive tones,

There are two ways to approach this. The first way is to calculate
the frequency - and then the value required for the BEEP instr-
uction — each time a key is pressed. This would result in a delay
between pressing the key and the note sounding — whilst the
calculations are made.

The alternative is to calculate all the parameters required for
BEEP first and to store them in an array. Then, when a note is
called for, it will simply be a matter of selecting the appropriate
element in the array. This will result in a considerably faster
processing time — and the keyboard will more faithfully obey your
keypress commands.

Ideally, each note would sound only whilst a key is being held
down. However, when a key is pressed there is a short delay before
it auto-repeats quickly. This means there would be a gap in the
note. The alternative is to arrange for the note to play continuously
until another key is pressed — and use the SPACE key to switch the
sound off.

Since Organiser’s keyboard does not resemble a piano keybeard,
it will be useful to know which note is being played when a key is
pressed. This information can be set up in a string array, similar to
the note%, information. The task can be made easier by setting up
the first 12 notes, then getting Organiser to assign the rest in a
DO/UNTIL loop.

195



Programming Organiser Il

Finally, as all the alphabetic keys are being used to produce
notes, we will arrange that any of the control keys - EXE, DEL
and so on — will exit the program altogther. SPACE, remember, is

3.12 The sound of music

ELSEIF K%=32

:REM SPACE=stop sounds

going to be used to stop a note from playing.
The variables used in the program are as follows:

Ko, holds the ASCII value of the pressed key.

L9, holds the value of the last key pressed, until the SPACE
key is pressed.

F holds the calculated Frequency for the note.

N(26) holds the BEEP information for all the keyboard.

N$(26,2) holds the name of the note for each key.

PLAY:

LOCAL K%,.L% . F N(26) NS{26,62)

NS(1)-"A "
Ns(2)="Bb"
NS(3)="B "
NS(4)="C "
Ns(B)="Db"
NS(6)="D "
NS(7)="Eb"
Ns(B)="E "
N$(9)="F "
Ns(10)="Gb"
NS(11)="G "
N$({12)-"Ab"
L%=13
DO
N$(L%)=NS{L%-12)
L%=L%+1

. REM
:REM
:REM

:REM

Set up 15t 12 notes.
Note space after
single letter notes.

Organiser does rest.

UNTIL L%=27

Ki%=1

PRINT * INITIALISING"

0o
F=440%2**(K%/12.) :REM Note Decimal point
N{K¥%}={912600/F)-39 ‘REM Set up note array

Ki=K%h+1

UNTIL K%=27 ‘REM A1l done

CLS

PRINT "PLAY AWAY..."

PRINT "NOTE="

KSTAT 1 REM Set for capitals
L%=0 REM No last note
ST::

K%=KEY REM Get a keypreoss

IF (Kh=0} AND {L%<=0)
GOTO PL::

ELSEIF K%=0
GOTO ST::

“REM

“REM
:REM

186

Note being played

Noe note being plaved
Go get keypress

L%=0 :REM No last note
AT 6.2
PRINT " " :REM Clear note display
GOTO ST:: :REM Go get keypress
ELSEIF K%<65 :REM ~ control key
RETURN :REM s0 exit program
ELSE L%=-K% :REM Must be a note key
AT 6,2 :REM so L%=last note
PRINT NS{L%-64) :REM Display note
ENDIF
PL::
BEEP 25, N{L%-64) :REM Play note guickly
GOTO ST:: :REM Go for a keypress

Program 3.12.2 ‘PLAY’ Making Organiser a keyboard instrument.

As mentioned for previous programs, you do not need to enter the
‘REMarks’ (or the space and colon preceding them), nor do you
need to enter the indents preceding the instructions. They're there
to help you understand how the program operates.

The first part of this program sets up the arrays containing the
‘note?,’ information, and the information for the display of the
note. It takes a few seconds to complete, when running — hence the
display “INITIALISING”, so that you don't think something has
gone wrong,

Then comes the ‘loop’ to get the key press information and to
determine the action to be taken. Once an alphabetic key has been
pressed, the variable ‘L9’ is set up to hold the ASCII value of the
key (65 to 90 for A to Z), and the note name is displayed on the
screen by selecting the appropriate element in the ‘N$()’ array. (‘65
is the first note, so by deducting 64 from the ASCII value, we get the
number of the note — and hence its position in the array). The note
is then played for a fraction of a second, and a jump made back to
the key input part of the program.

Now, until another key is pressed, K% will be equal to zero and
L% will be holding the ASCII value of the key just pressed.
Consequently the first test ‘IF (K%=0) AND (L%<>0)' will be true,
atl:d Organiser will jump straight down to the ‘PL::’ label to play
the
note again. And so the process repeats.

If another alphabetic key is pressed, the value held by L%, is
updated and the note is changed. If SPACE is pressed (ASCII value
of 32), L%, is made zero. The displayed note is cleared, and a jump
made back to the start label ‘ST: :" - so Organiser will not make a
sound (some will bless you for that). If a control key is pressed —
EXE perhaps — the program ends. (You may be blessed even more
for that!).

This program can be modified in a number of ways: for example,

197



Programming Organiser Il

the length of the note (25) can be changed to produce different
‘vibrato’ sounds. If it is made oo long, however, Organiser will not
respond to key-presses as effectively.

Sound effects

As well as providing specific notes, the BEEP instruction can be
used to provide a variety of sound effects. This is demonstrated
with three procedures. The first shows how the sound of a ringing
‘trimphone’ can be simulated. The second shows how a simple
two-tone alarm signal can be created, while the third will allow you
to produce the ‘space age’ sounds so common with modern elect-
ronic devices. (Well ... why should your Organiser be left out?)

These procedures should be fairly self explanatory: it is left to
you to experiment further, should you so desire.

PHONE :
LOCAL L%,C%,D%
Do
D%=KEY
L%=1
Do
C%=1
Do
BEEF 30.700
PAUSE 1
C%=C%+1
UNTIL C%=12
L%=L%+1
PAUSE 4
UNTIL L%=2
PAUSE 15
UNTIL D%<=0

Program 3.12.3 ‘PHONE’ Telephone sound effect

The ‘phone’ will stop ringing shortly after any key is pressed. In
this procedure, the BEEP instruction produces a constant sound.
The rest of the procedure arranges for the sound to be produced at
approximately the same rate as a telephone: you can adjust the
timing quite easily, by altering the values of the variables in the
‘UNTIL" instructions, and by changing the values after the ‘PAUSE’
instructions.

The following procedure shows how simple it is to produce an
‘alarm’ type signal.

198

3.12 The sound of music

ALM:

LOCAL C%

C%=1

Do
BEEF 50,800
BEEP 50,1600
C%=C%+1

UNTIL C%=20

Program 3.12.4 *ALM' Alarm type signal

In the next procedure, the frequency of the note produced is
changed within ‘DO/UNTIL' loops, by using the loop ‘counter’ in
some way. The possibilities using this technique are virtually
limitless.

SFX:
LOCAL I%.K%
K%=2000
DO
K%=K%-200
1%=20
0o
BEEP 5., I%+K%
I%=1%+(1%".5)
UNTIL [%=2000
UNTIL K%<200

Program 3.12.5 ‘SFX' Sound effects sampler.

199



3.13

FILES — CREATING AND OPENING

OPL words covered
CREATE, EXIST, OPEN

Introduction to files

We have already seen, in Chapter 2.4, how Organiser lets you keep
records in its ‘built-in’ filing system. This is fine for fairly simple
requirements, but it does not provide for the information contained
in the records to be processed. For example, while you can use it to
keep a list of club members, their membership fees, and whether or
not they have paid those fees, what you cannot do (from the built-in
main Menu options) is get Organiser to tell you the total sum of fees
paid — or fees due. You would have to examine each record in turn,
and make the calculation manually.

By writing a suitable program, you can create your own filing
system and get Organiser to perform any task that you wish. You
can also access the Organiser’s built-in file from your own program
(it is called ‘MAIN’ remember).

OPL has a large number of words devoted entirely to file
handling. These words enable you to create files, add records,
change records, delete records, search records for specific inform-
ation, manipulate the information, use it in calculations — and so
on. Indeed, the file handling capabilities of OPL are extremely
powerful — more powerful than can be found on most home
computer systems, and the equal of many office systems.

This means that you can use Organiser not just to make
calculations — as we have seen in earlier Chapters — but to process
data. A ‘payroll’ program for a small company, or a stock-handling
system, for example, are well within Organiser’s capabilities.

What goes into a file

In Chapter 2.4, we saw that a file is like a card index box containing
record cards. For the built-in filing system accessible from the main
Menu, that is as far as it goes.

When you create your own files, the information contained on
each record 'card’ follows the same format. If you were to write
information on actual cards, you would probably arrange things so
that each area of the card carries the information in a regular way.
If names are involved, for example, you may decide these should
always appear on the top line. You may reserve the next few lines
for the address, the bottom right hand corner for some kind of

200

3.13 Files — Creating and Opening

classification regarding the named person — and so on. Each of
these areas is called a field.

Thus, a file consists of records, and a record consists of fields.
When you create a file on Organiser, you specify the fields that you
want, and name them so that they can be identified — as ‘variables’.
(The records in Organiser's built-in file ‘MAIN’ has only one field).

For example, if you were creating a file for employees, you would
probably have record fields for their name, address, tax-code, salary,
pay-to-date, and so on. Alternatively, if you were creating a stock
and price list file, you would probably have record fields for the
item description, its stock-number, its price, the current-stock, and
perhaps the minimum stock-holding (so that you could quickly
ascertain which items need re-ordering).

It could well be that you would want more than one file of the
same type — perhaps one stock/price list for perishable goods, and
another for non-perishable goods. No problem. Organiser II lets you
have as many as 110 files (if space permits) at any one location
(RAM or a Datapak) - and, more importantly, lets you work on up to
four of them at the same time. You can transfer information from one -
to another, or perform whatever operation is necessary, by simply
writing an appropriate program.

The important point to remember is that, whereas programs store
instructions, files hold information or data — and the data must be
stored in an orderly fashion.

The file handling process

When writing a program to create and handle a file (or files), the
program sequence is as follows:

a) Ifa file does not yet exist, create it.
If a file already exists, open it.
Files can be opened (and closed) at will throughout a program,
but a file must be open in order to ‘work’ on it.

b) Perform the necessary file handling operations. This will
usually involve selecting from a choice of options (using the
‘MENU’ technique): typical options would be to add or delete
a record, to change ‘field’ information, make a calculation
based on information in a specific field or fields, find a
particular item of information, transfer or manipulate inform-
ation from one file to another, and so on. You can even delete
unopened files, copy them (to or from a Datapak), or change
their name.

¢) Close the file (or files)

Copying files from one place in memory to another, changing file
names and deleting files is generally referred to as file management.
If you have a number of files, you may well choose to have a file

2m



Programming Organiser Il

managemenlt program quite seperate from the file handling pro-
gram. This management program will enable you to perform the
copying, name-changing and deleting operations on any files you
have saved, irrespective of the programs that use those files,

Creating a file

The OPL word that enables you to create a file is, not surprisingly,
CREATE. The complete instruction takes the form

CREATE "Loc:name”,logfile,fieldl,.field2, field3...Field16

That’s quite an instruction! It is important that you understand
what the parameters completing the instruction mean and how to
use them, so let us examine each in turn.

“Loc:name”’
This is a string that defines first where the file will be created,
followed by a colon, and then the name that it will be given. If
you do not have Datapaks fitted, then the ‘Loc’ will be “A:".
This means that your file will be created in Organiser’s RAM.
If you have Datapaks fitted, then you can create your files on
a Datapak by specifying “B:” for the Datapak fitted in the
upper slot, and “C:” for the Datapak in the lower slot. Note
that it is the location of the Datapak that is specified - so be
sure the right Datapak is plugged into the appropriate slot
before the program is run.
The second part of the string specifies the name that you wish
to give the file. This name must obey the same rules as
procedure names: it must be no more than eight characters
long, can comprise only letters and numbers, and must start
with a letter. You can include a § or a % symbol as the last
character, if you wish — but there is no programming reason to
do so.
This parameter can be an actual string — between quotation
marks, or it can be a string variable, provided of course that
the string variable holds the correct information.
Typical file names would be “A:STORES”, “B:FRIENDS",
“C:CLUBMEM?". The file named “STORES” would be saved
in
Organiser’s RAM, while the files “FRIENDS” and
“CLUBMEM” would be saved on the upper and lower Data-
paks respectively.

logfile
It has been mentioned that up to four files can be ‘open’ at a
time for working on. Organiser needs to know which of the
four files to use for your instructions: you may have more files

202

3.13 Files - Creating and Opening

available — and obviously it could lead to lengthy programm-
ing if you had to specify the file name each time. This problem
is obviated by giving each of (up to) four files an identifying
letter - A, B, C or D. When you create or open a file, therefore,
you must tell Organiser how you intend to identify it through-
out the rest of the program. So if you make the ‘logfile’
parameter ‘A’, say, then the associated file will be referred to
throughout the program as ‘A’ — until it is ‘closed’ and another
file opened as ‘A’. This means that the program will cperate
with whatever file you choose to open as ‘A’ — and the program
does not have to cater for all the file names that you have
created.

Fieldl...Field16
As indicated, each record in your file can have up to 16 fields.
These fields are given names just like variables. Indeed, within
your program, you can refer to the fields in exactly the same
way as you refer to variables, with one difference: they must
be preceded by the logfile letter and a full point. Thus if you
name a field as 'STOCK$’ in a file opened as logfile ‘A’, then
you can use that field name as a variable, without declaring it,
by writing ‘A.STOCK$'. The information contained in a vari-
able is not entered into a record until you give the correct
instruction. Thus, the field names can be used as global
variables.
Just like variables, the field names must reflect the nature of
the information to be stored in that particular part of the
record: if the information is to be stored as characters, the
name must terminate with a § symbol, and if it is integer
numbers, the name must terminate with a % symbol. Fields for
floating point numbers do not require an identifier.
The maximum length for a field name, just like a variable, is
eight characters, including the identifier, and it must obey the
same rules.

Thus, if you wished to open a file in Organiser's RAM with the name

“STOCK", making it the first (and perhaps only) file to be used in

the subsequent program, and you wanted each record to have fields

for “ITEM$”, “PRICE","STOCK%,", and “MINSTOK?®,", then the

instruction would look like this:

CREATE "A:STOCK" A, ITEMS,PRICE, STOCK%.MINSTOK%

Alternatively, you may wish to have the program such that you can
create new files at various times, in which case the section of the
program could look like this:

PRINT "FILE NAME="
INPUT FN$ _
CREATE FNS,A, ITEMS,PRICE,STOCK%, MINSTOK%

203



Programming Organiser Il

The information for ‘FN$’ must follow the correct form fm: the
file-name, of course. For the above example, you would type in at
the keyboard A:STOCK without quotation marks.

Organiser will not let you create a file with the same name as
another file at the same location. You can, however, create a file
with the same name as another, provided it is at a different location
— although this could be a dangerous exercise. It is better practice
to keep each file individually named, wherever it is saved, unless
you have specific reason for doing otherwise.

When a file is created, it is automatically opened for use. What
you have done is to create a named filing box, and defined the
names of the fields that will appear on each of the individual record
cards that will ultimately go into the box. You have also told
Organiser, through the logfile letter, how you are going to refer to
that file in the file-handling instructions of your program.

Organiser also needs to be able to identify the end of the area in
RAM it will be reserving for the field information. Consequently,
immediately after creating a file it is necessary to assign a value to
the last named field, and add the blank record to the file. Naturally
you will not want the first record to be a blank — and so it should be
erased immediately. The two OPL words concerned are ‘APPEND’
and ‘ERASE’, which are dealt with in the following Chapters. If the
logfile is ‘A’ and the last field you have named is ‘MINSTOK%',
then after creating the file you would need the instructions

A MINSTOK%=0
APPEND
ERASE

Although you can work on up to four files at a time, only one is the
current file — and that is always the last one worked on. Thus, if you
create a file with the logfile identification of ‘A’, then that is the
file that will be used for access until another file is made current (by
other instructions).

Opening a file

Obviously you need only create a file once. Once it has been
created, thereafter whenever you wish to use the file in a program,
you need only open it. The OPL word is OPEN, and it must be
followed by the same set of parameters as CREATE. You would of
course use the appropriate logfile letter for the ensuing program.
You can also give the fields different names to those used when it
was created — but they must be of the same type (string$, integer%,
or floating point). However, it will make your programs easier for
you to understand if you keep to the same names for the fields
wherever possible.

204

3.13 Files - Creating and Opening

When writing a program entailing the use of a file, you must cater
for the fact that the very first time it is run there will be no file in
existence. You can do this in one of at least two ways. You can
start the program off with a Menu, of which one of the options is
‘CREATE'. If this option is selected, you would jump to instr-
uctions that create the necessary file.

Alternatively, you can use the OPL word ‘EXIST’ to test whether
the file exists, and act accordingly if it doesn’t.

EXIST must be followed by a string of the file location and name,
in brackets. Thus:

EXIST ("A:STOCK")

The name in brackets can be an actual string, within quotes, or a
string variable. On meeting this instruction Organiser searches the
named location for the file-name. If it finds the file at the named
location, it returns ‘true’. If it doesn’t, it returns ‘not true’, Thus,
you could have a section of program:

IF EXIST ("A:5TOCK")
OPEN "A:STOCK" A, ITEMS STOCK% PRICE, MINSTOK%
ELSE CREATE "A:STOCK" A _ITEMS,STOCK%,PRICE,MINSTOK%
A MINSTOK%=0
APPEND
ERASE
ENDIF

In this instance, if you have a file called ‘STOCK' on one of the
Datapaks, Organiser would not find it in RAM (“A:"), and so it
would create another file called ‘STOCK’, in RAM. If creating or
opening a file on a Datapak, you must be very careful to properly
locate your Datapaks before running the program.

You can also use the EXIST instruction when creating a new file
using the Menu technique, to save Organiser breaking out of the
program to report an error if the file-name you have chosen already
exists. A part of such a program may look like this

GETNAME : :

PRINT "FILE NAME-"

INPUT FNS

1F EXIST (FN$)
PRINT “THAT NAME EXISTS"
PAUSE -60
GOTO GETNAME: :

ELSE CREATE FNS,A,ITEMS,STOCK%,PRICE,MINSTOK%
A_MINSTOK%=0
APPEND
ERASE

ENDIF

205



Programming Organiser |l

You should also arrange that your program tests that a valid
location and file-name is entered for the variable. There are a
number of ways to do this. Here's one:

INPUT FN$

T5=UPPERS (LEFTS(FN3, 1))

IF (T$<"A") OR (Ts="C"}
GOTO GETNAME::

ELSEIF MIDS(FN$.2.,1)=<>":"
GOTO GETHNAME: :

ELSEIF EXIST (FN$)

and 50 on

The first 1F instruction tests that the first letter is either A, B or C.
The entry may have been a lower case letter — which Organiser will
accept — and so the entry is first converted to capitals using the
UPFERS instruction. This is followed by a test that the second
character in the string is a cclon. If these tests prove satisfactory,
processing can continue. Otherwise, a jump is made back to get the
file-name again. You could, of course, incorporate a message that
the file name was of the incorrect form.

There is another way to prevent an error from causing Organiser
to break out of the program: this is discussed in Chapter 3.17. The
important thing to remember, always, 1s to make your programs as
error-free as possible when running — and to allow for the fact that
a user may make errors when entering information.

As mentioned earlier, you can open up to four files at a time,

although each must have a different logfile letter from A to D. The
files can be located anywhere in memory — in RAM or on Datapaks.

206

3.14

FILES — WRITING AND CHANGING
RECORDS

OPL words covered
APPEND, EDIT, RECSIZE, UPDATE, USE

Putting information on record

Two OPL words enable you to enter information into the fields of a
record. These are 'APPEND' and ‘UPDATE'. APPEND is used to add
a record, and UPDATE is used to change a record. Another OPL
word, ‘eDIT’, allows you to change the information held in a string
type of field.

The field names, remember, can be used in the same way as
variables. It is the information contained in these variables that
gets written into the appropriate parts of the file record.

Adding a new record

APPEND adds the information in all the current field-name vari-
ables to a rew record in the file. This is the instruction to use,
therefore, to add records to the file. The new record is always added
at the end of the file — you cannot add records in the middle: this is
not a problem — the records do not have to be in any specific order
for you to locate and use them, as would be the case with a physical
card-index box system.

If more than one file has been opened, the APPEND instruction
applies to the file currently in use — that is, the last one actually
worked on — unless otherwise instructed by the the OPL word USE
(discussed in more detail later on). If you have opened three files
with similar field-names, the names related to each specific file will
be identified by the logfile letter — so you could have variables
'A.STOCKSY', ‘B.STOCKY$', ‘C.STOCKY', and so on. If logfile ‘A’ is
the one currently in use, then APPEND will write a new record into
the file designated as logfile ‘A’, using all the ‘A.’ prefixed
variables.

The procedure is to assign the required information to the
variables, and then give the instruction APPEND — which is
complete in itself.

To give an example, suppose we have opened only one file, as
logfile 'A’, and it has fields of ITEM§, STOCKY%, DAYY% and
MONTHY. We wish to add a new record to this file. We want to
enter the ITEM name and the current STOCK from the keyboard

207



Programming Organiser Il

and we want to use the built in clock and date information to add
the current date.
The relevant part of the program could look like this:

PRINT "ITEM NAME="
INPUT A.ITEMS

PRINT "CURRENT STOCK="
INPUT A.S5TOCK%
A.DAY%=DAY

A . MONTH%=MONTH

APPEND

On the instruction APPEND, the information contained in all the
‘A’ variables is written to the file as a new record. By looping back,
another record can be added to the same file, using the same
instructions: you would, of course, need a way to exit the loop. This
could be done by following the APPEND instruction with a Menu,
or by testing the first input (for ITEM$) for a particular character
or series of characters. An IF test following 'INPUT A. ITEMS’ could,
for example, check whether “NO" had been entered, and if so,
would arrange for processing to jump away from the ‘adding
records’ part of the program.

When you are using your file, Organiser maintains ‘pointers’ to the
current file and the current record. When you add a record using
APPEND, it is added to the current file, and the added record then
becomes the current record.

As we shall see, there are ways to move or position the ‘pointers’
to any opened file, and to any record in that file. Whenever this is
done, the field-name variables hold the information contained in the
record pointed to — the current record. This is quite an important
point to remember: unlike ‘ordinary’ variables, the information
contained in field-name variables will change as the record is
changed. So whilst you can assign information to the variables, if a
new record is selected without that information being saved, the
information you assigned will be lost.

Changing a complete record
This brings us to the second way to put information on record -
UPDATE. This replaces the information in the current file record
with the information currently held in all the field-name variables.
What actually happens is the entire record is written again at the
end, and the original record is deleted automatically. In terms of
the card index box, when you alter a record you take out the card,
make the alteration, and replace it at the back of the box. As
mentioned before, the order of the cards in the box is quite
immaterial to the operations that you may wish to perform: the
cards are in fact in a ‘historic’ order — the order that you have

208

3.14 Files — writing and changing records

entered them or changed them. It is important to remember this — if
a particular record happens to be the third (say) on the file, its
position will change if you perform an UPDATE on any of the first
three records. If a file is on a Datapak, then of course the original
record is not erased, but is locked up so that it can no longer be
accessed. Thus, changing records on a Datapak will gradually
consume the space available.

Why should the record be re-written afresh at the end? Because
files hold their record information in a tight sequence: when you
make a change, the new record may then contain more characters
than the original — and there would be no space available to put
them in the original record, Hence it is re-written. With Datapaks,
of course, you could not ‘write’ a new record over the top of an old
one anyway.

We shall see, in the next Chapter, how any record can be selected in
the current file. When selected, the record becomes the current
record, and all the field-name variables will hold the information
contained in that record. You can assign a new value (or string) to
any or all of these variables, and then write all of them back to the
record, using UPDATE,

The process can be demonstrated by a small part of a procedure.
We will assume that we have a current file as logfile ‘B.’, record
ficld-names of ITEM$, STOCKY,, PRICE, MINSTOKY%,, DAY?Y%,
MONTHY%/', and that we have selected a particular record we wish
to change (so that the record is current). We want to cater for
changing one or more of the record information items ‘ITEMS,
STOCKY,, PRICE, MINSTOK®%,' — and we always want the current
date to be added to the record, so that we will know when the
record was last changed. The relevant part of the precedure could
look something like this:

WHILE C%<=5
C%=MENU("ITEM,STOCK%, PRICE ,MINSTOK%, SAVE™)
IF Ch%=1
PRINT "ITEM BECOMES"
INPUT B. ITEMS
ELSEIF C%=2
PRINT "NEW STOCK="
INPUT B.STOCK%
ELSEIF C%=3
PRINT “"MNEW PRICE-"
INPUT B.PRICE
ELSEIF Ch%=4
PRINT "NEW MIN-STOCK=-"
INPUT B MINSTOK%
ELSEIF C%=5
B.DAY%=DAY

209



Programming Organiser |l

B.MONTH%=MONTH
UPDATE

ENDIF

ENDWH

A few words of explanation on how this section of a procedure
operates. On reaching the instruction ‘WHILE C%<>5', C% must of
course not be equal to 5 — otherwise a jump will be made straight to
‘ENDWH’. As long as C%, is not equal to 5, the next instruction is
obeyed — to display a Menu on the screen. When an option to
change information is selected, C% is used in IF tests to direct
Organiser to display the appropriate prompt and get the required
information into the field-name variable. The relevant IF instr-
uction having been obeyed, Organiser jumps to ‘ENDIF’, ‘ENDWH’
and back to ‘WHILE C%<>5". Since C% will still not be equal to 5,
the routine is repeated — and the information contained in the
field-name variables can be changed ad nauseum.

When ‘SAVE' is selected, the DAY%, and MONTHY, field-name
variables are assigned the current date values, and all the variables
are written back to a new record in the file (the original record
being ‘erased’). This time, the ‘WHILE C%<>5" instruction will prove
to be not true (C%, is equal to 5), and Organiser will jump straight to
‘ENDWH’ to continue with the rest of the program.

See what you are changing

The procedure given in the previous paragraphs dc_-esn't show you
the currently held information in the relevant variable. It merely
prompts you to enter the new information. You could display the
current information on the screen by using a PRINT instruction. To
see what the current item is, for example, you could add PRINT
B.ITEMS before or perhaps instead of the prompt.

However, with only two lines of screen, you could loose the
display by the time you get to the actual INPUT instruction. There
is an alternative — the EDIT instruction. ) ‘

EDIT operates only on string variables, the full instruction taking
the form EDIT strings$.

When Organiser reaches an EDIT instruction, it displays the
string on the screen. The string can then be edited by using the
cursor keys and the DEL key to locate and remove the unwanted
characters, and by using the character keys to enter the new
information. Pressing CLEAR/ON clears the entire entry, and
allows you to type in information afresh.

The EDIT string is displayed on one line: if it is longer than 16
characters, then the cursor keys can be used to access the ‘hidden’
parts of the string. ]

Thus, you have a way to display existing record information on
the screen and to edit that information, rather than having to enter
it all over again for perhaps just one or two changes.

210

3.14 Files - writing and changing records

Yes, ‘E0I T’ works only on strings.

So what value is it for integer and floating point variables?

None, directly. But, you will recall from Chapter 3.10, you can
convert numeric variables to strings — and then convert them back
again. So if you wanted to use the EDIT instruction on numeric
variables, you can, Let us take a small section of the previous
example, and show how the information contained in the
‘STOCK®,' field can be viewed and changed. (Variables other than
field-name variables must be declared, of course).

STOCKS~NUMS (B.STOCKS, 5)
KSTAT 3

EDIT STOCKS

B, STOCK%=VAL (STOCKS)

In this example, the ‘NUM$' conversion instruction is used. This is
adequate for B.STOCKY, values up to 32767, the maximum that can
be contained in an integer variable. You can of course use any of
the number-to-string conversions available.

Using this system, you will have to be careful that numbers are
entered during the 'EDIT’, otherwise a STR TO NUM ERR will
occur when the string is converted back to the numeric variable
‘B.STOCKY%,'. Setting the keyboard for numeric inputs (‘KSTAT 3’
or ‘KSTAT 4°) helps — but will not stop other keyboard characters
such as < or + being entered. Ways to ‘trap’ errors of this kind are
discussed in Chapter 3.17.

The string is re-converted back to the integer variable by the
instruction ‘B.STOCK%=VAL(STOCKS$)', ready for the ‘UPDATE'
instruction,.

While EDIT is of most use during file-handling operations, it can
also be used in other types of program, and can be a useful ‘tool’
when de-bugging programs. (See Chapter 3.17).

Maximum record size

The number of characters that can be contained in each record is
2564. This is normally quite large enough, even for records that have
a full complement of fields, and should not cause a problem. You
can gauge what 254 characters looks like by counting the number
of letters, spaces, commas and so on in your own name and address
— you will usually find that it is around the 50 mark. This means
there will still be around 200 characters left for other information.

However, if you do have fairly long records, it can be useful to
know whether you are appreaching the limit, so that you can
perhaps use abbreviated information in order to contain everything
you want in the record. There is an OPL word, ‘RECSIZE’, which
gives the number of characters used in the current record. The full
instruction takes the form

211



Programming Organiser |l

R%=RECSIZE

This instruction can be used to display a warning should an input
to a file cause the number of characters to exceed the limit.
Assuming that a field ‘A.DATAS$' is being updated, a typical routine
could look like this:

label::

INPUT AS

A DATAS=-""

IF RECSIZE+LEN{AS}=254
PRINT "RECORD TOO LONG™
GET
GOTO label::

ELSE A.DATAS=AS

ENDIF

A routine such as this could be included immediately before an
‘APPEND" or ‘UPDATE’ instruction, sending the processing back to
where the information is being assigned to the field-name variables,
for re-entering. However, it must be pointed out again that such a
measure is not necessary for most types of record. It is only if
lengthy records are being used that a check needs to be made, to
prevent Organiser from stopping the program to report an error
because the record size is too large.

Selecting which file to use

It has been stated that you can have up to four files open at any one
time, and that only one of these files is current at a time. The
current file is the one on which Organiser can perform its various
operations. Put another way, a file must be current if Organiser is
to perform any operations on it.

The current file is the one that has just been worked on - for an
APPEND or UPDATE operation, perhaps. If four files are opened (or
created), the current file is the last of the four.

Suppose you want to perform an operation on one of the other
files? That is when the OPL instruction ‘USE’ is used.

USE must be followed by a logfile letter corresponding to a file
that has been opened. If an incorrect letter is used, or a file has not
been opened with the logfile letter, then an error will occur.

While files are opened, all of the field-name variables are
available for use all of the time. It is only when file operations are
performed — such as writing information to a record — that the ‘USE’
instruction needs to be used if the required file is not the current
file.

You can refer to the fields of different files without affecting the
current file. For example, you may wish to perform an operation
involving the fields of two files:

212

3.14 Files — writing and changing records

A.TOTAL=B.COST+C. COST

If logfile ‘B’ is the current file, it will still be the current file after
this instruction line. So if you wished to save the record involving
the field ‘A.TOTAL’ - which is a logfile ‘A’ record — you would write

USE A
UPDATE

The current file would then be *A’.

Note that, in the above example, the field information will be for
the same record number in each file. Thus, if record 23 (say) had
been selected, then ‘A.COST’, 'B.COST’, and ‘C.COST' would each
relate to record 23 of the respective files.

213



3.15

FILES - HANDLING RECORDS

OPL words covered
BACK, CLOSE, COUNT, DISP, EOF, ERASE
FIND, FIRST, LAST, NEXT, POS, POSITION

Which record do you want?

So far we have seen how to create and open files, and how to write
new records or change existing records in those files, It has also
been mentioned that when new records are added to a file, they are
added at the end. Also, changed records are re-written at the end,
and the original record is deleted from the file. This doesn’t matter,
because Organiser allows you to find any record you want very
quickly indeed.

There are three basic ways to locate a record. You can step
through each record in turn until you find the one you want. You
can search through the records to find a specific item of inform-
ation. Or, if you know the position of the record in the file, you can
go directly to it. We shall discuss each of these methods in turn,
then examine the ways you can inspect the information contained
within a record.

Step by step

At the moment, remember, we are simply discussing how to make a
specific record the current record, not how to display that record.
OPL has five words to help you to step through your records one at
a time. These words are ‘FIRST’, ‘LAST’, ‘NEXT’, ‘BACK’, and ‘EOF
(short for ‘End Of File"). The first four words are complete instr-
uctions in themselves. The last word, ‘EOF’, is a flag. (Don't panic!
The concept of a flag is very easy to understand).

FIRST

This sets the record pointer to the first record in the current
file, making it the current record. FIRST can be used at any
time within the program, to ensure that you are set to the
beginning of the file. Some operations (such as ‘FIND’), work
from the current record to the end of the file, and so if
Organiser were pointing to a record in the middle, earlier
records would be missed out.

214

3.15 Files - handling records

NEXT
As the name implies, this OPL instruction tells Organiser to
make the next record in the current file the current record. If
there is not another record in the file when a NEXT instr-
uction is met, Organiser says to itself “There are no more
ﬁ;:ords. so I'll run a flag up the flagpole, to tell everyone”.
e

pointer will be ‘aimed’ at the last record in the file but,
because the flag is set, all of the field-name variables will
contain nothing at all. Organiser does not report an error has
occured. It expects you to spot the flag.

BACK
This instruction tells Organiser to point to the previous record
in the current file, making it the current record. If the
instruction is given whilst the first record is current, then
nothing happens.

LAST
This is the opposite to FIRST: it sets the record pointer to the
last record in the current file, making it the current record.

EOF

This is the ‘flag’ that Organiser uses to indicate that the end
of the file has been passed. If EOF is equal to zero (the not true
condition), the flag is not ‘raised’ and the end of the file has
not been passed. If EOF is equal to ‘-1, (the true condition),
you can consider the flag is up the pole, indicating that the
end of the file has been passed. You cannot assign a value to
EQF.

Thus, EOF can be used to terminate a step-by-step search
:‘h]rlough the records of a file. A typical routine might be as
ollows:

FIRST

Do
Examine record/Display record
Perform whatever operation 15 necessary
NEXT

UNTIL EQOF

At the instruction following ‘UNTIL EOF', Organiser will be
pointing ‘past’ the end of the file, and the EOF flag will be set.

Searching for specific information

This is the second way to find a record that you may wish to view or
work on. The OPL word is ‘FIND', and it operates in the same way as

215



Programming Organiser I

the FIND on the main Menu. More or less.

FIND, as an OPL instruction, must be followed by a string
contained within brackets. This can be an actual string, or a string
variable. When Organiser meets the FIND instruction, it searches
through all the records from the current record to the end of the file
to see if the characters anywhere in the record match those in the
specified string. If the string is ‘null’ - that is, has no characters in
it at all — then FIND behaves just like ‘NEXT’, to make the next
record the current record.

Note that all the fields of a record are searched — not just the
string fields. So if you wish to find a particular value in a numeric
field, you would first turn the value you wish to find into a string,
then use the string in the FIND instruction. Even though the value
may be contained in an integer or floating point type of field, it will
be found (if it exists).

When Organiser finds a match, it stops, and ‘returns’ the current
record number. Thus typical instructions could be

Fo=FIND("JIM")
F%=FIND(SEARCHS)

In these instances, the record number in the file will be stored in
‘F9%'. Because Organiser stops when it finds a match, the found
record will become the current record, ready for any operations that
you may wish to perform.

If Organiser does not find a match, then zero is ‘returned’, and
Organiser will be pointing past the end of the file, with the ‘EOF’
flag set.

The string you give for the search can be as long or as short as
you like — the conditions are just the same as those for the main
Menu FIND. A part of a procedure to search through records for
e:ery occurence of a specific item of information could leok like
this:

PRINT "SEARCH CLUE="

INPUT S5

FIRST

WHILE FIND(S55)
Perform necessary operations
NEXT

ENDWH

PRINT "“END OF FILE"

GET

Notice that before the search is started, Organiser is set to point to
the first record in the file. When the instruction ‘WHILE FIND(S$) is
met, Organiser starts the search from the current record to find a
match. If it finds a match, ‘FIND(Ss)' will have a value (the record

216

3.15 Files — handling records

number) — and so the condition will be frue. The relevant record
will then be the current record - so if another search is made, that
same record would be found again. Hence the ‘NEXT’ instruction -
to move on to the next record before continuing the search. Without
NEXT, Organiser would go into a perpetual loop should the search be
successful.

Having moved the pointer to the next record, ‘ENDWH' sends
Organiser back to the ‘WHILE' instruction, to repeat the search
through the remaining records. If no match is found, ‘FIND(S5)’
will
be equal to zero — the not true condition - and so Organiser jumps to
the instruction following ‘ENDWH’, to report the end of the file has
been reached. Remember that, at this point, the EOF flag will have
been set,

Using FIND in the way just described means that the actual number
of the record — that is, its position in the file — is not ‘saved’
anywhere by the procedure. The instruction to save a record
number, remember, would be something like ‘F%=FIND(Ss)' -
where the record number is saved in F9,. The procedure could be
re-written to incorporate this type of instruction, if you wanted to
know the record number, but it is not necessary. There is an OPL
word that will tell you the number of the current record.

The word is P0S. An instruction such as ‘P%=P0S’' would store
the current record number in P%,. ‘PRINT POS’ will display the
current record number on the screen. To test whether a particular
record number has been found, an instruction such as ‘IF
POS=value’ can be used. Remember, though, that the record
number really relates only to the historic order of the records in the
file.

Going straight to a record number

If you know the number of a record - its position in the file - you
can go straight to it by the OPL instruction '‘POSITION', which must

" be followed by the required number. Thus to make the third record

in the file the current record, you would use the instruction
‘POSITION 3°. (Note that the equals sign is not used).

If you choose a record number greater than the number of records
in the file, you will in effect point past the end of the file, with the
EOF flag set.

How many records are there?

You may wish to know how many records there are in the file. If
your file contains club members, for example, you may wish to
know how many club members you have. You could write a
procedure to count the records. This is unecessary, however, since
there is an OPL word - 'COUNT’ — to give you the answer straight
away.

217



Programming Organiser Il

COUNT returns the number of records in the current file (which
must, of course, be opened). As with other words of this type, typical
instructions are ‘C%=COUNT’, and ‘PRINT COUNT’.

Viewing your records

There are many ways that you can display current record inform-
ation on the screen, To simply display the information in one of the
record fields, you can use ‘PRINT’ - followed by the field-name as a
variable. Thus, to display a field named ‘ITEM$’, in a file opened as
logfile ‘A’, you would simply write ‘PRINT A. ITEMS’. The logfile does
not have to be the current file. However, the ‘ITEMS$' information
displayed will be for the current record number.

The snag with using ‘PRINT’ to display record information is
that, if the number of characters exceeds 16, they will be displayed
over two lines with the break after the sixteenth character. If the
number of characters exceeds 32, then the first 16 characters will be
lost as the string scrolls on the dlsp]ay For small strings or values
of less than 16 characters, ‘PRINT' would be a satisfactory method.

The ‘VIEW instruction can also be used to display one of the fields.
This instruction, you will remember, takes the form
'VIEW(1ine%.string$)’, and like ‘GET’ used on its own, waits for a
(non-cursor) key to be pressed before moving on to the next
instruction. With VIEW, all of the string is displayed on one line (as
dictated by the ‘line%,’ parameter), scrolling if it is over 16 char-
acters. The scrolling can be controlled by using the cursor keys.

To display, on the top line of the screen, the same field-name
variable as in the previous example, you would use the instruction
VIEW(1 ,A. ITEMS).

To display a numeric field-name variable using VIEW, you must
first convert the numeric variable into a string, of course. (The
value of all the conversion instructions in Chapter 3.10 will now be
more apparent). Thus, suppose vou wished to display the inform-
ation in the ‘PRICE’ field of the current record of logfile ‘A’. The
variable — ‘A.PRICE’ - is a floating point type, and can be
converted by ‘FIXs’ or ‘GENs’. Using 'GENS’, and specifying a length
of 12" to cater for the longest possible value, you would write

VIEW(1,GENS(A.PRICE,12))

Notice how the conversion instruction GEN$ is embedded in the
VIEW instruction: the fact that Organiser allows you to do this
saves several lines of programming, and cuts déwn on the number
of variables required. The alternative would be to first assign the
conversion to a new string variable (which had been suitably
‘declared’), then use that string variable in the VIEW instruction.
The VIEW instruction has two advantages over ‘PRINT’. First of
all, it enables all of the selected field information to be displayed on

218

3.15 Files - handling records

one (scrolling) line. Secondly, if any other key is pressed, the ASCII
or pattern number for that key can be ‘stored’ for use — using
‘K%=VIEW(1 A.ITEMS)’, for example — should such a requirement
be needed.

You can also use the ‘EDIT’ instruction to display a string (or a
numeric variable converted to a string). This time, although strings
of longer than 16 characters can be displayed on one line, the
display does not scroll automatically: you would use the cursor
keys to view the ‘hidden’ characters.

EDIT would be the most suitable instruction to use if you wished
to change the information being held in a particular record field
(see the previous Chapter).

There is another OPL word that allows you to see the entire record,
with each field occupying its own line. Furthermore, you can use
the cursor keys to ‘travel’ around your record, so that you can
examine every part of it — and if any line is longer than 16
characters, it scrolls automatically when the cursor is on that line.
In other words, the display is exactly the same as the record display
used by FIND on the main Menu: all that you cannot do is edit any
of the information. The word is ‘DISP’ (short for DISPlay).

DISP must be followed by two parameters, enclosed in brackets
and separated by a comma. Thus ‘DISP(mode,string$)’. This instr-
uction is like VIEW in that it will return the ASCII or pattern
number of any keypress. Thus ‘D%=DISP{mode,string$)’ is a valid
instruction, with the ASCIl value of a keypress being stored in
‘D",

The string$ parameter can be an actual string, between quotation
marks, or a string variable — such as ‘STRING$’ or 'A.ITEMS’.

The ‘mode’ parameter can be -1, 0, or 1. Each of these has a
different effect, as follows.

DISP(-1,""")

When the mode parameter is ‘-1', the string parameter is
ignored completely — but it must be present (hence the two sets
of quotation marks to give a ‘null’ or empty string). In this
instance the current record in the current file is displayed as
detailed in the previous paragraphs: one line to a field; access
to any line of the record by means of the UP and DOWN
cursor keys; and when a cursor is positioned on a line which
has more than 16 characters, that line will scroll automatic-
ally, with control over the scrolling through the LEFT and
RIGHT cursor keys. Pressing any key will cause Organiser to
move on to the next instruction. You can arrange your
program so that only the EXE key causes processing to
continue, by a simple routine as follows:

219



Programming Organiser Il

WHILE DISP(-1."")<>13
ENDWH

Remember DISP will wait for a key to be pressed, and ‘returns’
the value of the key. The ASCII' value for EXE is ‘13, so
whenever a (non-cursor) key is pressed, ‘WHILE' checks to see
whether it is equal to 13. If it isn't, then the ‘WHILE’ instruction is
obeyed again (resulting in the record display being ‘reset’). When
EXE is pressed, the condition is no longer true, and Organiser
continues with the instruction following ‘ENDWH’.

DISP(1,string$)

This operates in a similar way as the previous mode, except that this
time, the string$ variable is displayed. On the face of it, there would
appear to be little difference between this instruction and VIEW.
However, in this instance, if-the string includes tab characters
{ASCII character 9), these break the string up into ‘fields’, with
each 'field’ being displayed on its own line. You can create
such a string by concatenating strings

STR15+CHRS$(9) +STR28+CHRS (9) +STR3%

‘DISPL(1,string$)’ is intended more for non file-handling
pro-

grams, enabling you to display information on the screen in
the same way as a record would be displayed.

DISP(0,""")

This operates the same as the previous two modes — but this
time, the previous record or string that was displayed using
the ‘DISP’ instruction is displayed again. However, if any
other instructions accessing the screen are used between the
two uses of ‘DISP’, the results are somewhat unpredictable. A
‘CLS’ instruction between the two, for example, could result in
some or all of the information being ‘missing’ until a cursor
key is pressed.

Erasing an unwanted record

You will want to be able to erase records from your file from time to
time. The OPL instruction to achieve this is simply ‘ERASE’,

ERASE is a complete instruction in itself. It removes the current
record from the current file. Once executed, the next record in the
file becomes the current record - it is just as if a card is removed
from a card index box, and all the rest move forward.

If the last record in a file is erased, then the EOF flag is set, and
the ‘current’ record will be just a blank.

You will want to include an ERASE routine in any file program

220

3.15 Files - handling records

that you write, so that you can remove unwanted records. How you
tackle the particular ERASE procedure depends on the nature of the
file: one method is to display a relevant field for each record in
turn, and then offer the option to erase it or leave it. Such a routine
could look like this (it is assumed that the relevant file has been
opened as logfile ‘A.’, and that the field to be displayed is ‘ITEMS$"):

FIRST
KSTAT 1
WHILE EOF=0
CLS
AT 1.1
PRINT "ERASE Y/N"
I%=VIEW(2, A ITEMS)
IF [%=89
ERASE
PRINT "RECORD ERASED"
GET
ELSE NEXT
ENDIF
ENDWH
PRINT "NO MORE RECORDS"
GET

This routine uses ‘VIEW' to display the field-name string variable,
and to get the answer to the question “ERASE Y/N”. The ASCII
number for capital Y is 89 (an alternative way to write the test
instruction is ‘IF I%=%Y"): the ‘KSTAT 1 instruction is used to
ensure the keyboard is set for capital letters. Notice that a test is
made to see if a Y 18 pressed — but not N: any key other than Y is
taken to mean “no". Notice too that, if the record is not erased, the
‘NEXT' instruction must be used - to make the next record the
current record. If a record is erased, the next record automatically
becomes the current record.

Finally, you'll see that a ‘WHILE/ENDWH' loop is used. This is
purely to demonstrate how ‘EOF° can be used with
‘WHILE/ENDWH': as long as EOF is equal to zero, a valid record is
current. When EOF is not zero - the flag is set — and the end of the
file has been reached. ‘DO/UNTIL EOF ecan replace the ‘WHILE/
ENDWH' instructions.

This routine will necessitate stepping through each record in
turn, making a decision each time as to whether the record on
display should be erased. For long files, this could be tedious. An
alternative is to arrange the erase routine so that the records to be
deleted are identified by the ‘FIND’ instruction. Using the same
conditions as before, such a routine could look like this:

KSTAT 1
MORE: :

221



Programming Organiser ||

FIRST
CLS
PRINT "ERASE CLUE"
INPUT C3
Do
CLS
I%=FIND{CS$)
IF 1%
AT 1.1
PRINT “ERASE Y/N"
I%=VIEW({2 A_ITEMS)
IF [%=%Y
ERASE
ELSE MNEXT
ENDIF
ELSE PRINT "END OF FILE"
GET
UNTIL EOF
I%=MENU{ "MORE,END")
IF I%=1
GOTO MORE: :
ENDIF

Notice how the ‘FIRST® instruction is positioned so that each new
search starts at the first record in the file. Notice too that it is not
assumed that the search clue will find the correct record to be
deleted, nor that only one record is to be deleted: the option is given
to delete all records matching the search clue. The message
“ERASE CLUE" is given rather than “SEARCH CLUE”, to remind
you that you are performing an ERASE operation. The ‘IF %’
instruction enables the erase display to be avoided if I% is equal to
zero — a condition occuring when the end of the file is reached.
Remember that ‘IF’ tests to see whether there is a zero (for untrue)
or a value (for true) in the following ‘comparison’. We use 1%, here
as the comparison. If 1%, is zero — representing ‘untrue’ — a jump is
made to the 'ELSE PRINT "END OF FILE"' instruction,

Finally, notice that the alternative method of specifying an ASCII
number is used in this routine: ‘%Y’ for the ASCII value of Y.
{The range of ASCII numbers is given in the Appendix).

These are just two examples of how you could prepare an erase
routine for your file. Obviously they can be adapted to suit your
own needs — and you will no doubt by now be able to write other
routines to suit your own purposes.

Closing a file

When you have finished working on a file, your program should
close it if you intend to open another with the same logfile
identification. The OPL word is CLOSE.

222

3.15 Files — handling records

CLOSE closes only the current file: amongst other things, that
means the file-name variables in that file are no longer available to
you.

If more than one file is opened, each one must be closed by a
separate ‘CLOSE’ instruction if it is intended to open new files.

If a program ends without files being closed, they are closed
automatically.

Remember...
You can work only on files that have been opened.
Only one file is current for working on (for ‘FIND’, ‘ERASE” and
similar operations).

The field-name variables for all opened files are accessible all
the time — but the values in those variables will relate to the
current record number or position, unless you have assigned
them otherwise.

223



3.16

FILE MANAGEMENT

OPL words covered
COPY, DELETE, DIR$, RENAME, SPACE

Looking after your files

From time to time, you may wish to copy a file from one location in
memory to another — from RAM to a Datapak, for example. You may
also wish to examine the names of all the files you have created,
and possibly rename some or delete those you have no further use
for. It will also be useful to know how much space is left on a
Datapak (you can find out how much space is left in RAM by
entering FREE in the CALCulator mode).

All of these operations come under a general heading of 'File
management' — and whilst it is possible to achieve any of them by
including routines in your file handling programs, it can be easier
if they are combined in one management program. We shall develop
such a program throughout this Chapter.

Examine file names

You will be aware that the PROGramming Menu of Organiser has a
DIRectory option, enabling you to step through the names of all
your procedures saved in RAM or on a Datapak.
There is an OPL word ‘DIR$’, which will allow you to examine the
jgi.!es you have saved. The complete instruction takes one of two
DTS

DIRS (location$)
DIRS("")

}Jsing ‘DIRS (location$)’ displays the name of the first file to be
ETEI-;L; specified location — “A” for RAM, “B"” or “C" for the upper
ﬁ;lwer Datapaks respectively. The ‘DIRS("")" instruction displays
Eé?ct file to be found at the previously specified location. Thus, both
instructions need to be used in order to display all the files at a

specified location - ‘DIRS(locations)’ first, then °‘DIR3("™)’'
repeatedly.
When there are no more files to display, ‘DIRS("")" returns a null
or

224

3.16 File Management

‘empty’ string.
Here is a procedure using the DIRS instruction, which will enable
you to examine the files you have saved in RAM or on a Datapak.

FDIR:
LOCAL G%,L%.As(2) ,B5(10)
ONERR MORE: : :REM See next Chapter
L%=0
LoC: :
L%=L%+1 :REM For location letter
IF L%=3
L%=1 :REM Only three locations
ENDIF
MORE: :
AS=CHRS (B4+L%)+" " “REM = PAM YR op PEER
CLS
CURSOR ON
PRINT “"DIR" AS: :REM Display DIR and letter
G%=GET
1F G%=2 :REM Means MODE key pressed
GOTO LOC:: :REM so change letter
ELSEIF G%=1 :REM Means CLEAR/ON pressed
GOTO RET:: :
ELSEIF G%=13 :REM Means EXE pressed
CLS
Do
Bs=DIRS (AS) ;REM First time = letter
PRINT BS :REM Disptay 1st file name
1F Bs="" :REM No more files
PRINT “NO MORE FILES"
GET
GOTO RET::
ENDIF
Ag="Y :REM For next file name
G%=GET :REM Display until keypress
UNTIL G%=1 OR Bs="" :REM 1 means CLEAR/ON=-stop
ELSE GOTO MORE::
ENDIF
RET::
CURSOR OFF
ONERR OFF

Program 3.16.1 '"FDIR' File name Directory

This procedure will be used in our File Handling program. As
before, you do not need to enter the leading inden! spaces, nor the
‘:REM" statements - they should be sufficient for you to understand
how the procedure operates.

When it is run, pressing the MODE key will enable you to select

225



Programming Organiser Il

one of the three possible locations (RAM or Datapaks) — provided of
course you have Datapaks fitted. If you do not have a Datapak
fitted in the chosen location, an error will occur which would stop
the procedure running and break you out of the program. This has
been avoided by using an ‘ONERR’ instruction at the beginning, and
ensuring that all ‘exits’ from the procedure are via an ‘ONERR OFF’
instruction. These two new OPL words are discussed in the next
Chapter.

Once the appropriate location has been selected, pressing EXE
will step through all the files saved to that location, until the last
one, or until CLEAR/ON is pressed to leave the procedure.

Datapak space free

If you have Datapaks fitted, you will no doubt wish to know at some
point how much of the memory is still available for you to use. The
OPL word to help you do this is is ‘SPACE’".

SPACE returns the number of free bytes on the Datapak with the
current opened file. This means that if you wish to find out how
much free space there is on a Datapak, you must first open a file
and make it the current file. Even if you have not created any files
on a Datapak - you have only program procedures on it, for
example — this is still possible, because Organiser automatically
creates a file on every new Datapak fitted. This is the ‘MAIN’ file -
for use from the main Menu.

As with the previous procedure, it is necessary to ensure that
errors do not cause Organiser to break out of the procedure.
Here is a procedure to tackle the task:

FSPACE:

LOCAL L%, G%.AS(2)

ONERR MORE: :

L%=0

LoC: :

L%=L%+1

IF L%=3
L%=1

ENDIF

MORE: :

AS=CHRS (64+L%)

CLS

CURSOR ON

PRINT "LOCATION" AS

G%=GET

IF G%=2 :REM MODE key
GOTD LOC::

ELSEIF G%=1 REM CLEAR/ON key

226

3.16 File Management

ONERR OFF
CURSOR OFF
RETURN
ELSEIF G%=-13 REM EXE key
CLs
OPEN AsS+" :MAIN" A, TS REM MAIN at location
PRINT SPACE ‘REM Print free space
GET
CLOSE :REM Close in case more
ENDIF
GOTO MORE: :

Program 3.16.2 'FSPACE" Memory left on a Datapak

This procedure follows the same lines as the previous procedure,
and shouldn’t need any further explanation. When run, you will be
able to pick the location using the MODE key, then find out how
much free memory there is by pressing the EXE key,

Note that you can also use the procedure to give the free space in
RAM - but, do bear in mind that this procedure at least will be
loaded into the running area, so reducing the free-space available.
You can check more accurately on how much space there is in RAM
using FREE in the CALCulator mode: the difference between the
value given by FREE and the value given by this procedure will
show you how much space this procedure and any calling it take up
in RAM (in the translated version).

Deleting a file

The OPL word to perform this operation is ‘DELETE', and it must be
followed by the complete file name — including the location — within
guotation marks, or as a variable. Thus to delete a file called
'TEST’ saved on the upper slot Datapak, you would write

DELETE "B:TEST"

Here is a procedure to perform the operation. This time, the
location and file-name must be entered at the keyboard, and so we
will include a check that it has been entered correctly.

FDEL:

LOCAL G%.Fs3{10}

NAME : .

CLS

PRINT "FILE TO DELETE";CHRs(63) :REM=Question mark
[NPUT F3

CLS

T$=UPPERS {LEFTS(F$,1))

IR Fg="" :REM Escape route

221



Programming Organiser Il

RETURN
ELSEIF (T5<"A") OR (T$>"C") OR (MIDS{F5,2 1)<>":")
PRINT “INVALID LOCATION™
GET
GOTO NAME: :
ELSEIF EXIST(FS)
DELETE F35
PRINT Fs%
PRINT “"DELETED"
GET
ELSE PRINT "FILE NOT FOUND"
GET
GOTO NAME::
ENDIF

:REM Is there a File
:REM Yes, so delete it

:REM and say so

Program 3.16.3 ‘FDEL" Delete a file

Notice the ‘escape’ route, should the procedure be selected in-
advertently: simply pressing EXE when the file name is requested
will exit the procedure, Notice too how a check is made that a valid
lecation identifier precedes the actual file name.

This procedure allows you to delete only one file at a time: if you
wish it to handle more, you can put a ‘GOTO NAME::’ instruction
following the ‘GET’ (after ‘PRINT "DELETED"") instruction.

Warning - don’t delete the ‘MAIN'’ file — else Organiser will have
nowhere to save your main Menu records! (And you won't be able
to use the ‘FSPACE’ routine as it is written).

Be careful what files you delete: once deleted, they are gone
forever!

Copying files

The OPL word is ‘COPY’, and it operates in much the same way as
;he COPY on the main Menu. The COPY instruction takes three
Orms;

COPY “locl:filenamel’,”loc2:filename?2’
This copies ‘filenamel’ at location ‘locl’, to a new file
‘filename?2’ at location ‘loc?’

COPY ““locl:filenamel”,”*loc2;”
This copies ‘filenamel’ at location ‘locl’, to a file of the same
name at location 'loc2’.

COPY ““locl”,”loc2”
This copies all the files at location 'locl’ to the location ‘loc2’,
retaining the same file names,

The important points to note are:

228

3.16 File Management

a) The copied file remains at location ‘locl”: if you want it
deleted, you must do so separately.

b)  You cannot copy files back to the same location — even with a
changed file name.

c¢) If the named file already exists at the destination location
‘loc2’, then the records from the file at ‘locl’ are appended to
it. Otherwise a new file is created, and the records are written
into it. This can therefore be a useful way of adding new
records created in RAM to an existing file on a Datapak,

Just as with the other file management facilities discussed in this
Chapter, it is possible to write a procedure for copying files using
the OPL word 'COPY’. However, the procedure would merely
duplicate the COPY option on the main Menu - and take up
valuable space in your Organiser. It is suggested, therefore, that to
copy a file or files from one location to another, you use the main
Menu facility.

The copying process can take as long as several minutes, depending
on the amouni of information being copied, and places an extra drain
on the battery. Make sure your battery is reasonably fresh
before attempting the process, or alternatively, use the
special mains adaptor. If the power fails during a COPY
operation, any record partially copied will be deleted. The others
will remain intact.

Note that COPY, as provided by the main Menu or by the OPL
instruction, is for files, whereas the COPY option on the PROG-
ramming Menu is for procedures. Don't confuse the two!

Renaming files
There may be occasions when you will want to rename one of your

files. The OPL word is ‘RENAME', and the full instruction has the
following format:

RENAME "loc:oldname", "newname"

Thus, to rename a file called 'TEST' in the upper Datapak as
'‘GOOD’, you would write ‘RENAME “B:TEST", "G0O0D"’. If the loe-
ation of the file is omitted, Organiser will assume the file is in
current location — or if no files are being dealt with, in RAM
(location ‘A:"). If you have files of the same name in different
locations, this could result in the wrong file being renamed. Hence
it is advisable to ensure that the location is properly entered along
with the file name to be changed. Here is a procedure to perform
the task:

229



Programming Organiser |l

FREN :
LOCAL Fs3{10) ,Ns(8)
START: :
CLS
PRINT "NAME TO CHANGE"
INPUT F$
Ns=UPPERS{LEFTS(F5,1))
IF F§=""
RETURN :REM Escape route
ELSEIF (NS$<"A") DR (NS="C") OR (MIDS{(Fs5,2, 1)==":")
PRINT "INVALID LOCATION®
GET
GOTO START::
ELSEIF EXIST(FS)
NEW: :
CLS
PRINT "NEW NAME™
INPUT NS
TRAP RENAME F& N& :REM MNew words are used here
IF ERR REM to act on errors
PRINT ERRS(ERR) REM - see next Chapter
GET
GOTO NEW::
ENDIF
ELSE PRINT “FILE NOT FOUND"
GET
EMDIF

REM Must exist to rename

Program 3.16.4 ‘FREN' Rename a file

This procedure uses some new words - ‘TRAP’, ‘ERR’ and ‘ERRS’.
These are discussed in the next Chapter, but briefly, ‘TRAP'
prevents any error resulting from the ‘RENAME' instruction
causing Organiser to stop the program to report the error, while
‘ERR’' and ‘ERR3' are used to detect an error and print the error
message. These words save you from trying to write routines to test
for every possible mistake that can be made when entering the
actual file names.

Notice the ‘escape route’ in the event of the procedure being
selected inadvertently: pressing EXE will exit the procedure.

The main File Management procedure

We will now prepare a short procedure to run the three previous
file management procedures. You will have noticed that there are
elements in each procedure that are common: the overall program
could be shortened by making these common elements separate
procedures, defining the variables they use as GLOBALS in the
main controlling procedure. (This is left for you to do, as an

230

3.16 File Management

exercise in programming, should you so wish). The individual
procedures have been made ‘self-contained’ deliberately, for those
who wish to add only one or two of them to their program stock.

FMAN :
LOCAL C%
OPT .3
C%=-MENU{"FILES, SPACELEFT,RENAME ,DELETE,END")
IF C5=1
FOIR:
ELSEIF C%=2
FSPACE:
ELSEIF C%=-3
FREN :
ELSEIF C%-4
FOEL:
ELSE RETURN
ENDIF
GOTO OPT::

Program 3.16.5 ‘'FMAN' File management main procedure

Obviously all the called procedures must have been entered and
saved for this procedure to operate. Copied to a Datapak as
'‘OBJECT ONLY’, the entire program will occupy approximately
1kbyte.

231



3.17

ERRORS AND BUGS

OPL words covered
ERR, ERRS$, ONERR/OFF, RAISE, STOP, TRAP

When your slip shows

Unfortunately, there are a number of things that can go wrong
when writing and running programs. In very broad terms, these can
be grouped into two categories: incorrectly used instructions, and
incorrect program logic.

far as incorrectly used instructions are concerned, some will
be discovered when a procedure is translated (a missing ‘UNTIL' or
‘ENDIF’, for example), while the others — such as variables that
have not been declared or are incorrectly assigned — will be
discovered when the program is run. Organiser has a comprehen-
sive error-reporting system built in to identify very closely the type
of error that has occured in these circumstances. Generally
speaking, these errors must be corrected by editing the appropriate
procedure, so that the program can run without stopping.

What Organiser cannot do is assess what was in your mind when

you planned and wrote the program: it follows your instructions
implicitly as far as it can. So if, for example, your program allows
Organiser to run in a perpetual ‘loop’, then in a loop it will run. The
problem is that it is not always easy to identify a situation that
causes the program to get into a loop: the larger the program, the
more difficult 1t is to test for every possible eventuality that could
cause trouble.
~ If the program requires user inputs — and most programs do — an
incorrect input or an input that hasn’t been catered for can cause
the program to ‘go wrong’ with unpredictable results.
_ There is a considerable overlap between errors of logic and errors
involving incorrect use of instructions. For example, you may have
a program which divides one value by another. If by some un-
foreseen event the second number is a zero, Organiser will stop to
report a ‘DIVIDE BY ZERO' error. On the face of it, Organiser has
been given an instruction it cannot perform, and so it stops to
report it. In fact, the logic of the program could be wrong, in that it
permits a zero value for the second value under certain conditions.
Yo]ur problem then is to identify why a zero occured in the second
value.

The OPL set of instructions includes words that allow you to
prevent any or all of the errors Organiser is capable of reporting
from stopping a program running. This feature enables all the most

232

3.17 Errors and bugs

common troubles — such as dividing by zero — to be dealt with so
that the program doesn't stop running: instead, you are put in
control of any messages that are be displayed, and the course of
events that follow. This does mean, of course, that you take over
the responsibility for dealing with the errors concerned with your
own instructions, and so the facility must be used with great care.

We zaw a crude example of error trapping (as the process is
called) in the ‘SPACE’ procedure given in the previous Chapter.
When running this procedure, it is quite possible to attempt to find
out how much free space there is available on a non-existent
Datapak. Normally, Organiser would break out of the program to
report such an error. However, the program allows for such an
eventuality (using the ‘ONERR’ instruction) so that, should it arise,
a jump 1s made back to the ‘location selection’ routine. No message
is given: you simply are not allowed to select an ‘incorrect’
location. The error is ‘trapped’ and dealt with in the program.

Where an error in the logic of a program produces an error that
Organiser can detect, it can be trapped. Unfortunately, there is no
short-cut to locating the type of error that cannot be trapped. There
are, however, various techniques that can be employed to help
make the process of finding such an error a little less frustrating.
These will be discussed later: first, let us look at the errors that
Organiser is capable of reporting.

The error messages

Organiser has a very extensive range of error messages. Each
message has two components: a number, which identifies the error
type, and the message itself.

As mentioned earlier, Organiser can detect some types of error
when it is translating your procedure into the language it uses to
run the program. These errors will be related to misused or missing
instructions, resulting in Organiser being unable to make the
translation. Here is a list of such errors in alphabetical order,
together with the ‘error number’, a brief description and an
indication of the course of action to take:

Errors occuring during the translation process

215 BAD ARRAY SIZE. The number of elements declared in an array is
incorrect: the number must be higher than zero.

208 BAD ASSIGNMENT. An attempt has been made to assign a value to
parameter defined as an input to a procedure: these parameters can be used in
the procedure, but not changed. The procedure should be corrected.

216 BAD DECLARATION. A variable has not been declared properly: perhaps
the space to be allocated to a string variable has not been specified, or a
numeric array has been given two or more parameters.

207 BAD FIELD LIST. The number of fields specified for a file is outside the

range 1 to 16.

222 BAD IDENTIFIER. An identifier is used incorrectly - 'TEST9%%', for
example.

209 BAD LOGICAL NAME. The logfile letter isnot A, B, Cor D,

233



197
214
227

21

210

211

213
228

212

Programming Organiser |l

BAD PROC NAME. This error occurs when a new procedure is being named,
if it doesn’t follow the rules.

DUPLICATE NAME. A variable has been declared twice. This error can also
occur if a file or a procedure name is duplicated at the specified location.
MISMATCHED {)’s. You have used too few or too many brackets in an
expression: check that the number of left brackets is the same as the number
of right brackets — and that they are in the correct places.

MISMATCHED **. You have used too few or tooc many quotation marks
round

a siring.

MISSING COMMA. A comma is missing from a list of items — usually a list of
parameters which should be separated by commas.

MISSING LABEL. A 'GOTO' or an ‘ONERR’ instruction is followed by an
incorrectly defined label (it must end with two colons), or the label does not
exist in the procedure.

NAME TOO LONG. A variable has been given a name that exceeds eight
characters including the identifving symbol. Note that this error can also
ocecur if a file name or a procedure name is too long.

OUT OF MEMORY. You have run out of memory space - see the Errors
while running section that follows.

STRUCTURE ERROR. A word in the groups IF/ENDIF, WHILE/ENDWH, or
DO/UNTIL has been missed out, or an extra one inserted.

SYNTAX ERR. An error in the syntax of an instruction - the spelling of an
OPL word is incorrect, perhaps, or the punctuation is not what Qrganiser
expects.

TOO COMPLEX. There are too many ‘nested’ structures (IF, DO, WHILE):
the limit is eight ‘depths’.

TYPE MISMATCH. A string has been assigned to a numeric variable or vice
versa. This error can also occur when a procedure parameter is given an
incorrect parameter type — which may be detected only when the procedure is
run.

One or two of these error may also occur when a program is
running. When they occur during the TRANslation process, Org-
aniser will stop translating your procedure. You must correct the
error before the procedure can be translated properly. There is
little point in trying to ‘trap’ this type of error: the procedure can
never get to the ‘running’ stage if it exists.

Here are the errors that can occur while a program is running.
Again, they are presented in alphabetical order, with the error
number and a brief description.

Errors occuring when a program is running

205
219
231

243
236

226

218

ARG COUNT ERR. An incorrect number of parameters (‘arguments’) has
been passed to d procedure. The procedure should be edited.

BAD CHARACTER. A non valid character has been used in a calculation or
an ‘expression’. The procedure should be eorrected.

BAD DEVICE CALL. This error occurs when a machine code program is
run, indicating that the specified location is not available.

BAD DEVICE NAME. A location other than A, B or C has been specified.
BAD FILE NAME. The name given to a file does not obey the rules - see
Chapter 3.13.

BAD FN ARGS. An incorrect number or wrong types of parameter
{argument) have been used when calling a function. For example 'LOGI(2,3)’
instead of ‘LOG(2.3)".

BAD NUMBER. Organiser has met a number that it cannot evaluate
properly — perhaps hecause it contains too many digits.

234

3.17 Errors and bugs

197
237
229

233

251

253

2

235

199

M

196

247

195

202

204

BAD PROC NAME. When creating a new procedure, it has been given an
invalid name. See Chapter 3.2 for the ‘rules’.
BAD RECORD TYPE. This error message should cceur only when running
machine code programs - which are beyond the scope of this book.
DEVICE LOAD ERR. A program pack or a peripheral device has been
removed whilst it is being loaded or used, or the information has been
‘corrupted’ in some way.
DEVICE MISSING. An attempt has been made to access a device which is no
longer connected to Organiser - a printer or a bar-code reader, for exa mple,
DIRECTORY FULL. The maximum number of files and procedures that can
be saved at any location is 110, even though there may be memory space for
more. This error message tells you that number has been reached: either copy
some to another location, or erase some to make directory space available,
bDlVlDE BY ZERO. As it says, an attempt has been made to divide a number
Y ZEro.
END OF FILE. Occurs during a file handling operation when the end of the
file is reached: use of the 'EOF' flag can avoid this error occuring - see
Chapter 3.15.
ESCAPE. Not, technically, an error since it appears when CLEAR/ON
followed by @ has been pressed, to deliberately stop the program from
running. Pressing CLEAR/ON merely stops the the program temporarily: it
can be re-started by pressing any key other than Q. Note that if the ‘ESCAPE
OFF' instruction has been used, it will not be possible to stop the program
using CLEAR/ON and Q.
EXPONENT RANGE, In scientific notation, numbers must lie within the
i:xponent limits of -99 to +99. The program has a number outside of these
imits.
FIELD MISMATCH. A ‘field name’ variable has been used which does not
match any of the field names in any of the opened files, The procedure must be
edited to correct the error before it can run properly.
FILE EXISTS. An attempt has been made to create a file or procedure with
the same name as one already saved at the specified location. Think of a new
name — or, for file handling routines, make use of the *EXIST’ instruction
(Chapter 3.13).
FILE IN USE. The procedure is trying to open a file which has already been
opened, or to delete a file which has been opened.
FILE NOT FOUND. An attempt has been made to EDIT a procedure or to
open a file which does not exist at the specified location. For file handling
routines, the 'EXI5T" instruction can be used to avoid this error stopping
program running (Chapter 3.13), or error-trapping can be used.
FILE NOT OPEN. Your procedure is trying to work on a file that has not
been opened. The procedure will need editing to correct the error.
FN ARGUMENT ERR. The parameter information {the ‘argument’) passed
to a function or a procedure is of the wrong type — an integer instead of a
floating point, perhaps. Or it could be a negative value where only positive
values can be accepted: L = LOG(-1}, for example.
INTEGER OVERFLOW. Integers can have values between -32768 and
+ 32767 only: this range has been exceeded in the procedure.
MENU TOO BIG. The string yielding the Menu display in the MENU
instruction is too long for Organiser. The procedure must be edited to correct
the error — by shortening the string - before it can run properly.
MISSING EXTERNAL. Organiser has come up against a variable that it
cannot find anywhere among the ‘LOCAL' or ‘GLOBAL' declarations for the
procedure, or among the ‘GLOBAL' declarations for a caliing procedure. With
this message, Organiser will tell you the name of the variable it cannot find
and, when SPACE is pressed, the procedure where it is being used. Pressing
SPACE again will give you the option of editing the procedure (as long as the
procedure has not been saved as object only) so that you can declare the
variable within that procedure - or perhaps correct its name, It may be that
you wish to declare the variable as a '‘GLOBAL’ in a different procedure that

235



255

246

217

242
239

241

232

244

198

249

248
220

252

225

240

245

Programming Organiser |l

calls the one in which the error occured, Whatever the reason for the error,
the program must be corrected before it can run properly.

MISSING PROC. A procedurs has been called that Organiser cannot find
anywhere in RAM or on a Datapak: has the Datapak been removed? Is the
procedure named correctly? Have you written it yet? Whatever the cause, it
must be put right before the program can run properly.

NO ALLOC CELLS. This will occur only with machine code routines
accessing the Organiser's internal buffer space. Machine code routines are
beyond the scope of this book.

NO PACK. An attempt has been made to use a Datapak when there is no
Datapak fitted. You can’t pull the wool over theOrganiser’s eyes.

NO PROC NAME. A program developed outside of Organiser has an invalid
procedure name as its first line.

NUM TO STR ERR. This error occurs when Organiser's operating system
routines are ‘called’ from a program, which is beyond the scope of this book. It
could also be seen when making CALCulations.

OUT OF MEMORY. All the available space in Organiser's RAM has been
used up, and there is no more room to do anything else. You must create some
space if you wish to continue running the program - by deleting files or file
records, tidying up the Diary, and so on.

PACK CHANGED. A Datapak has been changed in the middle of copying
information onto it

PACK FULL. The Datapak selected for saving information has no memory
left: all of the valid information it contains should be copied to a fresh
Datapak, and then it should be re-formatted. (Contact your dealer or Psion).
PACK NOT BLANK. The Datapak has residual information on it, and it
needs to be re-formatted - i.e. cleared of all its information.

PAK NOT COPYABLE. Program packs are often protected so that you
cannot make ‘illegal’ copies. An attempt has been made to copy such a pack.
Naughty you.

READ ONLY PACK. An attempt has been made to write information to a
Datapak that will not accept information in Organizer II: it may be a
protected program pack.

READ PACK ERROR. Organiser is unable to read the information
contained on a Datapak: the Datapak will have to be re-formatted.

RECORD TOO BIG. An attempt has been made to put more than 254
characters into a record — 254 13 the maximum size, however many fields {up to
16) there may be. Build a test or error trapping routine into the procedure, to
ensure the limit is not exceeded.

STACK OVERFLOW. This error occurs when a machine code routine
destroys a specific area reserved for Organiser’s use: such routines are beyond
the scope of this book.

STACK UNDERFLOW. See above.

STRING TOO LONG, A string of characters is too long for the string
variable to which it is being assigned. The maximum number of characters a
string variable can contain is specified when it is declared with the '"LOCAL'
and 'GLOBAL' instructions.

STR TO NUM ERR. An attempt has been made to convert a string that
contains characters other than numbers to a number. For example
VALUE%=-VAL["123A4").

SUBSCRIPT ERROR. A non-existent array element has been specified:
arrays can never have a zero element { such as *ARRAY(0)' ), and can never
have elements greater than the declared number.

UNKNOWN PACK. A Datapak that Organiser Il doesn’t recognise has been
plugged in. Only Datapaks formatted for Organiser II should be used. {(Note
that Organiser I Datapaks can be read, but not written to.

WRITE PACK ERR. For some reason, Organiser cannot write information to
a Datapak. Perhapa it isn't fitted properly or, if you're using a mains adaptor,
perhaps there's been a hiccup in the mains supply.

236

3.17 Errors and bugs

Should any of these errors occur when running a program, the
relevant procedure must be corrected. In some instances, the
correction may take the form of a trap followed by a specific course
of action, to enable the error to be corrected while the program is
running.

Organiser II provides two different methods for trapping errors.
One is a ‘global’ trap — which operates on any error that may occur,
while the other operates to trap errors that can occur when specific
OPL words are used,

Trapping any error

The OPL instruction to divert processing to an error handling
routine should any of the listed errors occur is ONERR, which must
be followed by a ‘label’: thus ONERR WRONG:: would be a typical
instruction. The label must be found elsewhere in the same
procedure.

When the ONERR instruction is used in a procedure, any error
occuring after that point — even in subsequently called procedures —
will cause the processing to jump to the specified label in the
original procedure. Should you wish errors in called procedures to
be handled differently, then the ONERR instruction must be used
again with a different label. You can switch off the ONERR facility,
by the instruction ONERR OFF,

Whilst this facility will trap any of the OPL listed errors that can
occur, you will no doubt wish to use it to trap specific types of
error. The ‘SPACE’ procedure (3.16.2) is an example of this type of
use. The only likely error to occur in this procedure (once it has
been thoroughly tested) is the selection of a Datapak location when
a Datapak is not connected. The processing is re-directed on such
an error to the point where the location is selected. You may,
however, wish to include an error message.

To give an example, here is a short procedure that can be run
from the main Menu, to find the logarithm of a number.

LOG:

LOCAL L

PRINT "NUMBER="
INPUT L

PRINT LOG{L},
GET

This is a demonstration procedure which will return to the Menu
after finding the logarithm of one number. If it were installed on
the main Menu and an error occured (an incorrect value for ‘LOG’
is entered), the procedure would stop, Organiser would display the
error message, and you would be returned to the main Menu when
a key is pressed. You would then have to run the procedure again.

237



Programming Organiser Il

With a longer program, this could be inconvenient. By using the
‘ONERR’ facility, however, the error can be ‘trapped”:

LOG:

LOCAL L

GOTO START: :

WRONG : :

ONERR OFF

CLS

PRINT “INVALID ENTRY"

GET

IF GET=1 :REM CLEAR/ON key
RETURN "REM Escape route

ENDIF

START: :

ONERA WRONG: :

PRINT "NUMBER="

INPUT L

PRINT LOG(L)

GET

:REM Error handling part

Program 3.17.1 'LOG’ Demonstration of ONERR

In this procedure, a ‘jump’ is made over the error-handling routine
‘WRONG: :". Should an error occur because a value of zero, a
negative value or a character is entered by the user (for which
there is no ‘LOG") — processing will jump to ‘WRONG: :’, report that
an invalid entry has been made, then follow through for a further
input — unless the CLEAR/ON key is pressed to abandon things.
Note that error handling is switched off (‘ONERR OFF') at the
beginning of the error-handling routine: should an error occur in
this part, perhaps because Organiser runs out of memory space
when the PRINT instruction is encountered, the procedure will run
into a loop. The escape route — if CLEAR/ON is pressed after the
“INVALID ENTRY" message is displayed — ensures you can break
out of the procedure come what may.

The error handling routine could have been added at the end of
the procedure, In this case, it would be absolutely vital to include a
‘RETURN' or some other way of escaping the procedure after the
answer has been displayed. Otherwise, having performed the
operation, processing would continue with the error handling
routine — with a jump back to ‘START: :” — and Organiser would be
in
a perpetual loop from which there is no escape.

It is important to note that the CLEAR/ON and Q method of
breaking a program will not work whilst Organiser is waiting
for an ‘INPUT’: the CLEAR/ON key, in these circumstances,
serves to clear any entered input.

238

3.17 Errors and bugs

The actual type of error can be identified and displayed on the
screen — just as if Organiser were reporting the error — by using the
two OPL words ‘ERR" and ‘ERRs’.

When an Organiser-detectable error occurs, the error number is
‘stored’ in ERR. Thus, a specific error can be isolated by using the
‘IF’' construction: ‘TF ERR=251", for example, would isolate the
‘DIVIDE BY ZERO' error.

ERR$ must be followed by an error number, in brackets, and gives
the message string for the specified number. Thus, an instruction
such as ‘PRINT ERR$ (251)" will display on the screen the message
‘DIVIDE BY ZERO'. Using the two words ‘ERR’ and ‘ERRS’ in
combination — ‘PRINT ERRS(ERR)’ — in an error handling routine
allma{}s the Organiser error message to be displayed, whatever it
may be.

If a number outside Organiser’s range of error numbers is used,
the screen will simply display the message *** ERROR ***,

When writing and testing your procedures and programs, you can
therefore cater for various types of error that may occur when the
program is run. Obviously you would not cater for any file-handling
errors in a program that does not use files. Having written your
procedure to cater for errors — either at the outset, or by editing it
as a result of the error occuring during the program testing — you
may wish to test that the program operates correctly when an error
does occur,

There is an OPL word to allow you to do this — RAISE. This must
be followed by an error number: ‘RAISE 251°, for example, will
artificially generate a ‘DIVIDE BY ZERQ' error.

The 'RAISE’ instruction is added at a suitable point in the
procedure — outside of the error handling routine — when you are
testing that it works. If there is no error handling routine, then
processing will stop, just as if the error had actually occured, with
the appropriate message displayed on the screen.

Remember that ‘ONERR’ operates on any procedures called by the
procedure in which it is used, and any procedures they may call,
and so on. Processing will always return to the ‘top’ procedure,
containing the ‘ONERR’ label. (This could be used as a very fast
way of jumping back from a ‘low level’ procedure to the top
procedure),

If you want to isolate different types of error in each individual
procedure, then each must have its own routine. If you don’t want
error handling to continue through to called routines, then you
must ‘switch off” the trapping process, using ‘ONERR OFF'.

Trapping specific instruction errors

There are many types of error that can occur during file handling -
because a specified file does not exist or has not been opened:

239



Programming Organiser Il

because an incorrect location or logfile has beep specified; because
the end of the file has been reached; because an incorrect user input
has been made, and so on. ) ‘

Organiser allows you to trap errors of this kind with the OPL
instruction ‘TRAP". o _

TRAP can be used in front of any of the following instructions:

APPEND, BACK, CLOSE, COPY, CREATE,
DELETE, ERASE, EDIT, FIRST, INPUT, LAST,
NEXT, OPEN, POSITION, RENAME, UPDATE,

USE

Of these, all except ‘INPUT” and ‘EDIT’ deal only with file handling. '

Typical instructions might be ‘TRAP A_PPEND', or ‘TRAP NEXT'.
Using TRAP prevents Organiser from stopping the program running
if an error results from associated instruction. Thus, with “TRAP
APPEND', if an error resulted from the ‘APPEND’ instruction
(perhaps because a file is not open) then Organiser would not stop
to report the error.

It is up to you to tell Organiser what it must do if an
error occurs.

Generally speaking, you will know what errors can result from an
instruction — either by experience, or as a result of program testing.
Immediately after the ‘TRAP xxxx’ instruction, you mu§t put{m
your error handling routine, which will invariably start with an ‘IF
ERR. .. . Then, if an error does occur, it is dealt with immediately. If
there is no error, the ‘IF ERR...' is ignored and processing will
continue with the instruction following the routine terminator
‘ENDIF’.

Here is an example, using TRAP to prevent an error occuring
during an ‘INPUT’ instruction. It would be well v:arori_;h your w_hﬂe to
enter this short procedure, test it out and examine its operation, so
that you can understand the process involved.

TRAPPER
LOCAL I%
START: :
CLS
PRINT "ENTER A NUMBER"
TRAP INPUT I%
IF ERR
CLS
PRINT "ERROR No.", ERR
PRINT ERRS(ERR)
GET
GOTO START::
ENDIF

240

SRR S S —

I SRS R

T N e g

3.17 Errors and bugs

PRINT "THAT IS A NUMBER"
GET

Program 3.17.2 'TRAPPER' Demonstration of TRAP instruction

When you run this procedure, the keyboard will be set for numeric
inputs on the ‘TRAP INPUT" instruction — because of the ‘1%’
variable. If you press SHIFT and a number key, or you press any of
the ror numeric keys (< or =, for example), or the CLEAR/ON
key, then there will be an error. Because the ‘TRAP’ instruction has
been used, Organiser will not stop to report the error — but carries
on with the next instruction. Here, a general ‘IF ERR’ instruction
has been used - rather than isolate a specific error type. The error
number is then displayed on the screen along with Organiser’s own
error message. A jump is then made back to get a proper numeric
input.

The only way out of this procedure is to enter a proper number:
in longer error handling routines, or routines which pick up an
unexpected error, you should provide an alternative ‘escape’ route,
otherwise you will be in a perpetual loop. This is especially
important if your procedure doesn't cater for the error that has
occured. With the above procedure, you will get error number ‘252
-~ ‘STR TO NUM ERR' - if you press any non-numeric key, because
you are attempting to assign a character to an integer variable. If
you enter a floating point number there will be no error, but 1%,
will hold only the integer part of the number you enter. If you press
CLEAR/ON instead of entering a number, a different error will be
reported — number 206 ‘ESCAPE’. Without the ‘TRAP' instruction,
pressing CLEAR/ON would not be regarded as an error — but
merely an instruction to clear the entry made so far. The fact that
CLEAR/ON produces an error when 'TRAP’ is used with *INPUT’
can be a way of escaping from an error routine. The error handling
routine could look like this, for example:

IF ERR=206
PRINT "LEAVING PROGRAM"
GET
RETURN

ELSEIF ERR

and so on

This will display the message 'LEAVING PROGRAM' if CLEAR/
ON is pressed when an input is expected. Then, on pressing any
key, the procedure will be terminated by the ‘RETURN’ instruction.

If the procedure is called by another procedure, a return will be
made to the calling procedure. There is another OPL word that
allows you to break out of the program altogether — and that is
‘STOP'. You can use STOP, on its own, wherever you would other-
wise use ‘RETURN’. .

The way you handle errors and the actions that are taken will

241



Programming Organiser Il

depend on your program: remember that when you use error-
trapping the onus is on you to tell Organiser what to do should the
errars occur. Cater for all potential errors, and always provide an
escape route to avoid continuous loops, especially during program
development. To see Organiser ‘seize up’ when a considerable
amount of information and a number of procedures have been
entered can be a wigmaker's delight — to put it mildly.

When Organiser goes into a never-ending loop

It is a programmer's nightmare when the computer gets locked into
a permanent loop, repeating an instruction sequence ad infinitum.
In many instances, you will be able to break out of the program by
pressing CLEAR/ON followed by Q. However, if it is a short loop
including an ‘INPUT' instruction, this will not work unless your
program allows for it.

Sometimes (but don’t bank on it), you can save the situation by
removing the battery for only about 20 seconds: with luck, when
you switch on again, you will be presented with the main Menu,
and all of the information and procedures you have saved in RAM
will still be intact.

If these two measures fail, then all you can do is remove the
power supply long enough to clear RAM completely, and start
again.

The best cure for a permanent loop is prevention. Always
endeavour to ensure that there is a way out of loop structures,
particularly those using the ‘INPUT’ instruction.

Finding bugs

Anything that goes wrong with a program is called a bug. If
Organiser reports what has gone wrong, then the type of bug that
you are looking for is more easily located, by examination of the
instructions.

The bugs that are not so easy to find are those where the program
produces wrong results — an answer is given which you know is
incorrect.

It is often necessary to add routines to the program in order to
help locate where a bug is occuring and to identify why it is
occurring. At strategic points, for example, you could include
‘PRINT' instructions to display the values or contents of variables
that you are using. Examining the contents of variables in this way
lets you see what is actually happening as Organiser obeys your
instruction set. The routine that causes the trouble can then be
isolated and examined carefully.

The ‘1F instruction can also be used in conjunction with ‘PRINT’
to help isolate a bug, by making the program report when variables
become erroneous. ‘E0IT’ can be used to change the contents of a
string variable — and so on. All the OPL words are at your command

242

3.17 Errors and bugs

to help you isolate running problems, Remember to remove the
added routines once the bug has been cleared.

Where error-handling routines are concerned, the ‘RAISE’ instr-
uction can be used to generate errors, and so check the operation of
the routines.

De-bugging a program is rather like detective work: the facts are
all there. They need to be winkled out, carefully and methodically.
When found, of course, the program needs to be edited to correct
the bug. It helps to have good documentation for your procedures
and programs — flowcharts and listings. Of course, as far as listings
are concerned it helps to have a printer and an RS232 link.

As mentioned before, with very long and involved programs it is
almost impossible to cater for every eventuallity at the outset: some
bugs may appear only under very specific running conditions,
which have not been allowed for.

It is for this reason that a program should not be saved to a
Datapak as object only until it is known that all potential bugs have
been taken into consideration: programs saved as ‘object only’
cannot be edited. They have to be re-written. And that can be a very
tedious exercise.



3.18

MACHINE LEVEL INSTRUCTIONS

OPL words covered
ADDR, ESCAPE OFF/ON, PEEKB, PEEEKW
POKEB, POKEW, USR, USR$

A word of caution

The OPL words discussed in this Chapter enable the user to gain
‘access’ to Organiser’s operating system. Consequently, they should
be used with caution: careless use can result in the loss or
corruption of saved information, and in the operating system
behaving abnormally. They cannot damage the hardware of Org-
aniser, and consequently any effects resulting from misuse can bhe
cleared by removing the power supply and reconnecting it after a
suitable period of time, The golden rule is - if you don’t understand
what the instructions are doing, don’t use them.

With one exception, an appreciation of machine code language is
needed in order to fully exploit the use of these OPL words.

The exception is ‘ESCAPE OFF/ON’, which can be used to prevent
programs from being paused by pressing CLEAR/ON, or stopped by
pressing CLEAR/ON, Q. For normal applications, the use of these
words' 1s unnecessary: they are intended more to prevent a user
breaking off half-way through a procedure when, say, only half of a
set of data has been saved. This is more appropriate if someone else
is going to use the program. The only routine in this book which
could call for the use of ‘ESCAPE OFF' is ‘PASSWORD’ (Program
3.6,1). However, when it is run, this program ‘sits’ waiting either for
an ‘'INPUT" or to be switched on, and consequently it is virtually
impossible to break into it (to examine the keyed-in Password)
using the CLEAR/ON,Q technique.

If 'ESCAPE OFF' is used and Organiser II gets hung in a
continuous loop, there is no escape. It is, therefore, a potentially
dan_gerous instruction to use, particularly when developing and
testing programs. The ‘ESCAPE ON' instruction re-enables the
escape process: this is the normal condition for Organiser I1.

It is well beyond the scope of this book to explain the operation of
Organiser II at the machine code level: as you will appreciate, the
broad description of the inner workings given in Part 1 barely
scratches the surface. For completeness, a description of the
function of the machine-level instructions is given, with general
examples of use where suitable. For interest, we will use some of
the instructions to examine more closely how information is stored
in Organiser, and to create a character pattern generator — with

244

Programming Organiser Il

facilities for saving the characters you create on a ‘permanent’
basis. However, it cannot be overstressed that to experiment with
the instructions or to use them carelessly can be a dangerous
exercise,

Locating variables in memory -

For sophisticated programs, it can be useful to know the actual
start address of where a variable is being saved in memory. The OPL
word providing the answer is ‘ADDR’, which must be followed by
the variable’s name in brackets. Use of this instruction can be
demonstrated in the CALCulator mode, to identify the addresses of
the CALCulator memories MO to M9.

Select CALC from the main Menu, then enter

ADDR(MO0)

and press EXE. The first memory box allocated to ‘M0’ will be
displayed (8447). If you now find the start address for CALCulator
memory M1, you will see that there is a difference of eight memory
boxes — the number required by Organiser to store any floating
point number.

Examining the contents of memory

OPL has two words enabling the aclual contents of memory to be
examined. You will recall, from Part 1, that each memory box in
Organiser can only store numbers from 0 to 255. The first word
‘PEEKB’ (short for 'PEEK Byte') examines the contents of one
memory box. The address of the memory box to be examined must
be included, in brackets, after the instruction: thus ‘PEEKB(8447)",
This instruction can be used safely in the CALC mode of Organiser
and, if you are inquisitive, you can examine just how Organiser
stores floating point numbers. (But you will need to understand
hexadecimal — and convert the contents of the first six addresses
from decimal to hexadecimal values - and it would help if you
understood Binary Coded Decimal. Another time, perhaps?).

The second QPL word is ‘PEEKW (short for 'PEEK Word'). In
computer terminology, two bytes taken together are called a word.
Each separate box can store from 0 to 255: if the second box is
regared as a counter which pegs up one each time the first box
reaches 255 (rather like the milometer on a car, but using different
numbers), then the two together can be used to count from 0 to
65535. ‘PEEKW(address)’ gives the value of the contents of two
consecutive memory boxes, starting at the address defined in
brackets.

Two memory boxes are used together in the operating system to
identify, for example, an address within Organiser II. Which
explains (perhaps) why the highest accessible address in the system

245



Programming Organiser Il

18 65535 in decimal (or ‘FFFF' in hexadecimal).

Some addresses used by Organiser II to store specific information
are given in Appendix E of the Operating Manual supplied with the
machine, together with the ‘default’ contents of those addresses (in
hexadecimal). For example, using ‘PEEKW($20CD)’ in the CALC-
ulator mode will reveal that the delay before Organiser Il switches
off automatically is 300 seconds ($12C in hexadecimal). The YEAR,
MONTH, DAY, HOUR, MINUTES and SECONDS information is
stored in memory boxes 8389 to 8394 respectively. ‘PEEKB (8389)" for
example will reveal the last two digits of the current year.

Changing memory contents

Just as there are two OPL words to examine the contents of one or
two bytes of memory, so there are two OPL words to change the
contents of memory boxes. These are danger words. Don’t use them
unless you know precisely what you are doing.

The first is ‘POKEB’ (short for ‘POKE Byte), and it is followed by
two parameters, separated by a comma. The first parameter speci-
fies the address of the memory box concerned, and must lie within
the range 0 to 65535, while the second parameter specifies the value
to be stored at the designated address, and must lie in the range 0 to
255.

Addresses above 32767 must either be written in hexadecimal
(and prefixed by a § symbol), or written as the negative value
resulting from subtracting 65536 from the address. Thus, address
656530 would be written as —6 (i.e., 65530-65536).

The second word is ‘POKEW, and as with ‘POKEB', it must be
followed by two parameters for the address and the information to
be stored in the specified memory. This time, however, the value to
be stored is converted to hexadecimal and the two ‘bytes’ are stored
at the two addresses starting with the designated address: the most
significant byte is stored at the lower address.

Unless you really understand these words, don’t ‘poke’ around
without guidance. If you do know what you are doing, you can
change some of Organiser’s ‘delays’ to suit your own needs — the
delay before Organiser automatically switches off, for example, or
the delay before a pressed key ‘auto-repeats’,

Defining your own characters

Two programs using POKEB are given in your Organiser Operating
Manual: the first, called ‘MUTE’, enables you to switch off Organ-
iser's sound system, while the second, called ‘UDG’ enables you to
define the shape of eight of your own characters. These must be
re-defined each time Organiser is swiiched on.

The characters are defined on a grid of five horizontal boxes by
eight vertical boxes, as shown below:

246

3.18 Machine level instructions

16 8 4 2 1

Example: A 'bug’

ml | [ ! i I [eave .tlllank for . )
Botto ! : ‘underline’ and ‘line space’.

Fig. 3.18.1 Character definition grid

lete character is stored in eight memory boxes, one
?t‘xl::mfr?ynm]x to a horizontal line. The contents of the memory bogc%
determine the actual pattern for that honz.ontzfl I_me. The Ex
contents should be regarded as switches, turning ‘on’ a part pf lt'l e
pattern if they are ‘switched on’. There are, in effect, eight switches
to a box: only the lower five of these are used to define the shape.
Each ‘switch’ relates to a decimal value — as indicated in Fig.
3.18.1. (This is also discussed in (?hapter 1.2, under the head!ng
Computers count differentiy). Thus, if the top memory box is stc:-lrm.g
the value ‘4’, then the switch associated with Fhat val_u‘e w1‘11 be ‘on’,
and a black dot will appear in the corresponding position in the" tq:p
line of the character pattern. To sell; twio (011:' mfi;l}-legrsmtches on’,
i the corresponding decimal values toge ;
sm%ﬁlg;ilg create a sgnjiid blaik line at thg very top of ‘thn'e character
pattern, the first memory box must contain the value ‘31’ (16 + 8 +

4+ 2+ 1) _ -
The pm)cedure for defining a character pattern is as follows:

a) Prepare the shape on a 5x8 grid, by shading in the required
ttern. . :

b) }{?J?:mvert each horizontal line into a decimal value, by adding
the values related to each vertical position.

¢) Use the ‘UDG’ procedure from the Operating Manual or the
‘CHRPAT program that follows, to select the required ]J_lat.ter?
number and to enter the character pattern into Organiser I
Remember you can only define character pattern numbers 0 to
7.

d) To display the pattern in one of your own programs, use the
instruction ‘PRINT CHRS(number%)’, where ‘number% rep-
resents the number of the pattern that has been defined.

247



Programming Organiser li

Organiser c_loes not retain the patterns when it is switched off. This
can be an inconvenience if you wish to use specific shapes every
time you run a program. Consequently, it can be useful to save the
information defining a character pattern to a file. The following
program suite enables you to define a character, to save it to a file
and to call that character back for loading into memory. The
‘loading back’ routine can be used as part of one of your own
procedures to re-load previously defined characters.

The suite uses GLOBAL variables, and hence all procedures must
be entered for the program to run. If you wish to use any of the
procedures on its own, the relevant variables must be declared
within the procedure in the usual manner.

First, here is the main controlling procedure:

CHRPAT:
GLOBAL CHR%.M% HL%(8),Fs(10)
START: :
M%-HENU{"NEWCHH.SAVECHH.LU&DCHH.ENDU
IF M%=1
CHRDEF :
ELSEIF M%=2
CHRSAV:
ONERR  OFF :REM Put on in CHRSAVW
ELSEIF M%=3
CHRLD:
OMERR OFF
ELSE RETURN
ENDIF
GOTO START::

Program 3.18.1a *CHRPAT' Character definition control procedure

It will not be possible to test this procedure until the called
procedures have been entered. The ‘CHRDEF’ procedure follows:

CHRDEF:
LOCAL C% :REM and CHR%. HL%(B) if stand-alone
CHRIN:
CLS
PRINT "CHARACTER (0-7)"
TRAP INPUT CHR%
IF (ERR) OR (CHR%<Q) OR (CHR%=7 )
GOTO CHRIN::
ENDIF
C%=1
Do
LINE::
CLS
PRINT “LINE ";C%

248

3.18 Machine level instructions

TRAP INPUT HL%{C%)
IF ERR
GOTO LINE;;
ENDIF
C%=C%+1
UNTIL C%-8
cLS
POKEB $180,64+(CHR% AND 7)}*8 :REM Get this line right
CH=1
Do
POKEB $181.HL%({C%) :REM - and this one.
Ch=C%+1
UNTIL C%=-8
PRINT "CHARACTER= " :CHRS{CHR%}
GET

Program 3.18.1b ‘CHRDEF’ Defining a character

Note that this procedure defines only the top seven lines of the
character: the bottom line is usually left blank to separate the
character from any displayed below it, and to allow for Organiser's
underscore character.

Now here's the procedure to save a definition to a file:

CHRSAV
LOCAL C%.Ts(1)
OMERR BAD::
SAVE: :
CLS
PRINT "FILENAME";CHRS(63)
TRAP INPUT Fs$
Ts=UPPERS (LEFTS(F5,1))
IF F§="" ‘REM Escape route,press EXE
RETURN
ELSEIF (Ts<"A") OR (T$="C") OR (MIDS(Fs$,2.1)=<>":")
PRINT "INVALID LOCATION"
GET
GO0TO SAVE::
ELSEIF EXIST (Fs)
PRINT "FILE EXISTS-MEW"
PRINT "NAME PLEASE"
GET
GOTO SAVE: :
ELSE CREATE Fs- A,LINE%
AL LINE%=0
APPEND
ERASE
C%=1
Do

249



Programming Organiser ||

A LINE%=-HL%(C%)
APPEND
Ch=C%+1
UNTIL C%=8
CLOSE :REM For more characters
PRINT "CHARACTER SAVED"
PRINT *TQ " ;Fs
GET
RETURN :REM This line VITAL
ENDIF
BAD: :
PRINT ERRS (ERR)
GET
Clh=MENU{"TRY-AGAIN STOP"}
IF C%=-1
GOTO SAVE: :
ELSE RETURN
ENDIF

Program 3.18.1c *CHRSAV' Saving defined character to a file.

Notice the use of error protection in this procedure — and the
various escape routes included: pressing EXE when asked for the
FILENAME will return you to the main procedure MENU. Invalid
locations are ‘trapped’ (remember you must enter the location letter
followed by a colon before the name itself), You are not allowed in
this procedure to overwrite an existing file: if you wish to use the
filename again for a new character shape, you must delete the
original file first (using the File Management program in Chapter
16). All other errors are trapped by the ‘ONERR’ instruction — which
displays the error and gives you the opportunity to break out of the
program back to the main procedure MENU, or to try again from
the start.

Finally, here is the procedure to load back a previously saved
character. This procedure can be adapted to stand-alone for use in
your own programs, if you wish: to do this, the variables used in the
procedure must be declared.

CHRLD:

LOCAL C%,Ts(1)

ONERR BAD::

START: :

PRINT “FILE TO LOAD":CHRS(63)

INPUT Fs3

Ts=UPPERS({LEFTS(Fs,1))

IF Tg=""
RETURN

ELSEIF (T$<"A"} OR ({T$>"C"Y OR (MIDS{F$,2, 1)1<>""")
PRINT "INVALID LOCATION®
GET

250

3.18 Machine level instructions

GOTO START::
ELSEIF EXIST(FS5)
OPEN F$,A,LINE%
C%=1
FIRST
WHICH: :
CLS
PRINT "CHARACTER (0-7)"
TRAP INPUT CHR%
IF (ERR} OR (CHR%<0) OR (CHR%=>7)
GOTO WHICH::
ENDIF
POKEE $180,64+(CHR% AND 7)*8
Do
POKEB $181.A.LINE% :REM ang this one too.
NEXT
C%=C%+1
UNTIL C%=-8
CLOSE
CLS
PRINT "CHARACTER ":CHR%
PRINT "NOW = ";CHRS(CHR%)
GET
RETURN
ELSE PRINT "FILE NOT FOUND™
GET
GOTO START::
ENDIF
RETURN :REM This 1ine 1s VITAL
BAD: :
PRINT ERRS(ERR)
GET
Ch=MENU( "TRY-AGAIN,STOP")
IF C%=1
GOTO START::
ENDIF

:REM Take care

Program 3.18.1d ‘CHRLD’ Load a presaved character pattern.

To use all of this program, run ‘CHRPAT’ first, select ‘NEWCHR’
to define a character pattern and then, if you wish, save the
character information to a file by using the ‘SAVECHR option. To
load a previously saved character, select '‘LOADCHR’, and enter
the file name containing the character pattern information that
you want - remembering to include the location. You will then be
asked which character number (from 0 to 7) you want the character
information to be loaded into: thus you can design a range of
characters, and call them back into whichever character numbers
you wish,

261



Programming Organiser |l

After a character has been designed or loaded back into memory,
the pattern is displayed on the screen so that you can check it is as
you want.

If you wish to use the ‘CHRLD' routine in one of your own
programs — to set up character patterns, remember to declare the
necessary variables — HL%,(8), for example — at the beginning. Also
you will probably choose to enter the file names as part of the
program, rather than have them entered from the keyboard.

Machine language programs

Two OPL words — USR and USA$ — enable machine code programs to
be run. Writing and entering such programs is beyond the scope of
this book: indeed, it is unlikely that anyone except the most
experienced would write machine code routines on Organiser. OPL
is sufficiently powerful — and fast — to meet all but a few very highly
specialised requirements.

Careless use of these OPL instructions can result in the loss or
corruption of saved information and an upsetting of Organiser’'s
operating system data. They are not discussed further.

A Final Word

It is hoped that this book has given you an insight into
the operation of your Organiser, and an understanding of
how to program it to suit your own requirements.
Remember, practice makes perfect.

Every effort has been made to ensure the accuracy of its
contents, and to present the information in a way that
can be readily assimilated by all. Suggestions for add-
itional information or improvements should be sent to
the Publishers for forwarding.

252

APPENDIX

ASCII - Character Pattern Chart

Note that patterns for characters 0 to 7 can be defined by the user -
see Chapter 3.18.

HRF ] [=[REE

-~
160 | 176 | 192 | Zo8 | 224 | 240

ol A

A
11 49 6% Bl 297 113 [ 161 [ 177 [ 193 [ 200 225 241

™
-
o
2
w

-
-
-
"

T
S
L
N

l I '_. 1 1] T C—y
™, " ]'_' r a | : E.I _:-:I ':: i:l
14 4 66 y2 38 114 | 162 ) 178 | 1594 | 210 | 226 | 242
afnks - e l'_ el i
el .t I - “I I_.. .:- ﬁl T :F :::.' l:.l1

63 a5 10} | 117 | 165 18y | 197 ) 23| 229 | 245
i

A A
1] 54 70 86 | 102 114 | 168

2]
bl
o
4
vl
-
=
=

103 | 119 167 | 183 | 199 | 215 | 231 247
—

L
-
Bt
-]
=l

¥ L] T7T T—
o Bl A e AL L
40 56 72 B8 | 104 | 129 | 168 | 1B4 | 200 | 216 | 232 | 248

P—lq
N
F
~T]
.

-
=
w
-
Lo
-
-
>
w
-
P
i
ha
=
-
[
-
]
i
el
[
ma
-
w

sran|giza|ap |7
-
[]z
id
»
L
-H

E
-
::

A r
L] &0 16 92 108 | 124 ) 172 | L1BB | 204 | 220 | 236 | 252
L
fu_ - l 'I-. - -
e el l L) oo
. [.l l. u.: .l II L]

A
a5 | 61 | 77 | s3 109 | 135|173 189 | 205 | 221 [237] 253
i

2 e E ARl

_. ] .
46 631 78 a4 110 | 118 174 190| 206 | 222 138 154
. '_ L1 & I u L g T
o N T O U Tt T L R el
- [ ] L] L] f—
. Pl I Y m | s A

47 [ 3] 19 95 | 111 | k27| 195 ) 191 ) 207 | 223 | 239 | 255




ABS (OPL inst.)
Adding MENU option
ADDR (OPL inst.)
ADDRESS

Principle

Mext Instruction
ALARMs

Cancelling

Modifying

Setting
AND fOPL. inst.}
Animation
APPEND (OPL inst.)
ARRAY variables
ASC({QPL inst.)
ASCIl

of control keys
Assigning values
AT(OPLinst.)
ATAN (OPL inst.)

BACK (OPL inst.}
BEEP({OPL inst.)
Binary system
Bit
BREAK (OPL inst.}
Byte
Calculation priorities
CALCULATOR

Errors

Principle

Functions

Memories

Using
Calling procedures
Central Processor Unit
CHARACTERS

Control

Principle

Storing
CHRE(OPLinst.)
CLEAR/ON key
CLS(OPLinst.)
CLOSE(QOPL inst1.)
CONTINUE {OPL inst.)
Control key ASCII numbers
Converling variables
COPY (OPLinst.}
Copying files
Copying procedures
COS(OPL inst.)
COUNT (OPL inst.)
Cursorkeys
CURSOR ON/OFF ({OPL inst.)

DATAPAKS
Description

INDEX

OPL commands and functions are identified by OPL inst., and only
the main descriptive entry for each is given. Generally speaking,
this represents the first mention of the OPL word within the book.
For program information, please refer to the Contents pages.

75
42
245

2
19
47
48
48
47
148
177
204

105,128

183
14
166
116
123
75

74,110

120

Date setting
DATIMS (OPL inst.)
Decorating Material program

Planning

Writing,
DEG (OFLinst.)
DELETE (OPL inst.)
DELete key
Deleting

DIARY entry

MAIN records

MENU option
DIARY

FIND

GOTO

LIST

Menu

Saving

TIDY

PAGE

Using
DIRS (OPLinst.)
DIRectory of procedures
DISP(OPL inst. )
DOMUNTIL {OPL inst.)

EDIT(OPL insr.)
EDIT(PROGram MENU)
Editing MAIN records
ELSE/ELSEIF/ENDIF see IF
ENDWH see WHILE
EQF (OFL inst.)

EFPROM

ERASE MAIN records
ERASE procedures
ERASE (OPLinst.)
ERROR handling

Error messages
Errortrapping

ESCAPE {OPL inst.)
EXEcule key

EXIST (OPLinst.)
EXP(OPL inst. )

FILES. built-in
FILES. programmed
Closing
Creating
Deleting
Management
Opening

FIND-DIARY
FIND-main MENU
Principle
Using

46
190

82
154
75
227
39

64

54
43

52

FIND (QPLinst1.)
FIRST{QPL inst.)
FIX

Fixing decimal point
FIX$ (OFLinst.)

Floating point numbers
Floating point variables

Flowcharting
FLT {QFfL inst.)
FREE (QPL inst.}
Frequency
FUNCTIONS
Numeric
GENS (OPL inst.)
GET {QPLinst1.)
GETS {OPL inst.)
GLOBAL variables
Description
GOTO
DIARY
{OPLinst.)

HEXS {OPL inst. )
HOUR (OQPL inst.}

IFIELSEIF/ELSE/ENDIF

fOPLinst )
Information storage
INFO option
INPUT (OFPL inst.)
Instructions
Separating
types
INT (QPL insi.)
Integers numbers
Integer variables
Interrupts
INTF {OPL inst.)
KEY (OPLinst.)
KEYS$(OFPLinst.)
Keyboard
Principle
Using
KSTAT {OFL inst.)
Labels
LAST (P inst.)
LEFTS (OPL inst.)
LEN{QPL inst.)
LIST
DIARY
LN (OPL inst. )
LOC{OFPL inst.)
LOCAL variables
Description
LOG (OPLinst.)
Loops
LOWBATTERY
MEMORY
Boxes
Calculator
Content
EPROM

74

186
123,163
163

108

61
153

187
15}

143, 146
50
44
122, 163

102

101

157, 188
15

104

20

1838

164

164

4,36
36
168
153
215
134
136

i)
75
138

107

75
175,242
3

o

2

82, 106
10

10

256

RAM

ROM
MENU-DIARY
MENU-main

Customizsing

Description

Selecting option
MENL(OF!L. inst.)
MENLU = PROGram

COPY

DIR

EDIT

ERASE

LIST

NEW

RUN
MENU-PROG SAVE
MIDS(OFPL inst.)
MINUTE {OFPL inst.)
MODE key
MONTH (OPL inst.)
Muluiplying
Music
Nesting
NEW (PROGram MENLU}
NEXT {OPLinst.)
NUMS {QPL inst.)
NUM key

OFF {2 PL insr.)
ONERR {2 PL inst. )
COPTIONS {main MENL!)
Adding
Deleting
Moving
Restoring
Selecting
OR (QPLinst.)

PAGE option
Parameters
Description
Pattern numbers
{Seealso ' ASCIT)
PAUSE (OPL inst.)
PEEKB {QPL insi.)
PEEKW (QOPL inst.)
Pl {QPLinst. )
POKEB {OPL inst.)
POSITION (Q2FPL inst. )
POWER SUPPLY
PRINT (QPLinst.)
PROCEDURES
Calling
Creating
Declaring variables
Naming
Principle
Waystorun
Program Counter

1K
13
165
245
245
75,193
246
217

3

121

120
113
115
113
30
3
19

PROGRAM MENU (Sce under MENL)



PROGRAMMING
Flowcharting
Introduction
MENU
Planning
Principles

QUIT{PROG Save MENU)

RAD{OPL inst.)
RAM
RANDOMIZE (OFPL inst.)
Records (main MENL)

Editing

Keeping

Saving
Records (Programmed)

Adding

Changing

Displaying

Editing

Fields

Finding

Selecting

Size
RECSIZE (OPLinst.}
RENAME (OFLinst.)
REM {OPL inst.)
RESET option
RETURN (O PL inst.)
RIGHTS (OPL inst. )
RND (QPLinst.)
ROM
RUN (PROGram MENU}

SAVE (main MENU)
Principle
Records
SAVE (PROG Save MENLD)
SCIS {OPLinst.)
Scientific notation
SECOND (QPL inst.)
SHIFT key
SIN{(OPL inst.)
Sound effects
SPACE (OPL inst.)
SQR{OPLinst1.)
STOP{QPL inst.}

101

212
211
211
229
177

118
134

75,129

191

241

256

STORING
Characters
Cutting
Instructions
Values

STRINGS
Arrays
Concatenating
Converting
Declaring
Variables

Switching off

Switching on

TAN (OPLinst.)

Test operators

TIME setting

Translation service

TRAN (PROG Save MENL))
TRAP (QPL ingst.)

UNTILsee DO
UPDATE (OPL inst.)
USE {OPL inst.)

USR (OPL inst.)
USRS (OFPL insi.)

VAL {OPL inst.)

Variables
Array
Assignments
Converting
Declaring
Description
Floating point
GLOBAL
Integer
LOCAL
Names
Non-declared
Parameters
String

VIEW (OPLinst.)

Warehouse concept
Office
WHILE/ENDWH (OPL inst.)

YEAR (OPLinsi. )

184

105
L6
183
115,127

7

170, 218

2
3
173

191




This book contains a detailed explanation of how
to use the Organiser |l. Many examples of its
procedures and programs are included in astyle

that is both easy to follow and entertaining. By
taking the time to understand this very powerful

device, its full potential can be realised. The
detailed description of the Organiser ll, its built
in applications and programming capability will

make light and enjoyable the task of exploring
this fascinating computer, particularly for those

users who have not used such device before.

“......this book can be read with lLaneﬂt by the
expert and uninitiated alike...”

David Potter Chairman Psion Ltd.

£9.95

Published by

Kuma Computers Ltd., Pangbourne, Berkshire, England
Telex: 846741 KUMA G. Telephone:07357-4335




